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1. INTRODUCTION

Internal gravity waves only propagate through
fluids with density stratification. The maximum
frequency of propagation is the buoyancy frequency,
N , which under the Boussinesq approximation is
defined as, N2 = −(g/ρ0)dρ̄/dz, where g is the
gravitational acceleration and ρ0 is a characteris-
tic density of the fluid.

Theory predicts that an upward propagating in-
ternal wavepacket impinging on a layer of uniform
density (N = 0) should reflect. A closer exami-
nation of this problem reveals that internal grav-
ity waves become evanescent in unstratified re-
gions so the amplitude decreases exponentially with
height. Consider now a uniform-density layer of fi-
nite width, L, surrounded by stratified fluid. An in-
cident wavepacket will partially reflect off the layer
but will also partially transmit across the layer.
This is the process of internal wave tunnelling.

Internal wave tunnelling between two ducts in
the ocean has previously been described theoret-
ically by Eckart (1961), who considered resonant
energy transfer between different vertical modes of
the main and seasonal thermocline in the ocean.
Eckart’s resonances in an atmospheric context were
later described by Fritts & Yuan (1989) who also
considered the effects of Doppler-shifting winds.
Resonant theory is usefully applied to two-way en-
ergy transfer between ducts by low-order modes,
however, it cannot describe one-way tunnelling of
small-vertical scale internal waves from one duct to
another.

Lindzen & Tung (1976) studied the reflection and
over-reflection of internal gravity waves in the atmo-
sphere but restricted themselves to mesoscale (hy-
drostatic) waves. Their model included a bottom
boundary condition and a compressible, rather than
Boussinesq, atmosphere. Primarily they analyzed
low order modes.

An analytic theory for non-hydrostatic internal
wave tunnelling through a weakly stratified fluid
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layer was derived by Sutherland & Yewchuk (2004).
Here, that work is extended to include the effects of
a shear layer coinciding with an unstratified region.

2. BACKGROUND THEORY

For simplicity, two-dimensional motions in a non
rotating, inviscid, Boussinesq fluid are considered.
Small perturbations about a steady state are as-
sumed so that the governing equations may be
linearized. Perturbations are assumed to vary as
ψ = φ(z) exp[i(kx− ωt)], where k and ω are the
horizontal wavenumber and frequency of the dis-
turbance. The disturbances are known to satisfy
the Taylor-Goldstein equation

φ′′ + k2

(

N2

Ω2
+
U

′′

Ω
− 1

)

φ = 0 (1)

where the Doppler-shifted frequency is defined as,
Ω(z) ≡ ω − kU(z).

If the background velocity, U(z), and buoyancy
frequency, N2(z), are smoothly varying functions,
only in special cases can analytic solutions of (1) be
found. In particular, if these profiles are piecewise-
linear, such solutions are easily obtained.

U and N2 are chosen supposing that the fluid is
well-mixed in a shear layer of width L. Explicitly,
we choose an unbounded shear layer
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and an “N2-barrier” of the form

N2(z) =

{

N2
0 |z| > L

2

0 |z| ≤ L
2

. (3)

These are shown in Figure 1.

3. STABILITY SOLUTION

Before internal gravity wave tunnelling can be
considered, the stability of the background flow it-
self must first be established.

1



A1 B1

A3

Mixed Region

z

+L/2

−L/2

U(z)
|

U0

0

z

+L/2

−L/2

N2(z)N2

0

|0

Figure 1: Background velocity and squared buoyancy frequency profiles defined for the tunnelling calcu-
lation.

For ease of analysis,we exploit symmetry by mov-
ing in a frame of reference at speed U0/2 with re-
spect to the wind below z = −L/2. The solutions
to (1) take the form

φ(z) =










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2

(4)

with

γ1 = k

[

N2

0

Ω2

1

− 1

]1/2

(5)

and
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[
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3
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. (6)

Here, Ω1 = ω + kU0/2 and Ω3 = ω − kU0/2 are
Doppler-shifted frequencies. Because γ1 and γ3 rep-
resent vertical wavenumbers for z > |L/2|, they are
defined so that disturbances flow outward from the
shear layer. When γ1 and γ3 are complex, branch
cuts are taken so that disturbances decay exponen-
tially away from the shear layer.

Matching conditions at z = ±L/2 are found by
requiring that the vertical velocity and pressure is
continuous (Drazin and Reid 1981). For a fluid with
continuous background density, ρ̄(z), and continu-
ous U(z) this amounts to requiring that

∆[φ] = 0 and ∆[(ω/k − U)φ′ + U
′

φ] = 0. (7)

On applying the matching conditions (7) to the
solution for φ in (4) the eigenvalue relation

ω̃6 + C4ω̃
4 + C2ω̃

2 + C0 = 0 (8)

with Ci(k̃; Ri) is obtained. Here, ω̃ ≡ ω(L/U0) and
k̃ ≡ kL are dimensionless and, Ri ≡ N2

0
/(U0/L)2 is

the bulk Richardson number. There are three roots
for ω̃2 in this equation but only one is physically
possible, the other two are spurious. The appropri-
ate root is determined by taking limit as N0 → 0
and selecting that which corresponds with the clas-
sic result for unstratified shear flow (Drazin and
Reid 1981):

ω̃2 = [(k̃ − 1)2 − e−2k̃]/4. (9)

The physical root is decomposed into its real and
imaginary parts, ω̃ ≡ ω̃r + iω̃i, and is plotted in
Figure 2. The top plot shows that the system is
unstable for every value of Ri. However, the insta-
bility only occurs for a small range of kL for any Ri

and the growth rate of the instability, ω̃i, decreases
as Ri increases.

Therefore, for large enough Ri, the instability
growth rate will be smaller than the time for wave
propagation across the mixed region. So it is not
unreasonable to consider internal wave tunnelling
in these circumstances.

4. TUNNELLING SOLUTION

Now consider a wave of amplitude A1, incident
from below on a shear layer. For U and N2 profiles
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Figure 2: The contour plots show the non-
dimensional growth rate and frequency defined by
the physical root of (8).

as in (2) and (3), the solution to (1) becomes

φ(z) =











A3e
−iΓ3z z > L

2

A2e
−kz +B2e

kz |z| < L
2
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iΓ1z z < −L
2

(10)

where Γ1 and Γ3 are the same as γ1 and γ3 in (5)
and (6) except that Ω1 is replaced by ω and Ω3

is replaced by ω − kU0 since we are now back in
the frame of reference moving with the flow be-
low z = −L/2. Applying the matching condi-
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Figure 3: The contour plots show the values of
the transmission coefficient, T , for internal gravity
waves traversing an N2 barrier for several values of
Ri. Θ is the angle of propagation of the incident
waves with respect to the vertical. At the dashed
line c = ω/k = U0 and at the dashed-dot line |ω −
kU0| = N0.

tions (7) to the above solution gives a system of
four equations and five unknowns. Solving for the
transmitted amplitude, A3, in terms of the inci-
dent amplitude, A1, gives a transmission coefficient,
T = |A3/A1|2, which represents the fraction of en-
ergy transported. T is a function of k̃, Θ and, Ri,
where Θ ≡ cos−1(ω/N0), which represents the angle
at which lines of constant phase are oriented from
the vertical. In the limit of infinitesimally small
shear (U0 → 0, Ri → ∞), Sutherland and Yewchuk
(2004) showed that the transmission coefficient is

T =



1 +

(

sinh(k̃)

sin 2Θ

)2




−1

. (11)

For finite Ri, Figure 3 plots values of T as a func-
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tion of kL and Θ in three cases, each with different
values of Ri.

In the first plot Ri = 10000, which approximates
the case where U0 = 0, T approaches the result
(11).

For smaller Ri, a new over-transmission (T > 1)
regime appears. Along the dashed line the phase
speed of incident waves is exactly U0 and above this
line (larger kL) internal waves encounter a critical
level. Along the dashed-dot line the frequency of
incident waves, when Doppler-shifted by the back-
ground flow, equals N0 (|ω − kU0| = N0).Waves
with still larger kL are evanescent and transmission
drops to zero.

5. CONCLUSIONS

We derived an analytic prediction for internal
wave tunnelling through a shear layer surrounded
by stratified fluid. For weak shear, maximum trans-
mission occurs for waves with Θ = 45◦ (equal hor-
izontal and vertical wavenumbers). For stronger
shear, the waves over-transmit (meaning the inci-
dent waves extract energy from the shear and trans-
mit at a larger amplitude). Peak over-transmission
occurs when kL = (1+ω/N0)

√
Ri and no transmis-

sion occurs when kL = (ω/N0)
√

Ri.

Future work will examine the transmission and
reflection of internal gravity waves for more com-
plex and more realistic background profiles of N2

and U , and include anelastic and finite-amplitude
effects.
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