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1.   INTRODUCTION 

 
A Space and Time Mesoscale Analysis 

System (STMAS) has been developed at 
Forecast Systems Laboratory (FSL) to 
generate a gridded analysis of surface 
observations. It is a three-dimensional 
variational analysis (3DVAR) of horizontal 
space and time instead of pressure or height 
levels. It is used to detect boundary layer 
phenomena, frontal zones, and various 
nonlinear phenomena, and has been used in 
the DTC Weather Forecast Experiments 
(Koch et al. 2005) to verify 5-km resolution 
WRF model forecasts.  
 

Surface observations are usually 
inhomogeneous in time.  For example, the 
FSL Meteorological Assimilation Data 
Ingest System (MADIS) provides hourly 
data, 15-minute data, and 5-minute data, 
depending upon the networks and 
instruments. A single time frame analysis 
could result in some discontinuity in time 
because observations are available at 
different time frequencies. An analysis could 
provide better continuity both in space and 
time if it could include the time information. 
The time information has been used in a 
modification of the customary Barnes 
objective analysis scheme that assumed 
gravity wave behavior (Koch and 
O’Handley 1997). STMAS uses the time 
information under a much more generally 
applicable variational framework and 
potentially could handle non-conventional 
data, like radar and satellite radiance. This 
space and time analysis not only fills in the 
observation gaps in time, but also helps the 
analysis over data sparse regions. Therefore, 

STMAS provides time continuous analyses 
compared to the conventional, single time 
frame analysis scheme.  
 

To handle nonlinearity of different 
weather conditions, a sequential 3DVAR 
approach is adopted in STMAS to make the 
analysis gradually approximate the 
nonlinearity of the analyzed fields, which 
cannot be done by one single 3DVAR. 
Similar to a single Barnes iteration, a single 
3DVAR analysis can only represent the 
atmospheric field over scales determined by 
the length scale of its covariance. Without 
an accurate error covariance, a 3DVAR 
system may not provide good analyses, 
particularly a 3DVAR using simple 
recursive filter (Hayden and Purser 1995) 
approximating the covariance. For 
conventional observation datasets, a 
3DVAR analysis can be worse than a Barnes 
analysis. Figure 1 shows the increments of 
the analyses from a single 3DVAR using a 
recursive filter, a two-correction Barnes 
(Koch et al. 1983), and STMAS. This test 
employs an analytic observation innovation 
dataset derived from a highly nonlinear 
function over the real observation sites of 
MADIS. A larger influence radius of the 
covariance for this single 3DVAR analysis 
can only produce a smoother field, but 
remove the smaller scales from its analysis. 



 
 

 
Figure 1. Comparison of single 3DVAR 

scheme using a recursive filter, a two-pass 
Barnes scheme and STMAS analyses. 

 
In a highly nonlinear and 

inhomogeneous data assimilation situation, 
STMAS is a better variational analysis 
system, handling not only conventional data 
as good as a Barnes analysis, but also more 
complex data (radar and satellite data) like a 
3DVAR system. 
 
2.  RESPONSE ANALYSIS 
 

To demonstrate the necessity of solving 
a sequence of 3DVAR analyses for an 

STMAS analysis, a response function 
analysis of a single 3DVAR system using a 
recursive filter and a Barnes system is 
presented. A recursive filter has the 
following form (see Hayden and Purser 
1995), 
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A Fourier transformation into wavenumber 
space yields, 
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for a single pass of a combination of the left 
and right filters, where

! 

Z  is a unit complex 
number. Using this response function, we 
can find a response function of a single 
Barnes iteration. Figure 2 shows the 
response functions of the recursive filter 
with 

! 

" = 0.5, 0.7, and 0.9 and the 
corresponding responses of a Barnes 
iteration, respectively, where the responses 
are plotted as functions of dimensionless 
wavelength λ* = λ/L, where L is an arbitrary 
scale length (see Koch et al. 1983 for 
details). 
 

 



Figure 2. Response functions of single 
3DVAR recursive filter (RF) and single-pass 
Barnes filter (BN) for various values of the 

weighting coefficient α. 
 

It is known that a single iteration is not 
enough for a good Barnes analysis (Koch et 
al. 1983), and successive corrections are 
necessary. This figure shows that a single 
Barnes analysis can achieve the similar 
analysis from a 3DVAR using a given 
recursive filter. Two successive corrections 
using RF-0.9 and RF-0.7 can obtain 
essentially the same analysis as a two-
correction Barnes analysis (see Fig. 3). 

 

 
 

Figure 3. Response function of multi-
iteration of 3DVAR and Barnes. 

 
Thus, a sequential 3DVAR method is 

necessary in a multi-scale analysis. For 
conventional data, a Barnes analysis can 
match any 3DVAR analysis if the same 
error distribution can be used. This response 
function analysis explains why 3DVAR 
analyses cannot be as good as a Barnes 
analyses for conventional data. Instead, a 
sequential 3DVAR, as used in the STMAS, 
can obtain analyses like Barnes. While 
extending the benefits to include off-map 
time temporal weighting in a general sense 
and non-conventional data with their 
particular attributable error characteristics 
(not handled by a Barnes analysis). 
 

3.  STMAS: A SEQUENTIAL 3DVAR 
 

STMAS uses a sequence of 3DVARs to 
derive its final analysis. For each 3DVAR, 
the current implementation is to use a grid 
analysis with the above one-dimensional 
recursive filter applied sequentially to x, y 
and t. With this recursive filter 
approximating the background covariance, 
B, a single 3DVAR is: 
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where 
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x
b  is the background field, 

! 

y  is 
observation, O is the observation error 
covariance, and H is the operator mapping 
grid values to observations. 
 

STMAS starts its sequence of 3DVARs 
with a large α value, say 0.999. It solves the 
above 3DVAR problem with the observation 
dataset and obtains an initial solution. This 
is similar to what a single 3DVAR does. In 
its subsequent sequence of 3DVAR 
analyses, STMAS reduces the value of α 
from the previous 3DVAR step by τ, where 

! 

" # 0.5,1( )  is a constant, and solves the 
3DVAR problem with a new set of 
observations. This set is always generated 
by subtracting the previous 3DVAR analysis 
values at the observation sites from the 
observation values (i.e., calculation of 
innovation) used by the previous 3DVAR 
analysis just like a Barnes analysis. This 
sequence of 3DVARs is repeatedly solved 
until the α value is small enough, where its 
corresponding influence radius is smaller 
than the scales that can be resolved by the 
observation network (Koch et al. 1983). The 
final STMAS analysis will be the 
summation of all of the previous analyses. 
 

From the definition of the algorithm, it 
can be seen that STMAS is a variational 
extension of Barnes scheme that 
successively corrects the analysis over 
different scales as these recursive filters 
progress through smaller and smaller scales. 
Comparing to Barnes, since STMAS is a 



variational analysis, it can handle radar, 
satellite, and other complex data type 
naturally. STMAS is also an extension of the 
standard 3DVAR in handling non-
conventional data and the nonlinearity of the 
analysis. However, without a perfect 
covariance, a single 3DVAR cannot yield 
the same results as STMAS. This is shown 
in our analytic tests and real time data 
analysis.  
 
4.   A REAL TIME ANALYSIS 
 

STMAS is currently running every half 
hour to provide fifteen-minute analyses in 
real time. Using dense surface observation 
data from MADIS, STMAS analysis 
provides a good verification tool for high-
resolution model forecasts. The surface data 
mainly comes from MADIS-MESONET 
through the Local Analysis and Prediction 
System (LAPS). Selecting “dwfe1” as the 
domain name, users can access a real time 
STMAS analysis instead of a conventional 
LAPS analysis from this website: 
http://laps.fsl.noaa.gov/. An example of 
STMAS analysis is presented here for April 
7, 2005 at 1645UTC. 
 

  

 
 

Figure 4.  Top: STMAS analysis; Bottom: 
satellite image. 

 
5.  SUMMARY 

 
To analyze various nonlinear weather 

phenomena, STMAS uses a sequence of 
3DVARs in both the space and time 
domains to obtain multi-scale grid analysis, 
which as shown cannot be done through a 
single 3DVAR analysis. Just like a single 
iteration of Barnes, it is impossible to 
achieve an accurate analysis without a 
perfect error covariance for a single 
3DVAR. The sequence of 3DVARs makes 
STMAS analysis inhomogeneous and 
anisotropic, even though it is currently 
implemented using a simple filter. Based on 
our experiments and analysis, STMAS is 
competitive to a two-pass Barnes scheme 
using surface meso-network observation 
data. However, STMAS is a natural 
extension of the conventional Barnes. Its 
ability to incorporate the time variability in a 
flexible, general, and continuous fashion, 
and non-conventional data may make 
STMAS a better and more robust nonlinear 
analysis tool. 
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