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1. INTRODUCTION
The role of moisture availability in regulating

convective development is poorly understood. The
dominant role for moisture is through convective
triggering whereby rising air parcels in the boundary
layer are moist enough to achieve saturation, begin
releasing latent energy, and overcome the conditional
instability barrier.

The secondary role of tropospheric moisture is less
apparent. Regulation of deep convection by mid-
troposphere drying is thought to be important both as an
in-situ restriction on deep convection and as a source of
moisture from detraining congestus-type convection.
This moisture restriction and feedback regulation of
convection could be crucial in setting the time-scale of
convective response of a wide range of phenomena from
the diurnal-cycle over land to the convectively coupled
Madden-Julian Oscillation - the modelling of which
suffers due to convective processes that are too deep
too quickly.

2. THE SUB-TROPICAL MID-SUMMER DROUGHT
The mid-summer drought (MSD) is an annually

occurring feature throughout Central America, Southern
Mexico, the Gulf of Mexico and the Caribbean. It mani-
fests as a local (in time) minimum in precipitation
between the maxima of mid-June and mid-September
(Magana et al., 1999). Fig 1 (a) shows the ratio of Sep-
tember precipitation to July rainfall. It reveals the wide-
spread coherence of the MSD over the Caribbean and
much of southern Florida. July rainfall averages as low
as 50-60% of the September value in these areas.

Less well documented is a similar feature centered
to the East of the Philippine sea - a region with a much
sparser observational network. Fig 1 (b) shows a mini-
mum in July rainfall when compared to the later maxi-
mum in rainfall during August - a month or so earlier than
the equivalent Caribbean rainfall peak.

The MSD is not associated with the meridional
migration of the ITCZ and so a number of alternative
mechanisms have been proposed (e.g., Chen et al.
2001; Mapes et al., 2005). The mechanisms focus on the
dynamcal forcing leading to increased surface pressure
during the MSD period.

For the purposes of a convective inhibition study this
phenomenon represents an ideal example. The near-
surface forcing in terms of boundary layer equivalent
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potential temperature increases monotonically
throughout the spring and summer, the convective
response does not. Clearly there is a large-scale
tropospheric suppression influence on convection
through the MSD period

.

3. A COMPOSITE SOUNDING ANALYSIS
An extensive radiosonde data-set has been

analyzed for numerous stations within the MSD regions
of the Caribbean and Philippine sea. Constructing
climatologies directly from the raw sonde data retains the
full observed vertical resolution. This is ideal for
analyzing the convective potential which may be strongly
attenuated by shallow dry layers. Course resolution
reanalyses products would tend to smear out such
layers.

3.1 MSD Annual Cycle
The mean annual cycle of surface pressure (from

the (mostly) twice-daily radiosonde data) and rainfall
(from CPC/CMAP data) is shown for two stations; Key
West, Florida Fig. 2(a) and Minamidaitojima, Japan Fig
2(b).

The MSD in both regions is characterized by an
increase in surface pressure as the ocean surface high
re-intensifies from the east. The Philippine feature is
much shorter and less distinct in surface pressure, but
appears able to suppress the rainfall just as significantly.

Figure 1. Average MSD rainfall as a percentage of the late summer
rainfall maximum for (a) Gulf of Mexico/Caribbean Sea; and (b)
Philippine Sea region. CMAP rainfall data (1979-2001).
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3.2 Upper-air Field Tendencies
Focusing on the more complete Key West record

the annually-averaged evolution of upper air fields are
shown in Fig. 3. Warming and moistening tendencies
through May and into early June mark the seasonal
increase in rainfall. Coincident with a strengthening
southerly jet lower-troposphere drying occurs which is
sufficient to eventually reduce convection going into July,
even though the boundary layer continues to warm and
moisten. A deep tropospheric drying and cooling is
indicative of the suppressed convection through July.
The combined effects of the retreating high and

decreased stability eventually lead to strong convection
being re-established through the end of August and into
the September maximum.

Figure 2. Mean annual cycle of surface pressure and precipitation
for radiosonde stations (a) Key West (1954-1999); and (b) Mina-
midaitojima (1968-1999). Locations marked by X in Figs. 1(a), (b).
Daily averages - thin line. 31-day smoothed average - thick line.
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Figure 3. Key West radiosonde derived annual-average tendencies
of upper--air fields (a) specific humidity; (b) temperature; (c) rela-
tive humidity and (d) evolution of meridional wind.
3.3 Convective Inhibition
Figure 4(a) is an analysis of CAPE of a total-water

and entropy conserving non-entraining parcel ascending
from the boundary layer to the tropopause. Using this
metric one could deduce that the potential for strong
convection (high CAPE) is as high during the MSD in
July as in September. This potential is obviously not
realized in reality and is due to the cooler upper-
troposphere - resulting from the convective deficit during
July.

Analyzing an entraining parcel that is subject to the
constraint of non-negative kinetic energy upon ascent
(Fig 4 (b)), better separates the convective potential for
the MSD and the September rainfall maximum. This is
because a significant number of parcels are unable to
traverse the lower-tropospheric drying levels in June and
therefore terminate well before reaching significant
elevations. The early summer rainfall maximum is
difficult to characterize in terms of local convective
potential mainly due to the more frontal nature of rainfall
at this time of year.
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Figure 4. PDFs of individual sounding convective potential during the
early summer rainfall maximum, the MSD and the late summer maxi-
mum.(a) CAPE assuming an undilute parcel ascent; (b) Cloud-top
pressure assuming a strongly entraining parcel.


