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2. Study I: the Development of a Regression 
Model to Estimate 24-hr PM2.5 Concentrations 
in Eastern U.S. 

1. Introduction 
 

After numerous epidemiological studies 
started as early as in the 1970s, scientists have 
quantitatively established that exposure to ambient 
particulate matters (PM) is associated with 
morbidity and mortality (Pope 2000; Wallace 
2000).  In particular, exposure to PM2.5 (particles 
with diameters less than 2.5 µm) is associated 
with illness and premature death independent of 
the effects of other, gaseous pollutants in the 
atmosphere (Schwartz et al. 1999). The 
importance of long-term PM2.5 monitoring has 
recently been emphasized since studies have 
relationship between ambient PM2.5 concentrations 
and health with no clear threshold (Smith and 
Jantunen 2002; Schwartz et al. 2002). 

 
In this study, we develop an empirical regression 
model using MISR AOT as the major predictor to 
estimate ambient 24-hr PM2.5 concentration.  Our 
objective is to explore the possibility of MISR AOT 
as an effective indicator of ground level particle 
pollution. 
 
2.1 Description of Data and Method 
 

Three major data sources are used in this 
study.  A total of 2,505 24-hr PM2.5 measurements 
are collected from 346 sites within the EPA’s 
compliance network in the eastern United States 
are collected from the year 2001 (Figure 1).  This 
dataset is divided into a model dataset and a 
validation dataset according to site ID numbers 
randomly assigned by EPA.  The study region is 
divided into three sub-regions, i.e., the New 
England, the Mid Atlantic, and South Atlantic 
region in order to examine geographic variability 
among the observed results.    

Evaluation of chronic population exposures 
over a large geographical region relies on long-
term monitoring data from a comprehensive 
network such as the United States Environmental 
Protection Agency’s (EPA) compliance network.  
However, operating and maintaining such 
networks are costly.  Air quality models can be 
used to estimate PM2.5 concentrations where 
ground monitoring is absent.  Due to various 
reasons such as the lack of accurate emissions 
inventory, limited computing resources, and model 
parameterization, daily PM2.5 concentrations 
predicted by these models may be biased.   

 

 

With the rapid development of satellite 
remote sensing technology in recent years, 
aerosol optical properties retrieved by space-
borne sensors have emerged as another potential 
method of monitoring ground level air quality since 
these data products provide nearly global 
coverage at moderate spatial resolution for 
multiple years.  This paper reports the findings 
from two studies using the aerosol optical 
thickness (AOT) retrieved by the Multi-angle 
Imaging SpectroRadiometer (MISR) as an 
indicator of the abundance of ambient PM2.5.   Figure 1.   MISR spatial coverage of the study region.  

The ground tracks of MISR paths are shown as dotted 
strips in the map.  Only the ground tracks of MISR path 
11, 14, 17, and 20 are shown for clarity of the map.  The 
three sub-regions are marked in different grey colors.  
The study area is also divided into 1°×1° grids.  
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MISR AOT data (Diner et al. 1998) covering 
the east coast is downloaded from Atmospheric 
Sciences Data Center at NASA Langley Research 
Center (http://edg.larc.nasa.gov/).  The spatial 
resolution of MISR AOT is 17.6 km.  To reduce the 
impact of potential outliers in AOT data due to 
MISR retrieval errors, valid AOT values are 
averaged within each 50 x 50 km region (3 x 3 
MISR pixels).  
 To evaluate the impact of aerosol vertical 
profile and particle growth effect under high 
relative humidity conditions, the mean relative 
humidity (RH, in %) within the lower troposphere 
and planetary boundary layer height (PBL, in km) 
are extracted from Goddard Earth Observing 
System (GEOS-3). 
 
2.2 Model Development 
 

The empirical regression model used in the 
current analysis can be expressed as: 
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The dependent variable on the left hand side, 
PM2.5, is the 24-hour average ground level PM2.5 
concentrations measured at various EPA 
monitoring sites in 2001.  The independent 
variables on the right hand side include relative 
humidity (RH), aerosol optical thickness (AOT), 
and height of the planetary boundary layer (PBL) 
that are geographically matched to each PM2.5 
measurement, as well as various categorical 
variables (Variable1 through Variablen) listed in 
Table 1.  β0 through βn are regression coefficients 
for Variable1 through Variablen.  Likewise, βRH, 
βAOT and  βPBL are regression coefficients for RH, 
AOT, and PBL, respectively.  An exponential 
function of RH is used to account for the super-
linear growth of particle size with increasing 
relative humidity (Malm et al. 2000; Chin et al. 
2002).  This model form provides stronger physical 
background, more flexibility and predicting power 
as compared to a previous study, where a simple 
linear regression model is fit between AOT and 
PM2.5 concentrations (Engel-Cox et al. 2004).   
 
2.3 Regression Analysis 
 

The empirical model described in previous 
section is fitted using the model dataset.  Overall, 
the model results are highly significant (p < 
0.0001) explaining 43% of the variability in 
corresponding ground level PM2.5 concentrations.  
AOT, PBL, RH, as well as all the categorical 

variables listed in Table 1 are found to be highly 
significant predictors of PM2.5 (p < 0.0001).  
Concentration impact factors (CI factors) for the 
categorical variables are calculated as the 
exponentials of the parameter estimates.  A CI 
factor can be interpreted as the impact of a 
categorical variable at certain level to the 
association between MISR AOT and PM2.5 as 
compared to the reference level of this factor. 
 
Table 1.  Definition of all categorical variables used in 
estimating PM2.5 concentration with MISR AOT and 
mixing height. 

Variable Level 
Region New England 
 Mid Atlantic 
 South Atlantic 
Season Winter (Dec - Feb) 
 Spring (Mar - May) 
 Summer (Jun - Aug) 
 Fall (Sep - Nov) 
Site location Rural 
 Suburban 
 Urban 

Within 100 km from coast Distance from 
Coast Beyond 100 km from coast 

 
Table 2.  Estimated regression coefficients.  N = 1315.  
R2 = 0.43. 

Model Variables Estimates Std Err P value CI factor

Intercept 3.891 0.102 < 0.0001 48.97 
Season     
  Winter 0.048 0.031 0.12 1.05 
  Spring -0.296 0.036 < 0.0001 0.74 
  Summer 0.009 0.038 0.80 1.01 
  Fall * 0.000   1.00 
Region     
  New England -0.157 0.038 < 0.0001 0.85 
  Mid Atlantic 0.005 0.027 0.84 1.01 
  South Atlantic * 0.000   1.00 
Distance from 
coast     
  ≤ 100 km -0.193 0.028 < 0.0001 0.82 
  > 100 km * 0.000   1.00 
Site location     
  Rural -0.296 0.047 < 0.0001 0.74 
  Suburban -0.083 0.025 0.001 0.92 
  Urban *  0.000   1.00 
RH -0.634 0.115 < 0.0001  

Ln(AOT) 0.447 0.022 < 0.0001  

Ln(PBL) -0.361 0.023 < 0.0001  

     * Reference level of a given categorical variable. 
 

The estimated power of AOT (0.447 ± 0.022) 
is less than one, indicating PM2.5 concentrations 
varied sub-linearly with AOT measurements.  The 
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greater variability of the observed AOT values is 
likely due to the fact that AOT measures particle 
abundance within the entire atmospheric column.  
Both photochemical reactions, which occur mainly 
within the boundary layer, and the long-range 
transport of particles, which occurs in the free 
troposphere, can have substantial impacts on AOT 
values.  As a result, AOT measurements exhibits a 
greater variability as compared to ground level 
PM2.5 concentrations, which is less influenced by 
long-range transport of particles.   

The significance of PBL in predicting surface 
PM2.5 concentrations reflects the difference in 
particle vertical profile within and above the 
boundary layer.  Fine particles tend to be more 
homogeneous within the boundary layer due to 
convective mixing as compared to particles in the 
free troposphere.  Fine particles emitted from the 
surface are diluted within the boundary layer as 
PBL height increases resulting a lower PM2.5 
concentration.  This may explain the negative sign 
of the estimated power on boundary layer height (-
0.361 ± 0.023).  In addition, the observation that 
the magnitude of the parameter estimate is 
substantially smaller than one indicates that 
surface PM2.5 concentrations vary at a slower rate 
as compared to boundary layer height.   

The negative parameter estimate of the 
exponential of RH (-0.634 ± 0.115) indicated that 
same AOT values correspond to lower PM2.5 
concentrations as RH increases.  This result 
shows that the model provides a correction for the 
humidification effect on particle light extinction.  
MISR measures AOT at ambient meteorological 
conditions.  Under high relative humidity (RH > 
70%), which is observed frequently in this study, 
hygroscopic particles such as ammonium sulfate 
and ammonium nitrate can grow 2 – 10 times in 
size resulting dramatic increase of their light 
extinction efficiencies (Chin et al. 2002).  In 
contrast, PM2.5 concentrations are measured 
under controlled lower RH conditions (at 40% RH).  
As a result, same AOT values at high RH levels 
will correspond to less particle dry mass as 
compared to low RH conditions.  It should be 
noted that since actual particle size does not grow 
strictly exponentially and depends on particle 
composition.  Therefore, the exponential form of 
RH is a simplified representation of particle growth 
effect based on the regression statistics. 

The impact of particle size, composition and 
vertical distribution on the association between 
MISR AOT and PM2.5 concentrations is also 
reflected by the categorical variables.  Possible 
interpretations to the impact of these variables are 

given below.  The effect of season is highly 
significant (p < 0.0001), with the association 
between PM2.5 and AOT found to be significantly 
weaker in the spring as compared other seasons.  
The CI factor of 0.74 for the spring indicates that 
predicted PM2.5 concentration is 26% lower in the 
spring than in the fall with all other parameters 
being equal.  This could be because particle 
vertical distribution is generally different in the 
spring from other seasons.  Asian dust events in 
the spring can significantly increase the particle 
concentrations in the free troposphere 
(Thulasiraman et al. 2002), resulting a larger 
proportion of particles above the boundary layer 
as compared to other seasons.  Because the 
particle mass loading below the boundary layer 
determines surface PM2.5 concentration, similar 
AOT levels will predict lower surface PM2.5 
concentration in the spring as compared to other 
seasons.   

The CI factor of 0.85 for geographical region 
suggests that MISR predicts lower PM2.5 levels in 
the New England region as compared to the other 
regions.  PM2.5 concentrations in New England 
region are heavily impacted by transported 
pollutants from distant industrial and urban 
sources in the Mid Atlantic and mid-western U.S. 
as well as southern Canada (Slater et al. 2002).   
As a result, more sulfate particles from transported 
precursors such as SO2 and less carbonaceous 
particles may be found in particle mixtures 
throughout New England.  Sulfate particles 
generally have higher light extinction efficiencies 
than carbonaceous particles, especially under high 
relative humidity conditions (Chin et al. 2002).  
Consequently, under the same meteorological 
conditions, lower particle concentrations in New 
England region will be needed to achieve the 
same AOT level in the other two regions.     

Other variables being equal, MISR predicts 
lower PM2.5 concentrations for rural sites (CI factor 
= 0.74) as compared to those at suburban (CI 
factor = 0.92) and urban sites (reference state, CI 
factor = 1.0).  Urban sites are generally 
characterized by greater anthropogenic PM2.5 
emission sources than suburban or rural sites.  
Therefore, a larger proportion of particle mass at 
urban sites is nitrate and carbonaceous particles, 
generated from mobile source emissions as 
compared to rural sites (Kleeman et al. 2000).  As 
previously mentioned, sulfate particles have higher 
light extinction efficiencies than carbonaceous 
particles.  Consequently, a larger amount of 
particle mass is needed to achieve the same AOT 
level in urban areas as in rural areas.  Particle 



composition in suburban sites may be influenced 
by both long-range transport and local emissions.  
Therefore, a slight correction effect is noted. 

Other variables being equal, MISR also 
predicts lower PM2.5 concentrations at coastal 
sites (CI factor = 0.82) as compared to inland 
sites.  Previous research has shown that the warm 
conveyor belts (i.e., moist air streams that rise 
ahead of surface cold fronts), which can lift ground 
level pollutants to upper troposphere and then 
transport them over the continents, most 
frequently originate in the boundary layer of the 
eastern seaboards of North America and Asia, 
close to the heavy anthropogenic emissions (Stohl 
et al. 2001).  Therefore, it is possible that a larger 
proportion of particles reside at higher altitude in 
the coastal region as compared to the inland 
region in this study.  Similar levels of AOT will 
correspond to lower surface PM2.5 concentrations 
at coastal sites, therefore, than at inland sites 
given the fact that the particle mass loading below 
the PBL determines surface PM2.5 concentration.   
 
2.4 Model Validation 
 

In order to evaluate model performance, the 
regression model developed in the previous 
section is applied to the validation dataset to 
generate predicted PM2.5 concentrations.  On 
average, predicted PM2.5 concentrations are 1.2 
µg/m3 lower than observations.  Differences 
decreased to 0.4 µg/m3 when PM2.5 concentrations 
greater than 40 µg/m3 are removed.  A linear 
regression between predicted and observed PM2.5 
concentrations yielded an R2 of 0.48 (Figure 2).  
The model Root Mean Square Error (RMSE) is ± 
6.2 µg/m3 for a mean PM2.5 concentration of 13.8 
µg/m3.  Model substantially underestimates PM2.5 
concentrations at higher concentrations (> 40 
µg/m3).  This could be because over 98% of PM2.5 
concentrations are below 40 µg/m3 in the modeling 
dataset.  Therefore, current parameter estimates 
do not sufficiently represent the association 
between PM2.5 and the independent variables at 
higher PM2.5 concentrations.  In addition, higher 
daily-average PM2.5 concentrations are often 
strongly influenced by pollution episodes that 
occur during a short period of the day.  The impact 
of these episodes may not be captured within the 
MISR measurement time window (10 – 11 a.m. 
local time).  As a result, MISR AOT measurements 
cannot sufficiently represent the daily-average 
PM2.5 concentrations under such circumstances.  
The predicted vs. observed regression slope 

approached 1.00 and intercepts are insignificant 
when those high observations are excluded 
(again, less than 2% of total data).  Additionally, 
the model RMSE is reduced to 5.3 µg/m3 for a 
mean PM2.5 concentration of 13.2 µg/m3 when 
these high PM2.5 concentrations are excluded.  
Since current air quality models, including Eularian 
box models (Pun et al. 2001), Lagrangian plume 
models (Hudischewskyj et al. 1989), and 3-D 
Eularian models (Jacobson et al. 1997; Seigneur 
et al. 1999; Seigneur et al. 2000), have been 
shown to agree within 17 – 46% of ground based 
measurements, the results from our regression 
model are comparable with these models. 

 
Figure 2.  Scatter plots of predicted vs. observed PM2.5 
mass concentration for the entire validation dataset 
(upper panel) and for observations less than 40 mg/m3.  
The adjusted R2, parameter estimates and p-values of 
the estimates are shown in each plot.   The 1:1 line 
(dashed) is shown as reference.  The regression line is 
shown as the thick solid line and the upper and lower 
bounds (factor of 2) are shown as thin solid lines.   
 
 
 
 



3. Study II: Mapping Annual Mean Ground 
Level PM2.5 Concentrations Using MISR AOT 
Over Contiguous U.S. 
 

In this study, we develop a simple physical 
model using MISR AOT and aerosol simulation 
results from a global atmospheric chemistry model 
(GEOS-CHEM) to estimate annual average PM2.5 
concentration over the contiguous U.S..  Our 
objective is to evaluate MISR’s capability to serve 
as a cost-effective extension of ground PM 
monitoring network. 
 
3.1 Description of Data and Method 
 

Three major data sources are used in this 
study.  As discussed in Section 2, aerosol vertical 
profile has a significant impact on AOT’s predicting 
power on ambient PM2.5.  To treat the spatial and 
temporal variation of aerosol vertical profile more 
effectively, aerosol simulation results from the 
GEOS-CHEM model is used in this study.  The 
fully coupled oxidants-aerosol simulation by 
GEOS-CHEM provides sulfate (SO4

2-), nitrate 
(NO3

-), ammonium (NH4
+), elemental carbon (EC), 

and organic carbon (OC) aerosol concentrations 
for the period of 2001 at 3-hour temporal 
resolution, 2° latitude x 2.5° longitude horizontal 
resolution, and 30 sigma vertical layers.  When 
calculating AOT using aerosol dry mass 
concentrations, particle growth with increased 
relative humidity is taken into account by applying 
different hydroscopic growth factors to all 
hydrophilic species using local relative humidity 
conditions.  Detailed descriptions of GEOS-CHEM 
as well as its aerosol simulations can be found 
elsewhere (Bey et al. 2001; Park et al. 2003).  
Monthly mean dust and sea salt concentrations for 
2001 from the Georgia Tech/Goddard Global 
Ozone Chemistry Aerosol Radiation and Transport 
(GOCART) model are used to complement GEOS-
CHEM aerosol fields.  The 3-hour simulation 
results are first interpolated to 10 a.m. local time 
values, sampled on the dates when MISR had 
valid AOT retrievals, then integrated into annual 
averages in order to be compared with annual 
mean MISR AOT values.   
 Daily average PM2.5 concentrations 
measured by gravimetric methods in 2001 from 
1,137 sites of EPA’s compliance network, primarily 
located in urban areas and surrounding suburbs, 
are collected and integrated into annual averages 
in each GEOS-CHEM model grid cell (Figure 3).  
Validated daily average mass concentrations of 
SO42-, EC, OC, and mineral dust were collected 
from 131 sites of EPA’s PM2.5 speciation trends 

network (STN) and integrated into annual 
averages in model grid in order to analyze the 
difference between simulated PM2.5 
concentrations and EPA PM2.5 measurements for 
individual aerosol components.  

MISR AOT data that covered the contiguous 
United States for 2001 were obtained from the 
NASA LARC Data Center, and then integrated into 
annual averages in 2º×2.5º model grid cells.  The 
data covering North Dakota, South Dakota and 
Minnesota in the winter and spring is excluded due 
to potential cloud contamination.  The temporal 
and spatial variability of MISR AOT errors is partly 
corrected in this analysis by applying linear 
regressions between MISR and AERONET AOT 
values presented in (Liu et al. 2004).    

The final dataset consists of totally 159 
annual data records, each containing the seasonal 
average EPA PM2.5 measurement, simulated 
PM2.5 concentration and AOT, MISR AOT, and 
MISR PM2.5 concentrations in each GEOS-CHEM 
model grid cell. 

  
3.2 Coupling of the Global Models with MISR
  
 Although we previously show in Section 2 
that our empirical regression model can predict 
surface PM2.5 concentrations with a relative error 
of approximately 45%, half of the variability in 
PM2.5 concentrations cannot be explained 
probably due to the lack of information on aerosol 
vertical profile and long-range aerosol transport 
events.  In addition, empirical models must be 
calibrated before transferring to other regions.  We 
here use simulated AOT and PM2.5 concentrations 
from GEOS-CHEM to define a physically 
consistent relationship between AOT and surface 
level PM2.5 concentration:    
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This relationship is then applied to MISR AOT to 
infer PM2.5 distributions.  We refer to the PM2.5 
concentrations derived from this simple model as 
MISR PM2.5 concentrations hereinafter.   
 The MISR PM2.5 concentrations differ from 
the simulated PM2.5 concentrations in three ways.  
First, the MISR PM2.5 concentrations are less likely 
to be affected by possible biases in the aerosol 
vertical distribution estimated by the global models 
because the biases are attenuated by the ratio of 



simulated PM2.5 concentrations over simulated 
AOTs.  Second, because MISR AOT has a much 
higher spatial resolution than the global model 
simulations, MISR PM2.5 concentrations would be 
able to reflect the impact of sub-grid variation of 
particle properties.  Finally, it has been shown that 
the discrepancy between gravimetric PM2.5 
concentrations and the sum of all measured 
particle components can be as large as 28 – 42% 
(Andrews et al. 2000).  This discrepancy is likely 
due to uncertainties in organic carbon and dust 
measurements.  These differences between global 
model predictions and EPA PM2.5 measurements 
are likely to be reduced with the calibration of 
MISR AOT.  It should be noted that this equation 
assumes that the atmospheric column is 
dominated by one aerosol component.  When two 
or more important aerosol components with 
different optical properties and vertical 
distributions are present, AOT and PM2.5 
concentrations are likely to have a non-linear 
relationship.  Under such circumstances, MISR 
PM2.5 derived in this study would only be a first-
order approximation of EPA PM2.5 measurements. 
  
3.3 Results and Discussion 
 

Reduced major axis lines are used to 
characterize the overall relationship between 
simulated PM2.5 concentrations and EPA PM2.5 
measurements, as well as the agreement between 
simulated AOT and MISR AOT retrievals (Hirsch 

and Gilroy, 1984).  When comparing the MISR 
PM2.5 concentrations with EPA PM2.5 
concentrations, simple linear regression is used 
because we are interested in examining the 
model’s capability of estimating individual PM2.5 
concentration over a given grid cell. 
 
3.3.1 Comparison of Simulated PM2.5 with 
EPA PM2.5 Measurements 
 
 Figure 3 compares annual average simulated 
PM2.5 and observed PM2.5 concentrations in the 
contiguous United States.  The EPA PM2.5 
measurements are plotted on a 0.5°×0.5° grid.  
The annual average simulated PM2.5 
concentrations capture the geographic 
characteristics of EPA PM2.5 measurements very 
well nationwide with the exception of the San 
Joaquin Valley and southern California where the 
models substantially underestimate PM2.5 
concentrations.  A scatter plot shows that annual 
average simulated PM2.5 concentrations have a 
good linear relationship with EPA measurements 
(r = 0.74, reduced major axis line slope = 1.04) but 
with a negative offset of 2.88 µg/m3 (Figure 4).  
The three data points that apparently deviate from 
the general pattern of the dataset are all from 
Southern California.  Excluding the three potential 
outliers does not have a significant impact on the 
parameter estimates of the reduced major axis 
line. 

 

 
Figure 3.  2-D plot of annual simulated PM2.5 concentrations integrated in 2º × 2.5º grid cells (left) vs. EPA PM2.5 
measurements integrated in 0.5º × 0.5º grid cells (right).  The scale saturates at 18 µg/m3 to best display the color 
contrast in the plot (99th percentile of EPA PM2.5 measurement = 17.05 µg/m3). 



 
Figure 4.  Scatter plot of annual average simulated 
PM2.5 concentration vs. EPA PM2.5 measurements.  The 
reduced major axis line is shown as the solid line in the 
plot.  The 1:1 line is shown as the short dashed line for 
reference.  Three potential outliers pointed by arrows 
are all Southern California grid cells. 
 

The overall underestimation of PM2.5 
concentrations might be attributed to the 
discrepancy between chemical and gravimetric 
measurements found in surface level monitoring 
campaigns, with the sum of all component 
concentrations often smaller than the gravimetric 
measurements of PM2.5 concentrations, as 
previously mentioned.   

 
3.3.2 Comparison Between Simulated and 
MISR AOT 
 
Annual average simulated AOT generally captures 
the spatial pattern of MISR AOT measurements, 
with higher values in the east and lower values in 
the west (Figure 5).  A scatter plot shows that 
simulated AOT has a good linear relationship (r = 
0.80) with MISR AOT with a small offset (intercept 
= - 0.007) although simulated AOT shows a low 
bias of 17% (reduced major axis line slope = 0.83, 
figure is not shown here).  Current MISR AOT data 
includes the aerosol extinction effect in the entire 
atmospheric column in both the troposphere and 
the stratosphere (Charlie Welch, personal 
communication).  Although stratospheric AOT is 
usually at an order of magnitude smaller than 
tropospheric AOT (Kent et al. 1994), it likely 
contributes to the difference of approximately 0.03 
between the means of MISR AOT and simulated 
AOT.  In addition, as previously mentioned, the 
sum of the known particle species concentrations 
can be significantly smaller than PM2.5 
concentrations measured by gravimetric methods.  
This deficit is also likely reflected in the 
underestimation of AOT by GEOS-CHEM and 
GOCART. 

 

 
Figure 5.  2-D plot of annual average simulated AOT integrated in 2º × 2.5º grid cells (left) vs. MISR AOT 
measurements (right) integrated in 2º × 2.5º grid cells. 
 
 
 
 



3.3.3 Comparison of MISR PM2.5 
Concentrations With EPA Measurements 
 

As shown in Figure 6, the annual MISR PM2.5 
concentrations exhibit an improved agreement 
with EPA measurements in spatial pattern as 
compared to simulated PM2.5 concentrations, with 
more comparable concentrations in eastern 
central United States, DC-Maryland region.  The 
ratio of MISR PM2.5 concentrations over EPA 
measurements is on average 0.90 with a standard 
deviation of 0.23.  The MISR PM2.5 concentrations 
are generally lower than the EPA measurements 
in the northwest and higher in the east.  
Regression analysis shows that annual average 
MISR PM2.5 concentrations have a good linear 
relationship with EPA measurements (r = 0.78, 
linear regression slope = 0.91) and the estimated 
intercept is insignificant (p = 0.84).  The RMSE of 
MISR PM2.5 is 2.32 µg/m3.  Although PM2.5 
concentrations in Southern California are 
underestimated, the MISR PM2.5 concentrations 

are approximately 30 – 50% higher than the 
simulated PM2.5 concentrations in this region.  
When these three points are excluded, the 
relationship is further improved (r = 0.81) with an 
estimated slope of 1.00 and insignificant intercept.  
The RMSE is also improved to 2.20 µg/m3. 
 This comparison shows that the capability of 
MISR AOT to predict surface level PM2.5 
concentrations can be substantially enhanced by 
including simulated aerosol vertical profiles.  The 
annual MISR PM2.5 concentration is an unbiased 
predictor of EPA PM2.5 measurements with an 
approximately 20% relative error.  The MISR PM2.5 
concentration is not strongly influenced by the 
underestimation of both simulated PM2.5 
concentration and AOT, which agrees with 
previous discussion.  As a result, the difference 
between annual mean MISR PM2.5 concentrations 
and EPA measurements is smaller as compared 
to that between simulated PM2.5 concentrations 
and EPA measurements.  

 

 
Figure 6.  2-D plot of annual average MISR PM2.5 concentrations integrated in 2º × 2.5º grid cells (left) and the ratio 
of MISR PM2.5 concentrations over EPA PM2.5 concentrations integrated in 2º × 2.5º grid cells (right).  The scale of 
ratios saturates at 0.5 and 1.5 to best display the color contrast in the plot (1st percentile of ratio = 0.49, 99th 
percentile of ratio = 1.53). 
 
4. Concluding Remarks 
 
The two studies presented in this paper 
demonstrate the great potential of spaceborne 
aerosol sensors such as MISR as a cost-effective 
extension to ground monitoring networks.  The 
empirical regression model developed in the first 
study shows that MISR AOT can serve as an 
important input to air quality models.  With the help 

of a few simple meteorological parameters, MISR 
AOT shows a strong association with ground level 
PM2.5 concentrations.  The results of the second 
study illustrate the power of coupling global 
models and satellite retrieved aerosol optical 
properties in ambient air quality monitoring.  Since 
the residence time of fine particles in lower 
troposphere ranges from 24 hours to a few days, 
surface level PM2.5 pollution likely exhibits a 



regional nature except near large point sources.  
Therefore, the current spatial resolution (2°×2.5°) 
would be sufficient to evaluate the population 
exposure to PM2.5 at national scale.  Because of 
the global coverage of the satellite measurements 
and global model simulation results, this fully 
predictive approach can be easily transferred to 
other regions of the world without calibration using 
ground measurements. 
 Future research may be conducted to 
improve the approach presented in these studies.  
For example, seasonal average PM2.5 
concentrations may be estimated using the 
physical model in Section 3 as the launch of more 
advanced sensors further reduce the noise in AOT 
and increase the sampling frequency.  In addition, 
a meso-scale model nested in the global CTMs is 
likely to preserve the impact of global scale 
aerosol events over the geographical region of 
interest, such as long-range transport of dust, and 
meanwhile provide higher spatial resolution.  
Furthermore, the relationship between MISR AOT, 
simulated AOT and PM2.5 concentration presented 
in Section 3 may be established for each aerosol 
component separately.  Therefore, how to utilize 
the aerosol composition and Angstrom exponent 
information provided in the latest MISR aerosol 
data product will be an interesting topic for future 
research. 
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