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1.  BACKGROUND 
 
Ground-level ozone concentrations in and around 
Houston, Texas frequently exceed health-based 
standard levels set by the U.S. Environmental 
Protection Agency.  The Houston-Galveston Area 
(HGA) has been declared to be in non-attainment 
of the old (1-hour) and new (8-hour) ozone 
standards.  Development of an effective air 
quality management plan for ozone in the HGA is 
critically dependent on photochemical modeling 
results.  The Texas Commission on 
Environmental Quality (TCEQ) is using the 
Comprehensive Air Quality Model with 
extensions (CAMx; ENVIRON, 2002) in 
developing the State Implementation Plan (SIP) 
for the HGA (TCEQ, 2003a).  Uncertainties in 
emission inventories represent a major source of 
uncertainty in any photochemical modeling study.  
Analyses of data collected in the TexAQS 2000 
field study raised concerns that VOC emissions 
from very large industrial sources in the HGA are 
under-represented in the SIP emission 
inventories (Daum et al., 2002).  This conclusion 
was based on the interpretation of extensive 
ambient measurements of ozone and precursors, 
and is consistent with tendencies for 
photochemical models to under-predict ozone 
levels in the areas close to and downwind of 
HGA industrial point source complexes, e.g., 
around the Houston Ship Channel and Galveston 
Bay (TCEQ, 2003b).  The ozone control plan 
developed for the HGA SIP may be less effective 
than expected if the photochemical models are 
missing substantial ozone production from 
industrial point source emissions.   
 
An inverse modeling technique was used in this 
study to perform a top-down evaluation of the 
HGA SIP modeling emission inventory along with 
data from TexAQS 2000.  Inverse modeling 
involves determining combinations of emission 
inventory adjustments that produce the best 
agreement between modeled and measured 
concentrations.  The inverse modeling was 
carried out by calculating model sensitivity 
coefficients that relate model output 
concentrations to input emissions.  First-order  
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sensitivity coefficients were calculated using the 
Decoupled Direct Method (DDM) developed by 
Dunker (1980 and 1981) and implemented in 
CAMx as described in Dunker et al. (2002).  A 
description of the calculation and interpretation of  
DDM sensitivity coefficients is provided in the 
Appendix.   
 
Objectives of this study were to: 
 

1. Evaluate whether industrial VOC 
emissions appear to be under-estimated 
in the TCEQ’s base inventory for 2000 
and, if they are, develop a quantitative 
and objective measure of the 
underestimation. 

2. Evaluate whether TECQ’s so-called 
“PT_O2N2” adjustment to the industrial 
VOC emissions improves ozone model 
performance, and determine whether 
further refinements to the “PT_O2N2” 
adjustment are warranted. 

3. Consider how uncertainties in other 
emission categories affect the existing 
conclusion that point source emissions 
are under-estimated. 

4. Calculate relative reactivity factors for 
different VOC compounds emitted from 
industrial sources in the HGA for the 
purpose of evaluating VOC specific 
control strategies. 

 
We briefly summarize here our analysis methods 
and results.  More detailed information is 
available from Yarwood, Stoeckenius and Lau 
(2004). 
 
2.  DATA 
 
2.1  Modeling Databases 
 
CAMx modeling analyses were conducted for 25 
– 31 August 2000 which includes several high 
ozone days in the Houston area for which 
detailed information are available from the 
TexAQS field study (Daum et al., 2002).  The 
modeling databases were developed by the 
TCEQ as described in the mid-course review 
(MCR) modeling protocol (TCEQ, 2003a) and 
modeling results (TCEQ, 2003b).  Meteorological 
input data for CAMx were prepared by Texas 
A&M University using the MM5 model.  The 



CAMx modeling domain has 2-way nested 36, 12 
and 4 km grids as shown in Figure 2-1.  The 
meteorological and emissions input data are 
provided specifically for each of the 36, 12 and 4 
grids.  On the four modeling days with very high 
observed ozone (August 25th, 29th, 30th and 
31st) an additional 1 km grid is introduced in the 
Houston area (Figure 2-2).  The 1 km grid is also 
2-way nested, but does not have explicit 
meteorology or surface emissions input files.  
Instead, the 1 km meteorology is interpolated 
from the 4 km grid and the 1 km surface 
emissions are assigned from the 4 km grid 
(interpolating emissions might not conserve 
emissions mass).  The advantage of the 1 km 
grid is that point source emissions (which are 
geo-coded to precise coordinates) are injected 
into the correct 1 km grid cells and so plume 
dispersion and interaction is handled at the finer 
1 km scale.  This approach uses the CAMx flexi-
nesting capability.   
 
2.2  Emissions 
 
Emission inventories used for this study were all 
for the year 2000 and were based on the TCEQ’s 
“Base4a” inventory.  This inventory includes the 
following data for the Houston area: 
 

• On-road emissions from EPA’s MOBILE6 
model with day specific link-based 
emissions in the Houston area. 

• Hourly utility point source emissions from 
EPA’s acid rain database. 

• Point source emissions from the TCEQ’s 
2000 point source database (PSDB) 
supplemented by version 4 of the special 
study inventory and with facility specific 
VOC speciation data. 

• Off-road emissions from EPA’s 
NONROAD model. 

• Biogenic emissions from GloBEIS3 with 
satellite-based solar radiation data. 

• Other area source emissions from TCEQ 
studies and data. 

 
Under the PT_O2N2 emissions scenario defined 
by TCEQ, the olefin emissions for selected point 
sources (major chemical plants) in the Houston 
area were adjusted so that the total olefin 
emissions were equal to the NOx emissions on a 
molar basis.  This adjustment was based on 
aircraft measurements for olefins and NOy from 
the TexAQS study.  We made model runs with 
both the unadjusted (“Base4a”) emission 
inventory and the adjusted (“PT_O2N2”) 
emission inventory.  Because olefins are highly 
reactive VOCs, the average reactivity of the point 
source emissions under the PT_O2N2 scenario 
is more than double that of the Base4a scenario. 
 
 

2.3  Ambient Data 
 
Two independent sets of ambient data were used 
in this study: aircraft and surface (fixed site) 
observations.  Aircraft data for ozone, NOy and 
formaldehyde were used in the inverse modeling 
to derive emission inventory adjustments (Daum 
et al., 2002).  The aircraft data were selected for 
this purpose because they provide an extensive 
set of collocated measurements for ozone and 
precursors downwind of both urban and industrial 
sources.  The ozone, NOy and formaldehyde 
data were collected at high time resolution 
(seconds), which corresponds to high spatial 
resolution (~100 m).  The NOy data reflect NOx 
emissions and are considered more useful than 
NOx data because the amount of chemical 
processing of emissions has less influence on 
NOy measurements than NOx measurements.  
The formaldehyde data are indicative of VOC 
emissions because formaldehyde is a ubiquitous 
reaction product of VOCs.  Some VOC samples 
also were taken on the aircraft flights but the data 
were collected much less frequently than the 
formaldehyde data due to the analysis time 
required for VOC samples.  Given the sparse 
nature of these data, the aircraft VOC samples 
were not used in the inverse modeling.  The 
TexAQS data from NOAA aircraft (the 
NSF/NCAR Electra) and the BNL aircraft were 
obtained in a consolidated database prepared by 
Jeffries and McNally (2002). 
 
Surface observations from more than 20 TCEQ 
routine monitoring sites plus the La Porte and 
Williams Tower special study sites were used to 
evaluate model performance under several 
different emission scenarios.  These data were 
provided by the TCEQ and are the same data 
that the TCEQ used for model performance 
evaluation.  The surface monitoring site locations 
in the 1 km grid are shown in Figure 2-3.   
 
3.  INVENTORY EVALUATION 
METHODOLOGY 
 
A top-down evaluation of the Houston region 
emissions inventory was conducted using inverse 
modeling of the 25 – 31 August 2000 ozone 
episode.  CAMx model runs with the Direct 
Decoupled Method (DDM) provided first-order 
sensitivities of ozone (O3), total reactive nitrogen 
(NOy) and formaldehyde (HCHO) to changes in 
VOC and NOx emissions.  A description of the 
DDM sensitivity coefficients is provided in the 
Appendix.  DDM coefficients were computed 
under two different scenarios:   
 

a) Source Category Sensitivities:  
Sensitivities calculated with respect to 
changes in emissions from five major 
source categories:  on-road mobile, area 



(including off-road), biogenic, low-level 
point, and elevated point sources. 

 
b) Emission Sub-Region Sensitivities:  

Sensitivities calculated with respect to 
changes in total emissions from six high 
emission density sub-regions within the 
modeling domain (sub-regions are 
shown in Figure 3-1)*. 

 
DDM sensitivity coefficients calculated under (a) 
above represent the sensitivities of ozone, NOy 
and HCHO mixing ratios to fractional across-the-
board (domain-wide) changes in emissions for a 
given source category.  DDM sensitivity 
coefficients calculated under (b) above represent 
the sensitivities of ozone, NOy and HCHO mixing 
ratios to a unit (1 ton/day) increase in emissions 
within a sub-region.  Thus, results from analysis 
(a) provide information on the effects of 
multiplicative emission changes applied to 
specific source categories (e.g., on-road mobile 
sources) whereas results from analysis (b) 
provide information on the effects of additive 
changes to total emissions within a specific sub-
region.   
 
Using the DDM sensitivities together with the 
aircraft data described in Section 2, it is possible 
to compute adjustment factors to the emissions 
inventory that minimize model prediction errors 
for the three species considered (O3, NOy and 
HCHO).  Of course, the adjustments calculated in 
this way assume the predicted concentrations are 
a linear function of emissions from each of the 
above source categories and that the sensitivities 
are independent of one another.  While the 
assumption of linearity only holds for sufficiently 
small adjustments from the base case condition, 
it is nevertheless instructive to determine the sign 
and relative magnitudes of the factors as this can 
provide important clues about potential errors in 
the inventory.†  The assumption of independence 

                                                 
* The emission maps in Figure 3-1 also show a 
concentration of point and mobile source 
emissions in the Lake Charles, LA area but this 
is located too far east to be of interest in our 
analysis. 
† It must be recognized that model prediction 
errors can arise from other sources such as errors 
in meteorological fields, errors in the temporal 
and spatial allocation of emissions, errors in the 
model’s simulation of photochemical reactions, 
etc. but for the purposes of this discussion, we 
attempt to identify the largest possible fraction of 
the prediction error that can be eliminated under 
the noted assumptions of linearity and 
independence. 

between the sensitivities is discussed further 
below. 
 
Adjustment factors were computed using a least 
squares fit: 

χo - χp = Σ βi Si                                             (1) 
 
Where:  
χo Is the observed concentration of a 

species (either O3, HCHO, or NOy) 
χp Is the predicted concentration of the 

species 
βi Are the unknown adjustment factors for 

emitted species (either VOC or NOx) 
and source category (see list above), 
and 

Si Are the corresponding DDM sensitivity 
coefficients (in units of ppb O3 change 
per fractional change in emissions). 

 
Using a standard linear regression algorithm, we 
solve for the adjustment factors such that the 
mean square difference between the model 
prediction error on the left hand side of Eq. 1 and 
the prediction adjustment on the right hand side 
is minimized.  Minimization is performed 
simultaneously over all three predicted species.  
To avoid weighting one species more heavily 
than another in the least squares fit, all terms in 
Eq. 1 for each case corresponding to a given 
species were divided by the mean predicted 
concentration of that species.   
 
4.  RESULTS 
 
4.1  Source Category Sensitivities 
 
4.1.1  Exploratory Results 
 
Exploratory analysis of the source category DDM 
sensitivity coefficients for the Base4a and 
PT_O2N2 scenarios showed that:  
 

• Ozone sensitivities to VOC and NOx are 
strongly negatively correlated, making it 
impossible to distinguish between the 
impact of decreasing VOC emissions or 
increasing NOx emissions on the basis of 
ozone performance.  Including prediction 
errors against aircraft NOy observations 
in the least squares fit provides an 
independent means of evaluating the 
NOx inventory.  Given the model’s NOy 
over-prediction bias, one would expect 
improved model performance is generally 
consistent with NOx emission reductions.  
However, there is considerable scatter in 
the NOy errors which minimizes the 
impact of NOx emission adjustments on 
overall model performance.   



• Predicted ozone values for times and 
locations with observed ozone greater 
than 125 ppb are particularly sensitive to 
point source VOC and NOx emissions in 
the modeling results. 

• For VOCs and NOx, sensitivities to on-
road mobile and area sources are 
strongly positively correlated, as are 
sensitivities to low points and elevated 
points.  Thus the regression model could 
not distinguish between adjustments to 
on-road mobile vs. area or between low 
vs. elevated point source emissions.   

 
Regression fits with different sets of VOC and/or 
NOx sensitivity terms included showed that, while 
many of the fitted models were statistically 
significant and many of the regression 
coefficients were significantly different from zero 
(owing to the large number of observations 
contained within the aircraft database), the sum 
of squares error reductions achieved by the 
regression fits were quite modest in all cases.  
However, since the linear adjustments implied by 
the sensitivities are only valid locally, this finding 
does not rule out the possibility of achieving more 
significant improvements in model performance if 
just the right combination of relatively large 
adjustments were applied to the inventory and 
CAMx was rerun.  There are several reasons for 
this: 
 

• This sensitivity analysis considers 
adjustments to 10 emission “types” 
(VOC and NOx for five different source 
categories), but it may be that 
adjustments to very specific source 
categories (e.g., specific categories in 
specific geographic areas) are needed. 

• The response of O3 (and HCHO or NOy) 
to emissions changes may be non-
linear. 

• Interactions between emissions from 
different categories may be important 
and would be described by higher-order 
sensitivities not considered here.   

• Some portion of the model error is due 
to factors other than emissions, for 
example, errors in meteorological fields. 

 
4.1.2  Emission Adjustment Scenarios 
 
Analyses of the aircraft observations and 
corresponding CAMx predicted concentrations, 
the DDM sensitivity coefficients calculated by 
CAMx, and results of the regression fits were 
used to identify and quantify potential biases or 
errors in the emissions inventory.  This 
information was then used to prepare several 
new CAMx simulations under various inventory 
adjustment (sensitivity) scenarios.  The impact of 
the inventory adjustments on model performance 

was determined against an independent set of 
data from the surface monitoring network. 
 
Several adjusted VOC scenarios were developed 
(LPVOC, BioVOC and MABVOC) along with one 
adjusted NOx scenario (NOxMAP) in addition to 
the scenarios provided by the TCEQ (Base4a 
and PT_O2N2).  These scenarios are as defined 
in Table 4-1.  Scenario LPVOC represents an 
alternative to the PT_O2N2 scenario in which the 
point source VOC adjustment is restricted to the 
low level point sources with a magnitude derived 
from the regression analysis.  Scenario BioVOC 
is designed to determine if correcting for the 
overestimation of biogenic VOC emissions 
suggested by the regression analysis results in 
any actual improvement in model performance.  
Scenario MABVOC represents a set of “optimal” 
VOC adjustments to the PT_O2N2 scenario 
suggested by the regression analysis.  Scenario 
NOxMAP is designed to determine if NOx 
reductions lead to any changes in model 
performance that differ from those under the 
MABVOC scenario.  All adjustments were applied 
to emissions in the HGBPA 11-county area. 
 
Model performance statistics under the five VOC 
emissions scenarios listed in Table 4-1 were 
computed against ozone data from the surface 
monitoring network.  Results for the coarse (4 
km) and fine (1 km) grid results in Table 4-2a and 
4-2b, respectively.  Shaded cells in these tables 
indicate those performance measures that 
exceed EPA’s photochemical model performance 
guideline values (EPA, 1991).  The guideline 
values are: 
 

Accuracy of peak: absolute value ≤ 20% 
Normalized bias: absolute value ≤ 15% 
Normalized gross error: value ≤ 35% 

 
For the days with peak ozone concentrations in 
excess of the 1-hour standard level (i.e., all days 
except 8/27 – 8/28), the PT_O2N2 scenario has 
the fewest performance measures outside target 
ranges and this scenario represents a major 
performance improvement over the Base4a 
scenario.  It is interesting to note, however, that 
performance for the two low ozone days (8/27 – 
8/28) is better under the Base4a scenario than 
any of the other scenarios.  Other major findings 
from the regression model and model 
performance under each VOC emissions 
scenario are as follows: 
 

• Regression results for the Base4a 
scenario suggested VOC emissions are 
too low in this scenario but there was no 
clear advantage to adjusting mobile/area 
in lieu of  biogenic or point source 
emissions.  The LPVOC scenario in 
which the Base4a  low-point VOC 



emissions increased by a factor of 4 as 
suggested by the regression fit did not 
result in any significant overall 
improvement in model performance. 

 
• Single term regression model results for 

the PT_O2N2 scenario showed that it is 
not possible to achieve a better least 
squares fit to the aircraft observations by 
making further across-the-board 
adjustments to the point source VOC 
emissions.   

 
• Results from least squares fits including 

the biogenic emissions sensitivity 
coefficient suggested that biogenic VOCs 
may be too high whereas mobile+area 
emissions may be too low.  Over 
estimation of biogenic VOCs is consistent 
with recent work indicating that drought 
conditions during the summer of 2000 
resulted in biogenic VOC reductions not 
fully accounted for in the inventory.  A 
CAMx sensitivity run based on the 
PT_O2N2 scenario with just biogenic 
VOCs reduced by 40% (the BioVOC 
scenario) resulted in somewhat worse 
model performance overall against the 
surface ozone data as compared to the 
PT_O2N2 scenario, indicating that any 
errors in the biogenic inventory may be 
offset by errors in other source 
categories.   

 
• When mobile+area VOCs are increased 

and biogenics are simultaneously 
decreased (the MABVOC scenario), 
there was some improvement in model 
performance with respect to ozone at the 
surface sites relative to the PT_O2N2 
scenario 

 
 
 

4.1.3  Convergence of the MABVOC Scenario 
 
A further examination of the MABVOC scenario 
was undertaken to determine the degree to which 
the emission adjustments under this scenario had 
converged to an “optimal” solution.  CAMx DDM 
sensitivity coefficients were computed for this 
scenario and the least squares fitting procedure 
repeated.  Results are summarized in Table 4-3. 
 
Overall, these results show that no significant 
further adjustments to the VOC inventory beyond 
those incorporated into the VOCMAB scenario 
are indicated with the exception of about a 20% 
increase in mobile+area emissions.  A reanalysis 
of the above results with HCHO removed from 
the fitting species showed that the coefficient for 
biogenic VOC is quite sensitive to HCHO errors 
whereas the mobile+area and point source 
coefficients are not.  There is thus no clear cut 
evidence of a need for any further adjustments to 
the biogenic inventory.   
 
4.1.4  NOx Adjustment Scenarios 
 
Model performance was also evaluated for the 
NOxMAP scenario described in Table 4-1.  Table 
4-4 summarizes the ozone performance under 
this scenario on the 4 km and 1 km grids in 
comparison to the PT_O2N2 scenario.  
Performance under the NOxMAP scenario is 
slightly better on some days (e.g., 8/30) but 
slightly worse on others (e.g., 8/29).  In terms of 
predicted O3, the NOxMAP scenario generally 
produces performance on par with the PT_O2N2 
scenario.  While the NOx reductions did not 
produce any clear cut improvement or 
degradation in performance, overall performance 
is slightly better under the VOC reduction 
scenario (MABVOC) as compared to the 
NOxMAP scenario. 
 

Table 4-1.  Summary of emissions scenarios. 
Adjustment Factors (1 = no adjustment) 

 

 
 

Scenario 

 
 

DescriptionΦ Relative to 
On-Road Mobile + 

Area Sources Biogenic 
Low-Level 

Points 
Elevated 
Points 

Base4a Base case --     

PT_O2N2 
Scale point source olefins 

to NOx Base4a 1 1 Varies § Varies § 

LPVOC 
Increase Base4a low point 

VOCs Base4a 1 1 4 1 
BioVOC 40% decrease in biogenics PT_O2N2 1 0.6 1 1 

V
O

C
 S

ce
na

rio
s 

MABVOC 
Increase mobile+area 

VOCs, decrease biogenics PT_O2N2 3 0.3 1 1 

N
O

x 
S

ce
na

rio
 

NOxMAP 
Decrease NOx from 

mobile+area and points PT_O2N2 0.7 1 0.9 0.9 
Φ See Section 3 for a full description. 
§   Olefin emissions for apecific sources are set equal to NOx on a molar basis.



Table 4-2a.  Summary of model performance statistics for emission scenarios described in the text.  
Shading indicates performance outside acceptable range as defined in text: a) predicted values on 4 km 
modeling grid, b) predicted values on 1 km modeling grid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Base 4a
24 25 26 27 28 29 30 31

Peak Observation (ppb) 120.1 194.0 140.0 87.0 112.0 146.0 200.5 175.5
Peak Predication (ppb) 96.2 118.2 118.5 107.6 113.9 117.9 149.3 144.9
Accuracy of Peak (%) -19.9 -39.1 -15.3 23.7 1.7 -19.2 -25.6 -17.4
Normalized Bias (%) -27.5 -38.2 -19.7 12.0 10.7 -15.8 -16.1 -1.0
Normalized Gross Error (%) 29.7 40.7 24.7 14.3 18.3 22.5 25.7 13.1

PT_O2N2
24 25 26 27 28 29 30 31

Peak Observation (ppb) 120.1 194.0 140.0 87.0 112.0 146.0 200.5 175.5
Peak Predication (ppb) 107.4 198.0 142.0 123.7 127.7 156.4 151.3 160.7
Accuracy of Peak (%) -10.5 2.0 1.5 42.1 14.1 7.1 -24.5 -8.4
Normalized Bias (%) -15.0 -12.9 -2.0 25.3 24.6 2.2 -10.2 1.9
Normalized Gross Error (%) 21.6 32.1 17.5 25.3 27.6 21.0 21.8 13.6

LPVOC
24 25 26 27 28 29 30 31

Peak Observation (ppb) 120.1 194.0 140.0 87.0 112.0 146.0 200.5 175.5
Peak Predication (ppb) 98.1 153.1 129.4 114.2 120.0 126.1 150.0 149.8
Accuracy of Peak (%) -18.3 -21.1 -7.5 31.3 7.2 -13.6 -25.2 -14.7
Normalized Bias (%) -22.5 -26.7 -12.6 17.8 16.9 -9.0 -13.2 0.1
Normalized Gross Error (%) 26.3 32.4 20.0 17.9 22.2 19.9 23.9 13.0

Bio VOC
24 25 26 27 28 29 30 31

Peak Observation (ppb) 120.1 194.0 140.0 87.0 112.0 146.0 200.5 175.5
Peak Predication (ppb) 98.0 188.4 133.2 117.7 119.9 146.6 148.0 152.6
Accuracy of Peak (%) -18.4 -2.9 -4.9 35.3 7.1 0.4 -26.2 -13.1
Normalized Bias (%) -21.9 -18.1 -7.4 18.5 15.6 -7.9 -18.5 -3.2
Normalized Gross Error (%) 25.2 33.4 16.9 19.0 20.5 20.9 24.1 12.5

MABVOC
24 25 26 27 28 29 30 31

Peak Observation (ppb) 120.1 194.0 140.0 87.0 112.0 146.0 200.5 175.5
Peak Predication (ppb) 129.6 243.1 148.2 120.4 134.4 160.4 188.4 162.3
Accuracy of Peak (%) 7.9 25.3 5.9 38.4 20.0 9.9 -6.0 -7.5
Normalized Bias (%) -15.3 1.9 1.8 23.1 31.6 19.1 0.5 1.5
Normalized Gross Error (%) 25.5 29.3 18.9 23.7 34.1 28.1 20.3 12.7

Date

Date

Date

Date

Date



Table 4-2b.  Summary of model performance statistics for emission scenarios described in the text.  
Shading indicates performance outside acceptable range as defined in text: a) predicted values on 4 km 
modeling grid, b) predicted values on 1 km modeling grid. 

 

Base 4a
25 29 30 31

Peak Observation (ppb) 194.0 146.0 200.5 175.5
Peak Predication (ppb) 113.3 120.6 131.3 145.4
Accuracy of Peak (%) -41.6 -17.4 -34.5 -17.2
Normalised Bias (%) -44.1 -18.0 -17.0 -0.2
Normalised Gross Error (%) 45.0 25.9 28.4 13.8

PT_O2N2
25 29 30 31

Peak Observation (ppb) 194.0 146.0 200.5 175.5
Peak Predication (ppb) 214.2 160.1 161.1 172.5
Accuracy of Peak (%) 10.4 9.7 -19.7 -1.7
Normalised Bias (%) -16.0 3.5 -10.7 2.7
Normalised Gross Error (%) 34.7 21.8 23.8 14.0

LPVOC
25 29 30 31

Peak Observation (ppb) 194.0 146.0 200.5 175.5
Peak Predication (ppb) 156.4 131.1 136.8 151.8
Accuracy of Peak (%) -19.4 -10.2 -31.8 -13.5
Normalised Bias (%) -31.6 -10.1 -13.8 0.9
Normalised Gross Error (%) 35.1 21.9 26.2 13.8

BioVOC
25 29 30 31

Peak Observation (ppb) 194.0 146.0 200.5 175.5
Peak Predication (ppb) 214.2 149.9 150.7 164.7
Accuracy of Peak (%) 10.4 2.7 -24.8 -6.2
Normalised Bias (%) -21.0 -7.4 -19.6 -2.8
Normalised Gross Error (%) 36.1 21.5 26.3 13.0

MABVOC
25 29 30 31

Peak Observation (ppb) 194.0 146.0 200.5 175.5
Peak Predication (ppb) 251.5 166.3 197.1 170.0
Accuracy of Peak (%) 29.6 13.9 -1.7 -3.1
Normalised Bias (%) 0.6 23.6 2.0 2.9
Normalised Gross Error (%) 31.8 29.6 21.5 13.0

Date

Date

Date

Date

Date



Table 4-3.  Regression coefficients from least squares fits to combinations of VOC emission categories 
under the MABVOC emissions scenario. 

 Source Category Coefficient Std. Error Stat. Significant?1 

(Mobile+Area) 0.18 0.07 Yes 
Biogenic 0.10 0.14 No 

Three-term model 

Low+Elev Points 0.04 0.06 No 
Single-term model Mobile+Area 0.23 0.05 Yes 
Single-term model Biogenic 0.38 0.12 Yes 

 
 
Table 4-4.  Summary of ozone model performance statistics for the NOxMAP emission scenario relative to 
the PT_O2N2 scenario (scenarios are defined in Table 4-1); cells with red borders indicate performance 
does not meet EPA guideline values (see discussion of Table 4-2 above); cells under NOxMAP scenario 
with light (dark) shading indicate performance is better (worse) than under PT_O2N2 scenario at least two 
percentage points.   
 
a) Results for 4 km grid 

PT_O2N2 Date 
 0824 0825 0826 0827 0828 0829 0830 0831 
Peak Observed   120.1 194.0 140.0 87.0 112.0 146.0 200.5 175.5 
Peak Predicted  112.0 197.0 144.0 121.6 128.8 157.1 155.3 162.1 
Unpaired Peak Prediction Accuracy  -6.7 1.6 2.8 39.8 15.0 7.6 -22.6 -7.6 
Bias   (normalized)  -20.3 -12.5 -1.3 23.9 24.7 2.7 -10.2 4.4 
Error  (normalized)  26.7 32.4 17.7 23.9 27.5 21.4 22.1 14.1 
         
NOxMAP Date 
 0824 0825 0826 0827 0828 0829 0830 0831 
Peak Observed   120.1 194.0 140.0 87.0 112.0 146.0 200.5 175.5 
Peak Predicted  121.8 217.3 142.2 118.6 123.7 155.8 169.8 154.9 
Unpaired Peak Prediction Accuracy  1.4 12.0 1.6 36.3 10.5 6.7 -15.3 -11.7 
Bias   (normalized)  -16.0 -4.9 -1.7 17.7 23.0 10.9 -6.2 -2.8 
Error  (normalized)  27.6 28.9 18.6 19.0 27.3 23.0 19.0 13.0 

 
 
b) Results for 1 km grid 

 Date 
PT_O2N2 0825 0829 0830 0831 
Peak Observed   194.0 146.0 200.5 175.5 
Peak Predicted  226.9 160.8 160.3 175.9 
Unpaired Peak Prediction Accuracy  16.9 10.1 -20.0 0.2 
Bias   (normalized)  -15.7 3.8 -11.1 4.8 
Error  (normalized)  34.8 22.4 24.5 14.5 
     
 Date 
NOxMAP 0825 0829 0830 0831 
Peak Observed   194.0 146.0 200.5 175.5 
Peak Predicted  226.2 164.4 180.6 170.6 
Unpaired Peak Prediction Accuracy  16.6 12.6 -9.9 -2.8 
Bias   (normalized)  -6.1 15.0 -6.0 -2.1 
Error  (normalized)  31.2 23.4 20.3 12.9 

 
 
 
Time series of ozone at surface observing sites 
along with corresponding predicted values under 
the PT_O2N2 and NOxMAP scenarios were also 
examined but are not shown here due to space 
limitations; complete details are provided by 
Yarwood, Stoeckenius and Lau (2004).  In some 
cases, prediction of daily maximum O3is 

improved under the NOxMAP scenario while in 
others it is worse.  During most hours at most  
sites, there is little difference between O3 
predicted under these two scenarios.  In 
particular, there are cases in which observed O3 
is severely under predicted and the model 
predictions are unaffected by the NOx reductions 



under the NOxMAP scenario, leading to the 
conclusion that these under predictions are either 
due to the influence of sources that do not 
appear in the inventory, errors in the VOC 
inventory, inaccuracies in the meteorological 
modeling, or some combination of the above. 
 
4.2 Emission Sub-Region Sensitivities 
 
As described in Section 3, DDM coefficients were 
computed representing sensitivity of predicted 
ozone to emissions within six sub-regions within 
the modeling domain.  The six sub-regions (and 
dominant source categories in each) were (see 
Figure 3-1):   
 

1. Freeport (point sources)  
2. Texas City (point sources) 
3. Houston metro (near and inside the 

beltway) (area/mobile) 
4. Houston Ship Channel – West (point 

sources) 
5. La Porte/Baytown Industrial region 

(point sources) 
6. Beaumont - Port Arthur (point and 

area/mobile) 
 
Examination of DDM sensitivity coefficients for 
six sub-regions of interest showed that predicted 
O3, NOy and HCHO over the locations and time 
periods covered by the aircraft data are not 
influenced by emissions from the Beaumont-Port 
Arthur area.  Within the other five sub-regions, 
there was little distinction between sensitivities to 
low-level vs. elevated sources.  Consistent with 
the emission category sensitivities discussed 
above, VOC and NOx sensitivities were 
negatively correlated for the downtown Houston 
and Ship Channel sub-regions (sub-regions 3, 4 
and 5) with negative NOx sensitivity coefficients 
for O3 (i.e., NOx emission decreases produce 
ozone increases).  These sub-regions also 
exhibited the largest sensitivities: model 
predictions were generally less sensitive to a unit 
emissions increase in sub-regions 1 (Freeport) 
and 2 (Texas City).  Least squares minimization 
of model prediction errors based on the sub-
region sensitivities showed that minor but 
statistically significant improvements in model 
performance could be achieved with: 
 

• Decreasing VOC emissions in sub-region 
1 by up to 10 tons/day (26%). 

• Decreasing NOx emissions in sub-region 
1 by 2 – 3 tons/day (7% - 11%). 

• Increasing VOC emissions in sub-regions 
3, 4 and 5 by up to a few tons/day 
(generally less than 5%) and/or 
decreasing NOx emissions in sub-regions 
3, 4 and/or 5. 

 

Overall, these results are consistent with the 
source category sensitivity results presented in 
the previous section in that model prediction 
errors are reduced by a very small but statistically 
significant amount by increasing VOC emissions 
and/or decreasing NOx emissions in the core 
urban area (where they most influence the 
prevailing ozone under prediction errors) and 
decreasing VOC and NOx outside of this area.   
 
4.3 VOC Reactivity  
 
The top-down inventory evaluation discussed 
above considered potential errors in the total 
emission rates for VOC emissions from several 
source categories.  However, ozone model 
results are also sensitive to the mix of VOCs 
assumed to represent VOC emissions (the VOC 
speciation).  Highly reactive VOCs (HRVOCs, 
such as ethylene and propylene) have a greater 
tendency to form ozone than low reactivity VOCs 
(such as paraffins) on an equal emissions mass 
basis.  Information on the relative reactivity of 
different VOC species emitted from Houston 
point-sources could be used to: 
 

• Assess the importance of errors in point 
source VOC speciation. 

 
• Develop and evaluate the effectiveness 

of rules to restrict emissions of 
HRVOCs and/or trade-off emissions of 
low reactivity VOCs against HRVOCs. 

 
The ozone forming potential of VOCs can be 
compared simply using the Maximum 
Incremental Reactivity (MIR) factors developed 
by Carter (1999).  These factors express the 
potential moles of ozone formed per mole of VOC 
emitted under a standard chemical condition.  A 
common concern with these MIR factors is that 
they are developed using box model scenarios 
that may not represent the atmospheric 
conditions for all situations.  A recent study for 
the NARSTO Reactivity Research Working 
Group (RRWG) demonstrated how to calculate 
relative VOC reactivities using CAMx and the 
DDM (Carter, Tonnesen and Yarwood, 2003).  
The methods developed for the RRWG were 
applied for the Houston TexAQS CAMx 
simulation to calculate point source VOC relative 
reactivities under the specific conditions of the 
PT_O2N2 emissions scenario for the TexAQS 
25-31 August 2000 episode.  Details of the 
reactivity calculation methodology are provided 
by Yarwood, Stoeckenius and Lau (2004).  A 
series of Houston-specific VOC reactivities were 
calculated and evaluated relative to ethylene, as 
reported in Table 4-5.  These results show that 
the Houston specific relative reactivities are 
consistent with existing maximum incremental 
reactivity (MIR) factors developed by Carter 



(1999) and Carter, Tonnesen and Yarwood 
(2003).  Therefore, the Carter MIR factors 
provide a reasonable basis for comparing the 
reactivity of different VOCs from Houston region 
point sources. 

 
 
 
 
 

 
 
Table 4-5.  Reactivities for CB4-VOCs relative to ethylene for the Houston points source emissions and the 
EKMA box model MIR scenario. 

EKMA Box Model MIR  
 
 
Species Name 

 
 
 
Description 

Houston 
Specific 
Relative 

Reactivity 

 
Relative 

Reactivity 

Reactivity  
(moles O3  

per mole C) 
ETH Ethylene 1.00 1.00 2.64 
PAR Paraffins, e.g. butane 0.16 0.15 0.40 
OLE Olefins, e.g. propylene  1.96 2.08 5.50 
TOL Toluene and monoalkylbenzenes 0.17 0.22 0.57 
XYL Xylene and di/tri-alkybenzenes 0.91 1.02 2.68 
FORM Formaldehyde 2.77 2.45 6.47 
ALD2 Acetaldehyde and higher aldehydes 1.03 1.31 3.45 
MEOH Methanol 0.20 0.18 0.47 
ETOH Ethanol 0.23 0.29 0.76 
ISOP Isoprene 1.14 1.88 4.95 
Point VOC PT_O2N2 point source emissions 0.93 N/A N/A 
Notes: 

The relative reactivity of ethylene is 1 by definition. 
The EKMA box model MIRs are from Carter, Tonnesen and Yarwood (2003). 

 
 
5.  CONCLUSIONS AND RECOMMENDATIONS 
 
This study demonstrates that analysis of spatial 
patterns and correlations in DDM sensitivity 
coefficients and using such coefficients together 
with model prediction errors in a least squares 
regression analysis is a useful approach for 
diagnosing potential modeling issues and 
suggesting emission adjustments.  It is important 
to keep in mind, however, that this approach can 
not discriminate between errors in emissions and 
other sources of error (e.g., meteorology or 
model formulation) and therefore one cannot 
state conclusively that model prediction errors 
are due solely to errors in emissions.  
Nevertheless, it is possible to draw several 
conclusions from the results described above 
(see Yarwood, Stoeckenius and Lau, 2004 for 
additional supporting information): 
 

• Based on results of both the source 
category and sub-regional analyses, it 
appears that the magnitudes of model 
prediction errors occurring when 
observed O3 exceeds 125 ppb in the 
aircraft data are most sensitive to point 
source VOC and NOx emissions within 
the downtown Houston and Ship 
Channel areas as compared to sources 

in other locations and other 
anthropogenic source categories. 

 
• Although reducing NOx emissions does 

not result in a clear-cut improvement in 
model performance, the possibility that 
NOx emissions are overstated cannot be 
discounted since peak ozone predictions 
are inversely related to, and very 
sensitive to, NOx emissions from the Ship 
Channel area and NOy is over predicted 
on average. 

 
• Assuming that modeling errors are due 

mostly to errors in emissions, scaling 
olefin to NOx emissions (as in the 
PT_O2N2 scenario) appears to be a 
good adjustment of point source VOCs 
as no further point source VOC 
adjustments were indicated by the 
inverse modeling. 

 
• Results from this study indicate a 

possible overestimation of biogenic VOC 
emissions, consistent with the hypothesis 
that VOC reductions due to drought 
conditions in 2000 are not adequately 
reflected in the inventory used in this 
study.  However, this result was found to 
be very sensitive to HCHO prediction 



errors and thus critically dependent on 
the accuracy of aircraft HCHO 
observations and the HCHO chemistry in 
the model, both of which require further 
study. 

 
• Modest to moderate model performance 

improvements beyond that achieved by 
the PT_O2N2 scenario result from 
increasing the sum of mobile and area 
VOC emissions while simultaneously 
decreasing biogenic VOCs.  These 
adjustments have the overall net effect of 
shifting some VOC emissions from 
biogenic rich regions (primarily north and 
northeast of downtown Houston) into the 
downtown and Ship Channel areas.  
Similarly, the sub-regional analysis 
results point to potential performance 
improvements by increasing VOC 
emissions within the downtown and Ship 
Channel areas and decreasing them in 
(at least) one of the outlying areas 
(Freeport). 

 
• Over prediction errors occurring at 

moderate ozone levels observed in 
Harris County generally along a line 
running due north from Freeport suggest 
the possibility that VOC and/or NOx 
emissions in Freeport are over estimated.  
Our results cannot, however, rule out 
other possible contributing factors to 
these over predictions.  In particular, we 
cannot rule out the possible contributing 
role of errors in source sub-regions 
outside of the six areas considered in this 
study or of errors in the simulation of 
meteorological parameters (winds, 
mixing heights). 

 
• Calculation of Houston-specific VOC 

reactivities using the DDM results 
showed that the Carter maximum 
incremental reactivity (MIR) factors were 
found to provide a reasonable basis for 
comparing the reactivity of different 
VOCs from Houston region point sources 

 
This study shows how inverse modeling using 
CAMx and DDM can be used to diagnose 
potential biases in the Houston region SIP 
modeling inventory.  However, further study is 
needed to address several remaining issues:   
 

• Results from this analysis should be 
compared with results of a source 
attribution analysis to better identify the 
types and locations of sources 
contributing during periods of ozone over 
and under prediction.    

 

• A key issue not addressed by this study 
is the extent to which prediction errors 
are related to errors in simulated 
meteorological fields.  The analysis 
should be repeated using an alternate 
set of meteorological fields (e.g., from 
RAMS simulations) to determine the 
sensitivity of the findings to the 
meteorological fields.   

 
• Results presented above are consistent 

with a potential over estimate of NOx 
emissions.  Further inverse modeling 
should be conducted for the NOxMAB 
scenario in an iterative fashion to see 
how well converged this emissions 
adjustment scenario is.   

 
• CAMx runs could be set up to compute 

DDM sensitivities of predicted 
concentrations to emission from more 
specific source categories (e.g., large 
chemical manufacturing plants, 
petroleum refineries) and additional 
emissions sub-regions to further refine 
the inverse modeling process.   
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APPENDIX:  Calculation of DDM Sensitivity 
Coefficients 
 
The inverse modeling approach uses sensitivity 
coefficients to relate model outputs 
(concentrations) to inputs (emissions) calculated 
via the DDM (Dunker, 1980, 1981).  DDM 
sensitivity coefficients are calculated explicitly by 
specialized algorithms implemented in the host 
model (in this case, CAMx).  The CAMx DDM 
permits the evaluation of sensitivity coefficients 
with respect to parameters related to emissions, 
boundary or initial conditions (BCs or Ics).  The 
sensitivity to be evaluated may bear a simple 
relationship to the regular model input, such as 
scaling the ozone boundary concentration by a 
factor (BCnew = λ × BC0).  To allow complete 
flexibility, the perturbations are specified by 
providing additional IC, BC, and/or emission input 
files with the same format as the regular model 
input files. 
 
In mathematical terms, a regular model input file, 
for example the BC input file, represents some 
set of functions of space and time fi(x,t), where 
each chemical species can be defined by a 
unique function.  An additional input file provided 
for the DDM represents another set of functions 
of space, time, and chemical species gi(x,t) that 
can be different from the regular input file.  The 
scalar parameter λi is then defined by: 
 
 

( ) ( ) ( )F x t f x t g x ti i i i, , , .= + ×λ
 

(1) 

 
Here, λi×gi(x,t) is the perturbation, and the user 
desires information on how the model would 
respond if the input fi(x,t) is replaced by the input 
Fi(x,t).  The DDM calculates the sensitivity si(x,t) 
with respect to the scalar parameter λi.  The 
Taylor series to first order then gives the 
estimate:  
 

( ) ( ) ( )c x t c x t s x tl i l i i i, ; , ; ,λ λ λ= = + ×0
 

(2) 

 
where cl(x,t; i) is the estimated model result for 
species l when Fi(x,t) is used as input, and cl(x,t; 
i=0) is the base case model result when fi(x,t) is 
used as input. 
 
For example, to calculate the sensitivity of the 
predicted ozone concentration to scaling 
boundary ozone by a factor, CAMx would be 
provided with a DDM BC file that has the same 
ozone values as the regular model BC file.  The 
sensitivity coefficient fields output by CAMx could 
then be used to estimate the resulting ozone 
concentration if the ozone BCs were increased 
by 20%, as follows:  
 



( )c c sλ λ= == + ×0 2 0 0 2. .
 (3) 

 
In this study, sensitivity coefficients were 
calculated between modeled concentrations and 
specific emissions inputs.  These sensitivity 
coefficients were used to estimate how the 
emissions inputs should be changed to improve 
the agreement between the predicted 
concentrations and observed concentrations.   
Sensitivity coefficients were calculated for 
emissions from the 11 counties in the 
Houston/Galveston and Beaumont/Port Arthur 
(HGBPA) nonattainment areas.   
 
Two different emission source groupings were 
used in the sensitivity calculations: grouping by 
source category and grouping by geographic 
region.  For grouping by source categories, 
sensitivity coefficients were calculated with 
respect to VOC and NOx emissions from on-road 
mobile, area (which include off-road mobile), 
biogenic, low-level point and elevated point 
sources.  The difference between low-level and 
elevated point sources is the effective release 
height of the emissions, which is equal to the 

stack height plus the plume rise.  Point sources 
that will always be released into the surface layer 
of the model are called low-level point sources.  
Other point sources are classified as elevated 
and the plume rise for each source is calculated 
hour-by-hour in CAMx according to the stack 
parameters and the local meteorology.  Elevated 
points tend to be combustion sources (e.g., 
utilities, boilers, flares, large engines) whereas 
low-level points tend to be vents and fugitives.   
 
For grouping by geographic regions, sensitivity 
coefficients were calculated with respect to VOC 
and NOx emissions from low-level and elevated 
sources in each of several sub-regions within the 
modeling domain.  Low-level sources include all 
on-road mobile, off-road mobile and area, 
biogenic, and low-level point sources as defined 
above; elevated sources included just the 
elevated point sources.  Emission subregions 
were defined so as to differentiate between key 
source areas contributing to ozone formation in 
Houston.  These regions and the process by 
which they were selected are described in 
Section 3. 

 


