5. CONCLUSIONS

Our laboratory experiments have identified
three distinct mechanisms of wave generation
from finite-amplitude topography of different
shapes. For smooth, sinusoidal hills, our re-
sults for waves generated by topographic exci-
tation show that even for hills with H/X = 0.1,
the predictions of linear theory overestimate
wave amplitude, although agreement is much
better than for hills with /A = 0.2. This im-
plies that care be taken when applying results
from linear theory to such cases, for example to
waves generated in the lee of the Rocky Moun-
tains Ranges.

For large-amplitude topographies, waves are
not only generated by topographic excitation
but also by two non-linear mechanisms: flow
over boundary-trapped lee waves and vigorous
turbulence. For Frp < 1, internal waves gener-
ated over and in the lee of topography match
in frequency but not in amplitude, where the
lee-generated amplitudes are noticeably higher.
For Fr; > 1, the frequency and amplitude
maintain constant values. The vigorous turbu-
lence established far in the lee of the steeper tri-
angular and rectangular hills generates smaller-
scale waves of higher frequency but similar am-
plitude relative to the horizontal wavelength.
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Figure 5: Plot of relative internal wave (a)
frequency and (b) amplitude as a function of
Fr;, measured in experiments using triangular
(triangles) and rectangular (squares) topogra-
phy with H/A = 0.2 and U ranging from 0.8 -
5.2 cm/s.

shape, triangular versus rectangular, on the
frequency of waves generated by the three
mechanisms discussed in Section 3. For Frj <
1, the results are similar to those of Figure
4a with even greater departure occuring for
0.6 < Frp < 1 as should be expected from
such steep large-amplitude topography. More
interesting results are revealed when Frj 2> 1.
Like the large-amplitude sinusoidal hills, the
waves generated in the lee have a relatively con-
stant frequency, w/N = 0.57 £ 0.05, suggesting
that topographic shape does not significantly
affect the structure of the boundary-trapped
lee wave and resulting internal waves. This is
also the case for waves generated from vigorous
turbulence far in the lee. Here, the waves are
higher frequency with w/N =~ 0.73£0.05, in the
same range observed by Dohan and Sutherland

(2003).

Figure 5b compares the relative amplitudes
of the waves. For Fr, < 1, topographic shape
is important. The amplitudes of the waves
generated over the rectangular hills is signifi-
cantly lower because flow separation occurs al-
most immediately, before the fluid can travel
into the valley. The wave amplitudes in the
lee appear independent of shape across all Fry,
and are similar to those generated from the si-
nusoidal hills. The turbulence-generated waves
have relative amplitudes lower than those gen-
erated in the lee, however, when normalized by
horizontal wavelength, the amplitudes are al-
most equal. Figure 6 illustrates this by plotting
the normalized amplitude as a function of the
propagation angle, ©® = cos !(w/N), for the
lee- and turbulence-generated waves. The plot
shows that waves generated by these dynamic
mechanisms propagate at preferred angles to
the vertical and have large amplitudes in the
sense that the amplitudes are approximately
2% of the horizontal wavelengths and 20% of
the breaking amplitude.

0.15 :
O lee
A lee
o lee
A turbulence oT
o turbulence
0.1 r
SA
<&
piv
<<
0.05 [
s Bromredf
0 . . . . . . . .
0 30 60 90

©

Figure 6: Plot of internal wave amplitude nor-
malized by horizontal wavelength, A¢/X;, as
a function of the propagation angle, ©. The
curve “SA” is the critical relative amplitude
at which the waves should become unstable by
self-acceleration. The curve “OT” is the rela-
tive amplitude at which the waves should over-
turn.



clearly observed at all Fr; using the large-
amplitude hills, yet only at Frj 2 1 for the
small-amplitude sinusoidal hills.

In Figure 3b is a wave field produced us-
ing the rectangular hills at a very fast tow
speed with Frp > 1. Three distinct types
of waves are present. Direcly above the hills
(t = 0 — 10 s) are high-frequency evanes-
cent waves. In the lee of the last hill (¢ =
10 — 25 s) are lower-frequency lee waves pro-
duced by flow over a clearly visible, turbu-
lent boundary-trapped lee wave. Far in the lee
(t = 28 — 38 s) a vigorous turbulent region de-
velops and results in the excitation of smaller-
scale, higher-frequency waves, similar to those
observed in the mixing box experiments of Do-
han and Sutherland (2003). This vigorous tur-
bulence is observed at Frp 2 1 for both the
steep triangular and rectangular hills.

4. QUANTITATIVE ANALYSIS

The effect of hill height on internal wave fre-
quency and amplitude is presented in Figure 4
for the sinusoidal topography. Figure 4a plots
the relative frequency of internal waves gener-
ated over (solid markers) and in the lee (open
markers) of the hills. In the propagating regime
(Frp < 1), the observed relative frequency of
vertically-propagating waves, w/N, agrees well
with the linear theory prediction, Fry, with sig-
nificant departure occurring for 0.6 < Fry < 1.
In this regime, the frequency of the lee waves
matches that of the topographically-generated
In the evanescent regime (Frp > 1),
the frequency of the waves generated by flow
over turbulent lee waves is an approximately
constant function of N, in particular, w/N =
0.51£0.02. It is remarkable that the frequency
remains constant in the presense of increas-
ing turbulence. This frequency is observed to
couple with that of the boundary-trapped lee
waves, which is also found to be a constant frac-
tion of N.

waves.

In terms of amplitude, Fig 4b shows that
in the propagating regime, the relative ampli-
tude of the waves generated over the small hills
is significantly greater than that of the large
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Figure 4: Plot of relative internal wave (a)
frequency and (b) amplitude as a function of
Fr, = %27“ measured in experiments using
sinusoidal topography with H/\ = 0.1 (dia-
monds) and 0.2 (circles) and U ranging from
0.9 - 4.9 cm/s.

hills, reaching a maximum relative amplitude
of A¢/H ~ 0.65+£0.06. This is consistent with
linear theory, which predicts that as the hill
amplitude becomes infinitesimally small, the
wave amplitude approaches the hill amplitude.
When H is doubled, the non-linear process of
boundary-layer separation begins to dominate.
This process causes fluid to separate from the
hills, creating a stagnant region in the valleys
and thus reducing the vertical distance dis-
placed by the moving fluid (see Figure 3a). In
the evanescent regime, the lee-generated waves
maintain large amplitudes for the large hills,
whereas the amplitudes drop significantly for
the small hills, again consistent with the linear
theory prediction that A¢ — 0 as H — 0 in
this regime.

Figure 5a shows the effect of topographic
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Figure 3: Vertical time series of N? [s7%] for (a) large sinusoidal hills with Fr;, = 0.61 and
(b) rectangular hills with Fr, = 1.73. Vertical time series of raw images are superimposed to
help visualize the vertically-propagating internal waves relative to the topography and boundary-

trapped lee waves.

technique.

3. QUALITATIVE OBSERVATIONS

We plot contours of N2 in space and time to
visualize internal waves generated by three dis-
tinct mechanisms: 1) linear topographic forc-
ing, 2) flow over boundary-trapped lee waves,
and 3) turbulence. The vertical time series im-
ages are taken at a horizontal location corre-
sponding to the initial position of the first hill,
thus capturing the movement of the remaining
three hills through this location.

For conceptual convenience in imagining flow
over bottom topography, the images have been
flipped vertically and the z-axis has been
rescaled such that z = 0 corresponds to the
bottom of the topography. Because the density
difference between the salt water at the top and
bottom of the tank is small compared to the
density of the water itself, the fluid is Boussi-
nesq. Hence there is no dynamic difference be-
tween waves propagating downward from to-
pography towed along the surface of the fluid

and waves propagating upward from topogra-
phy towed along the bottom of the tank. The
vertical time series image of the horizontal lines
is superimposed at the bottom of the frame to
reveal flow structures in the lee of topography
and so illustrate the relationships between the
excitation mechanisms and the resulting wave

fields.

Figure 3a shows a wave field produced from
an experiment using the large-amplitude sinu-
soidal hills with Frp < 1. The regular wave
pattern directly above the hills is the result
of fluid flowing in and out of the hill valleys,
a mechanism commonly referred to as topo-
graphic forcing. In the lee of the topography,
the wave field persists and the amplitude in-
creases. These waves are generated when fluid
flows over a hump-shaped disturbance in the
lee of topography, called a boundary-trapped
lee wave, similar to that observed downstream
of a single “Witch of Agnesi” hill (Baines and
Hoinka, 1985) and downstream of a smooth
step (Sutherland, 2002). Such a feature is
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Figure 2: (a) Snapshot image taken before the start of an experiment using large sinusoidal hills
with parameters, H/A = 0.2 cm and Frp = 0.41. The wave field is revealed by subtracting the
image in (a) from the image taken during the experiment in (b), yielding the synthetic schlieren

image in (c).

Four model topographies were studied:
small- and large-amplitude sinusoidal hills with
peak-to-peak heights, H = 1.3 cm and 2.6 cm
respectively, as well as triangular and rectan-
gular hills with H = 2.6 cm. The topogra-
phies spanned four hill wavelenghts with A =
13.7 cm. Non-dimensionally, the relative height
to separation distances were H/\ = 0.1 and 0.2
for the small- and large-amplitude hills respec-
tively. Thus, the small hills are comparable in
relative size to the Rocky Mountain Ranges.

Model topographies were towed from left to
right at approximately constant speeds ranging
from U = 0.8 — 5.2 cm/s with corresponding
Froude numbers, Fr, = 0.2 — 2.5. Viewed in a
frame of reference moving with the topography,
the experiment models the generation of inter-
nal waves due to a constant flow over the hills.
As Fry, increased, the flow between and in the
lee of the hills underwent a transition to tur-
bulence, which altered the generation of waves
from direct topographic generation to indirect
dynamic generation in the lee.

The waves themselves were visualized and
their characteristics measured using a non-
obtrusive optical technique called “synthetic
schlieren” (Dalziel et al., 2000). The experi-
ment was set up with a digital camera focused
on a screen of illuminated horizontal black and

white lines positioned behind the tank (see Fig-
ure 1b). When waves move within the tank,
they stretch and compress isopycnal surfaces,
thereby changing the local density gradient.
This consequently changes the index of refrac-
tion of light through the medium, thus alter-
ing the image of horizontal lines. The schlieren
technique records the distortion of the image of
horizontal lines as compared to an initial im-
age. Figure 2 illustrates this technique by com-
paring three images: a snapshot taken before
the start of an experiment, a snapshot taken
during the experiment, and the schlieren im-
age obtained by taking the difference between
the two. The schlieren image clearly reveals
the wave field below the hills.

The amplitude of vertical dispacement of the
waves, A¢, can be determined from A NZ using
the Boussinesq relation for linear plane waves
in a uniformly stratified fluid,

Ayp = ke N2 sin © A,
Ag (2)

I—Frhz)\
xr

= 927N3

where k; and A, are the horizontal wavenum-
ber and wavelength respectively, © is the an-
gle of wave propagation to the vertical, and
Nt2 = %N 2 i3 determined from the schlieren
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1. INTRODUCTION

Recent observations in the deep-ocean have
shown that internal waves are generated most
significantly by the flow of tides over the rough
terrain of the ocean floor, such as sea mounts,
ridges, and canyons (New and DaSilva, 2002;
Rudnick et al., 2003; Laurent et al., 2003). In
many of these sites, energetic turbulence has
been observed (Ledwell et al., 2000; Klymak
and Gregg, 2004; Garabato et al., 2004) and
presumably results directly as a consequence
of flow over topography and wave breaking.

The mechanisms by which internal waves are
generated from topography are poorly under-
stood beyond the suppositions of linear and
inviscid theories, which do not take into ac-
count the dynamics of boundary layer sep-
aration. Linear theory restricts predictions
of topographically-generated waves to those
launched by smooth hills with small aspect ra-
tios of the topographic height, H, to width,
L. In such cases, theory predicts that propa-
gating waves will be generated when the non-
dimensional Froude number, Fr, < 1. Other-
wise, the waves will be “evanescent” meaning
that the amplitude will decay exponentially.
Here, Fry, is defined in terms of the flow speed,
U, the buoyancy frequency, N, and the topo-
graphic width, L, by

_U2n

Fr, = — 2"
h N L’

(1)
where N is defined in terms of the background
density, p, a characteristic density, pg, and
the acceleration due to gravity, g, by N? =

—(g/po)dp/dz.
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The present research uses laboratory exper-
iments to investigate the ways in which waves
are generated by flow over and in the lee of
finite-amplitude topography. Beginning with
smooth sinuosoidal hills of different hill am-
plitudes, the limitations of linear theory are
explored (see also Aguilar et al., 2005). Non-
smooth, large-amplitude topographies are used
to further examine the effects of shape and flow
speed on wave generation.

2. EXPERIMENTAL SET-UP

Experiments were performed in a glass tank
with dimensions 197 cm long by 50 cm high by
17.5 cm wide as shown in Figure la. The tank
was filled with uniformly salt-stratified water
to achieve a constant buoyancy frequency of
N =1.09 4+ 0.03 s~
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Figure 1: (a) Front view schematic of tank and
towing apparatus used to generate vertically
propagating internal waves and (b) side view
schematic of synthetic schlieren set-up used to
visualize and measure wave properties.



