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1. INTRODUCTION 
 
 With current horizontal resolutions, the models 
used for numerical weather prediction (NWP) are 
approaching limits of validity of the hydrostatic 
approximation.  Considerable experience with 
nonhydrostatic models has been accumulated in 
simulating convective clouds and storms, but this 
experience may not be directly or entirely 
applicable to NWP.  Namely, NWP deals with a 
much wider range of temporal and spatial scales. 
 Concerning the criteria that a successful 
nonhydrostatic NWP model should satisfy, there 
are several obvious choices.  Apparently, the 
accuracy of the nonhydrostatic model must not be 
inferior to that of mature hydrostatic models 
running at the same resolution.  Moreover, having 
in mind the uncertainties concerning the benefits 
that can be expected from nonhydrostatic 
dynamics at transitional resolutions, the 
nonhydrostatic model must be computationally 
efficient.  Finally, the model dynamics should be 
capable of reproducing strongly nonhydrostatic 
flows at very high resolutions.  Although such 
resolutions are far beyond the resolutions that will 
be used in NWP in the foreseeable future, this 
condition must be satisfied in order to demonstrate 
that the model is nonhydrostatic. 
 Having in mind these considerations, a novel 
approach (Janjic et al., 2001; Janjic, 2003) has 
been applied in the NCEP Nonhydrostatic 
Mesoscale Model (NMM) that has been developed 
within the Weather Research and Forecasting 
(WRF) initiative.  Namely, instead of extending a 
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cloud model to larger spatial and temporal scales, 
the hydrostatic approximation is relaxed in a 
hydrostatic model formulation based on modeling 
principles proven in practice.  These principles 
have been set up by Janjic (1977, 1979, 1984) and 
have been applied and thoroughly tested in NWP 
and regional climate applications of the NCEP Eta 
model.  By relaxing the hydrostatic approximation, 
the applicability of the model formulation is 
extended to nonhydrostatic motions, and at the 
same time, the favorable features of the 
hydrostatic formulation are preserved.  In other 
words, following an evolutionary approach, the 
nonhydrostatic NWP model is built on NWP 
experience. 
 With this approach, the nonhydrostatic 
equations are split into two parts: (a) the part that 
corresponds to the hydrostatic system, except for 
corrections due to the vertical acceleration, and (b) 
the part that allows computation of the corrections 
appearing in the first system.  No linearization or 
additional approximation is required.  The 
nonhydrostatic effects are introduced in the form of 
an add on nonhydrostatic module that can be 
turned on or off depending on model resolution so 
that the nonhydrostatic model can be run in the 
hydrostatic mode at lower resolutions with reduced 
computational cost. 
 
2. HIGHLIGHTS OF THE MODEL EQUATIONS 
 
 Following the usual practice in NWP, the 
model equations are formulated using a vertical 
coordinate based on mass (or hydrostatic 
pressure) (Janjic et al., 2001; Janjic, 2003).  With 
this choice, the mass as well as a number of other 
first order and quadratic quantities can be 
conserved in the discretized system without major 
difficulties.  Moreover, in the mass coordinate the 
nondivergent flow remains on coordinate surfaces.  



A similar argument applies to adiabatic flows in 
isentropic coordinates.  However, important flow 
regimes on the meso scales are characterized by 
weak stability and strong diabatic forcing, the 
features that render the isentropic coordinate less 
appealing. 
 The full system of nonhydrostatic equations is 
presented in Janjic et al. (2001).  Further details 
and updates on the numerical methods used are 
given in Janjic (2003) and later on in this paper.  At 
this point, only some very general implications for 
the discretization will be reviewed. 
 Even though the hybrid pressure-sigma 
vertical coordinate is actually employed in the 
model, for simplicity, the sigma coordinate (Phillips, 
1957) will be used here as a representative of the 
mass based coordinates.  Then, the nonhydrostatic 
continuity equation can be written as 
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Here, w  is vertical velocity, g is gravity, Φ  is 
geopotential v  is the horizontal wind vector, σ&  is 
the vertical velocity in the sigma coordinate, and z 
is the height of coordinate surfaces.  Then, the 
ratio of the vertical acceleration to gravity has the 
form 

  
dt
dw

g
1

≡ε . (2.2) 

Since the geopotential is computed from 
hydrostatic pressure, temperature and 
nonhydrostatic pressure, Φ ,w , and ε  are not 
independent variables.  An important consequence 
of this for the discretization is that an independent 
prognostic equation should not be used e.g. for 
vertical velocity.  In the continuous case the 
presence of such an independent additional 
prognostic equation would be of no consequence 
since the system would be still fully internally 
consistent.  However, in the discrete system, at 
different places, the same variable would be 
computed in different, generally inconsistent ways.  
A usual manifestation of such inconsistencies is 
enhanced noisiness, a problem that many 
nonhydrostatic models have been plagued with. 
 Another important implication for the 
discretization follows from the fact that the 
parameter (2.2) enters the nonhydrostatic 
equations for the basic dynamical variables 
through a factor of the form ε+1  (Janjic et al., 
2001; Janjic 2003).  If ε  is zero, the system 
becomes hydrostatic.  On the synoptic scales ε  is 
small and approaches computer round–off error.  

In atmospheric flows, even in cases of vigorous 
vertical accelerations, ε  remains several orders of 
magnitude smaller than unity.  Thus, high accuracy 
of computation of ε  is not of paramount 
importance since the computational errors are of 
an even higher order than ε  itself. 
 
3. CLASSICAL NONHYDROSTATIC 
 SOLUTIONS 
 
 In order to test the validity of the approach in 
the limit of highly nonhydrostatic flows, a two-
dimensional model in the vertical plane was 
developed and run in a series of classical 
nonhydrostatic tests (Janjic et al., 2001).  However, 
as pointed out in Janjic (2003), and later on in this 
paper, the computational algorithms used in the 
model have evolved significantly since then.  In 
order to verify that the new computational methods 
have not affected the favorable features of the 
model, results are shown here of the reruns of the 
cold and warm bubble tests using the latest 
computational techniques.  For more details about 
these and other nonhydrostatic tests the reader is 
referred to Janjic et al. (2001). 
 Following Straka et al. (1993), in a neutrally 
stratified atmosphere an initial cold disturbance 
was introduced.  The integration domain extended 
40 km in the x  direction, and the free surface was 
located at 442 hPa, or at about 6400 m.  The 
center of the initial disturbance was in the middle of 
the domain in the x  direction, 20 km away from 
either of the lateral boundaries.  The boundary 
between the pressure and the sigma coordinate 
systems was set at about 900 hPa, in the region 
where the major disturbances were developing.  As 
in the main test in the Straka et al. (1993) study, 
the horizontal resolution was 100 m, and the 
vertical resolution was 100 m on the average.  The 
potential temperatures after 300 s (top), 600 s 
(middle) and 900 s (bottom) are displayed in Fig. 1.  
The area shown extends from the center of the 
domain to 19200 m to the right, and from the 
surface to 4600 m.  The contour interval is 10K.  
Comparison of the results obtained in this test with 
those presented in Janjic et al. (2001), and Straka 
et al. (1993), reveals that the new numerical 
algorithms perform as good as or better than those 
used in the Janjic et al. (2001) tests.  In particular, 
the pressure and sigma ranges of the hybrid 
vertical coordinate evidently fit to each other 
seamlessly. 
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Fig. 1.  The cold bubble test.  Potential 
temperatures after 300 s, 600 s and 900 s in the 
right hand part of the integration domain extending 
from the center to 19200 m, and from the surface 
to 4600 m.  The grid size is =≈ xz ∆∆ 100 m and 

3.0=t∆ s.  The contour interval is 10K. 
 
 In the warm bubble test (Janjic et al., 2001) an 
initial warm disturbance of the potential 
temperature was introduced in a neutral 
atmosphere.  The integration domain extended 20  
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Fig.  2.  Warm bubble potential temperature 
deviation after 360 s, 540 s, 720 s and 900 s (from 
top to bottom).  The area shown extends 16 km 
along the x  axis, and from 0 m to 13200 m along 
the z  axis.  The contour interval is 10K. 
 

km in the x  direction.  The free surface was 
located at 135 hPa, or at about 13500 m.  The 
boundary between the pressure and sigma ranges 
of the hybrid vertical coordinate was set at about 
560 hPa, again at a pressure level swept over by 
the ascending bubble.  The center of the initial 
disturbance was in the middle of the domain, 10 
km away from either of the lateral boundaries.  The 
horizontal resolution was 100 m, and the vertical 
resolution was 100 m on the average.  The 
potential temperature deviations after 360 s (upper 
left panel), 540 s (upper right panel), 720 s (lower 
left panel) and 900 s (lower right panel) are 
presented in Fig. 2.  The area shown extends 16 
km along the x  axis, and from 1000 m to 13200 m 
along the z  axis.  The contour interval is 10K.  The 
rate of ascent and the intensity of the disturbance 
again agree very well with those reported earlier in 
Janjic et al. (2001).   
 
4. HORIZONTAL GRID AND HORIZONTAL 
 COORDINATES 
 
 Winninghoff (1968) and Arakawa and Lamb 
(1977) examined frequencies of gravity-inertia 
waves on various types of rectangular horizontal 
grids obtained using second-order centered 
differences.  Generally, better agreements with the 
exact frequencies were achieved on the staggered 
grid C  and on the semi-staggered grid B  (or E ) 
than on the other considered grids.  The grids B , 
C  and E  are shown in Fig. 3.  In the figure, h  
denotes the mass point variables, while the 
horizontal velocity vector and the velocity 
components are denoted, respectively, by v , u  
and v .  However, the staggered grid and the semi-
staggered grids also have problems (e.g. Janjic, 
2003).  The problems on the staggered grid arise 
due to the averaging of the velocity components in 
the Coriolis force terms.  On the other hand, in 
order to illustrate the problems on the semi-
staggered grids, consider the linearized shallow 
water equations on an infinite plane 
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Here, u  and v  are the velocity components, h  is 
the height of the free surface, g  is gravity, f  is 
the Coriolis parameter assumed to be constant,  



 
 
Fig. 3.  The staggered grid C and the semi-
staggered grids B, E and Z.  
 
and H  is the mean depth of the fluid.  The system 
(4.1) discretized in the most straightforward way on 
the B  grid has the form 

 fvhg
t
u y

x +−=
∂
∂ δ ,  fuhg

t
v x

y −−=
∂
∂ δ , 

  )( x
y

y
x vuH

t
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∂
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In (4.2), the symbol δ  and the overbar, 
respectively, represent the simplest two-point 
centered differencing and averaging operators 
applied in the direction indicated by the 
accompanying subscript or superscript.  Following 
Janjic (1984), the velocity components on the B  
grid may be written in terms of the velocity 
potential χ  and the stream function ψ  as 

  y
x

x
y

x
y

y
x ψδχδv,ψδχδu +=−= . (4.3) 

After substituting (4.3) into (4.2), and 
rearrangement, one obtains 
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Here repeated subscripts and superscripts indicate 
repeated applications of the operators they are 
accompanying.  As can be seen from (4.4), the 
transformed equations of motion are solved 
exactly, and the reason for the B grid problems is 

the insufficiently accurate computation of the 
Laplacian due to the averaging of the derivatives in 
the continuity equation (Janjic 2003).   
 Note that the finite difference equations (4.4) 
are defined on a nonstaggered grid carrying all 
three variables ψ,χ  and h  at each grid point 
(Janjic, 1984).  This grid is also shown in Fig. 3.  It 
was named Z  grid by Randall (1994) (Gavrilov, 
2004).  However, on the Z  grid, the continuity 
equation can be written also as 

  )χδχδ(H
t
h

yyxx +−=
∂
∂

, (4.5) 

i.e., without the averaging in the divergence term 
that was responsible for the B  grid problems.  
Unfortunately, application of (4.5) in case of more 
complex equations requires costly conversions 
between the velocity components and the velocity 
potential and the stream function. 
 A more complete comparison of the properties 
of the remaining two possibilities, the staggered 
grid C  and the semi-staggered grids B  and E  
can be found, e.g., in Janjic and Mesinger (1984, 
1989).  These considerations do not give decisive 
advantage to either of the two choices.  The 
problems on the semi-staggered grids B  and E  
are restricted mainly to the shortest waves, and 
there is an effective technique for filtering the low 
frequency, short-wave noise resulting from the 
inaccurate computation of the divergence term 
(Janjic, 1979).  More sophisticated, nondissipative 
methods (“deaveraging” and “isotropisation”) for 
dealing with the problem also were proposed 
(Janjic et al., 1998), leading to dramatic 
improvements of the finite-difference frequencies 
of the short gravity-inertia waves on the semi-
staggered grids.  On the other hand, in the case of 
slow internal modes, and/or weak static stability, 
the C  grid develops problems in the entire range 
of the admissible wave numbers (Arakawa and 
Lamb, 1977).  Note that phenomena occurring in a 
weakly stable atmosphere represent a very 
important class of mesoscale motions. 
 The linearized anelastic nonhydrostatic system 
is a better starting point for addressing the choice 
of the horizontal grid in the mesoscale models than 
the linearized shallow water equations (4.1) 
(communicated by Klemp, 1997; Janjic, 2003).  As 
before, the problems with the anelastic system on 
the C  grid are mainly due to the averaging of the 
Coriolis force.  Depending on the horizontal and 
vertical grid sizes, in cases of weak static stability 
these problems may develop throughout the 
admissible wave-number range, including the 



longest waves (Janjic, 2003).  On the B  grid the 
problems are again mainly due to the averaging 
within the divergence term, but remain restricted to 
the shortest resolvable scales, and hardly can be 
detected in real data simulations with currently 
used horizontal resolutions (Janjic, 2003).  Since 
the problems on the semi-staggered grid B  are 
restricted to the shortest waves, and can be 
effectively controlled (Janjic, 1979; Janjic et al., 
1998), the preference was given to the semi-
staggered grids.  For historical reasons, the E  grid 
is used in the initial version of the NCEP 
Nonhydrostatic Meso Model, although a B  grid 
version (NMM-B) with analogous properties also 
exists (Janjic, 2003). 
 The longitude-latitude coordinates are rotated 
in the model in such a way that the coordinate 
origin is located in the middle of the integration 
domain.  In this way, the reduction of the 
longitudinal grid-size is minimized as the southern 
and the northern boundaries of the integration 
domain are approached, and, therefore, longer 
time steps can be used. 
 
5. VERTICAL COORDINATE AND VERTICAL 
 STAGGERING 
 
 The most widely used approach for 
representing topography are terrain-following 
coordinates such as the sigma coordinate (Phillips, 
1957) and its extensions such as the hybrid sigma-
pressure coordinate of Arakawa and Lamb (1977), 
or the hybrid eta coordinate of Simmons and 
Burridge (1981).  A rare exception has been the 
step-mountain blocking used in the NCEP Eta 
model.  Originally proposed by Bryan (1969), and 
subsequently widely used in oceanography, this 
technique was implemented in the sigma 
coordinate by Mesinger et al. (1988).  Yet another 
approach coming from oceanography is the 
shaved cell method (e.g. Adcroft et al. 1997).  
Steppeler et al. (2002) implemented this method in 
the dynamical core of the Lokal Modell of the 
German Weather Service. 
 The advantage of the step-like mountain 
blocking is that the coordinate surfaces are 
quasi-horizontal.  This, however, is not without 
consequences.  For example, internal 
discontinuities are introduced at the vertical sides 
of the steps that replace the mountain slopes, and 
lateral boundary conditions are required at these 
discontinuities.  Note that the accuracy of 
finite-differencing at the points next to the internal 
boundaries is reduced.  If the no slip boundary 

conditions (Bryan, 1969; Mesinger et al., 1988) are 
used in order to preserve the major favorable 
features of the finite-differencing schemes (Janjic, 
1977, 1979, 1984), a nonphysical sink of 
momentum is introduced.  Yet another problem is 
the representation of the physical processes in the 
planetary boundary layer (PBL).  If one wants to 
represent these processes in a reasonably uniform 
way throughout the integration domain, including 
both low-lying and elevated terrain, an 
approximately equidistant spacing of the vertical 
levels is required in the lowest few kilometers of 
the atmosphere.  However, the vertical resolution 
needed to achieve this goal is still too high.  In 
addition, several recent studies (Adcroft et al, 
1997; Gallus, 2000; Gallus and Klemp, 2000; 
Janjic and DiMego, 2001; Gavrilov, 2002) indicate 
that more problems should be expected at higher 
resolutions. 
 The shaved cell approach has even more 
problems with complex lower and internal 
boundary conditions.  Also, as with the step-
mountains, the vertical resolution is reduced over 
elevated terrain that poses problems for physical 
parameterizations.  Addressing this problem, the 
group at the German Weather Service is working 
on an approach where the contributions of the 
model’s physical parameterizations are evaluated 
on a separate, terrain following grid. 
 Thus, the terrain-following hybrid 
pressure-sigma vertical coordinate (Arakawa and 
Lamb, 1977) has been chosen as a compromise 
(Janjic, 2003).  With the hybrid coordinate, the 
coordinate surfaces are flat above and away from 
the mountains.  Over the mountains the hybrid 
coordinate has increased vertical resolution, and 
the equations are continuous, without the 
computational internal boundary conditions.  Since 
the hydrostatic pressure is currently used as the 
vertical coordinate above 400 hPa, the possible 
inaccuracies due to the sloping coordinate 
surfaces are restricted only to about the lower half 
of the mass of the atmosphere.  Note that, 
generally, the largest errors in the sigma 
coordinate occur in the stratosphere.  Thus, the 
most serious problems associated with the sloping 
sigma surfaces are eliminated.  
 The example in Fig. 4 is shown in order to 
illustrate the advantages of the hybrid coordinate.  
In this example the two-dimensional model used in 
the nonhydrostatic tests was integrated for 12 
hours using 10 km resolution in the horizontal and 
60 equidistant layers in the vertical.  The 
integration domain with cyclic lateral boundary 



conditions was 200 grid distances wide and 
extended up to 10 hPa.  The experiments started 
from an atmosphere at rest and in hydrostatic 
equilibrium.  In such an atmosphere the pressure 
gradient force is zero.  Following Phillips (Phillips, 
1974; Janjic, 1977), the vertical profile of 
geopotential had the form 
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Fig. 4.  Spurious u wind component developing 
due to the pressure gradient force errors in the 
sigma coordinate (upper panel), and in the hybrid 
coordinate with the boundary between the 
pressure and sigma domains at about 400 hPa 
(lower panel).  The contour interval is 0.5 1sm − .  
Dashed lines represent negative values. 
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  100000lnln +−= pz . (5.1) 
In the middle of the domain, a mountain about 
1900 m high was defined specifying the surface 
pressure as 
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20000100000.=

a

c
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x
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Here cx is the center of the domain, and ax is the 
10 grid distances wide mountain halfwidth.  The 
spurious u wind component developing due to the 
pressure gradient force errors in the sigma 
coordinate is shown in the upper panel of Fig. 4.  
The corresponding errors in the hybrid coordinate 
with the boundary between the pressure and 
sigma domains at about 400 hPa are shown in the 
lower panel of the figure.  The plots cover the 
entire integration domain in the horizontal, and 
extend up to 30 km in the vertical.  The ticks on the 
vertical axes are drawn every 1000 m.  Dashed 
lines represent negative values.  As can be seen 
from the figure, the errors in the sigma coordinate 
are for an order of magnitude larger and reach 
about 4.5 1sm − .  The error in the hybrid 
coordinate remains close to zero everywhere, and 
its maxima reach only about 0.5 1sm − .  As 
pointed out, the sigma coordinate errors are 
concentrated mainly at higher altitudes, in the area 
of the tropopause and in the stratosphere.  
 The geopotential and the nonhydrostatic 
pressure are defined at the interfaces of the layers, 
while all three velocity components and 
temperature are carried in the middle of the model 
layers (Janjic, 1977).  The vertical velocity is 
defined at the E grid mass points. 
 
6. SPATIAL DISCRETIZATION 
 
 The discretization principles applied in the 
NMM, and thoroughly tested in practice in its 
hydrostatic predecessors, the Eta and the HIBU 
models, have been (Janjic, 1977, 1984): 
 
● Conservation of selected integral properties, 
and in particular, following Arakawa, the control 
over the nonlinear energy cascade by the 
conservation of energy and enstrophy in case of 
nondivergent flow; 
● Cancellation of the contributions of the 
pressure gradient force and the ωα  term of the 
thermodynamic equation to the total energy 
generation, and consequently consistent 



transformation between the kinetic and potential 
energy; and 
● Minimization of the errors due to sloping sigma 
surfaces. 
 
 Although designed following the same general 
principles, the specific numerical schemes 
employed evolved significantly over time and over 
about two orders of magnitude in horizontal 
resolution.  For example, the problem of the 
sloping sigma surfaces was first addressed by 
minimizing the sigma coordinate pressure gradient 
force errors (Janjic, 1977), then by the step-
mountain blocking (Mesinger et al., 1988) in the 
Eta model, and finally by the already discussed 
hybrid pressure-sigma coordinate in the NMM.  
The treatment of the ωα  term has certainly played 
an important role in the treatment of orography as 
well (Janjic, 1977).  Yet, perhaps the most 
significant upgrade was the introduction of the new 
schemes for calculating the contribution of the 
nonlinear advection terms and the horizontal 
divergence operators (Janjic, 1984; Gavrilov and 
Janjic, 1989).  In the current model formulation, all 
divergence operators are computed using the 
fluxes between each point and its eight nearest 
neighbors (Janjic, 1984). 
 In the case of rotational flow and cyclic 
boundary conditions, the Janjic (1984) scheme for 
horizontal advection of momentum on the E  grid 
conserves the following properties: 
 
- Enstrophy as defined on the staggered grid C  
(i.e. using the most compact second-order 
approximation of the Laplacian in order to compute 
vorticity), 
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and also, separately,  

 ∑
j,i

'x'x A∆)ψδ( 2 , ∑
j,i

'y'y A∆)ψδ( 2  and 

  ∑
j,i

'y'y'x'x A∆)ψδψδ( ; 

- Rotational kinetic energy as defined on the 
staggered grid C , 
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- Rotational kinetic energy as defined on the 
semi-staggered grid E , 
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and also 
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- Rotational momentum as defined on the 
staggered grid C ; 
- Rotational momentum as defined on the semi-
staggered grid E . 
 
 The Z  grid equivalent of the E  grid (Janjic, 
1984) used to define the quantities (6.1)-(6.3) is 
shown in Fig. 5 together with the orientation of the 
coordinate axes y,x  and 'y,'x  appearing in 
(6.1)-(6.3).  As before, χ  and ψ  are the velocity 
potential and the stream function, respectively, and 
h  stands for mass point variables.  The symbol 
 

 
Fig. 5.  The Z grid equivalent of the E grid.  
Orientations of the coordinate axes y,x  and 

'y,'x  are indicated. 
 
A∆  denotes the area of the grid boxes, and the 

summation sign with the subscripts j,i  represents 
the summation in the horizontal. 
 In case of general flow, the scheme conserves: 
 
- Kinetic energy as defined on the semi-
staggered grid E  
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and also, 
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and  
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2
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- Momentum as defined on the semi-staggered 
grid E . 
 
In (6.4), the summation is performed over all grid 
points, and the symbol V∆  denotes the grid box 
volume in hydrostatic vertical coordinates.  The 
scheme for horizontal advection of temperature 
conserves the first and the second moments of 
temperature. 
 Both of the two discussed options for dealing 
with the problem of the semi-staggered grids with 
the frequencies of the short gravity-inertia waves 
(Janjic, 1979; Janjic et al. 1998) were tested in the 
model.  The deaveraging option is computationally 
efficient and requires only a few simple iterations 
on the hydrostatic pressure tendency.  Although it 
is non-dissipative, and therefore physically better 
founded, the dramatic improvement of the 
frequencies of the shortest gravity-inertia waves 
achieved requires that the time step be significantly 
reduced which leads to reduced computational 
efficiency of the model.  Thus, it is not obvious 
which of the two options should be given 
preference in practice (Janjic, 2003). 
 Concerning the basic dynamical variables, 
quadratic conservative vertical advection is used.  
In addition to the material surface boundary 
conditions requiring that the vertical velocity be 
equal to zero at the top and at the bottom of the 
model’s atmosphere, vertical boundary conditions 
are needed for the nonhydrostatic deviation of 
pressure.  It is assumed that the nonhydrostatic 
pressure deviation vanishes at the top of the 
model’s atmosphere, while its vertical derivative 
vanishes at the bottom (Janjic et al., 2001). 
 The centered conservative schemes used for 
advection of the basic dynamic variables develop 
problems in case of advection of positive definite 
scalars with large spatial variation, such as specific 
humidity, cloud water, or turbulence kinetic energy.  
For this reason, an upgraded version of the 
scheme used for advection of passive substances 

in the NCEP Eta model (Janjic, 1997) is applied.  
The scheme consists of three steps.  In the first 
step an upstream biased scheme is used to advect 
the passive substance.  In the second step, 
antifiltering is applied, optimized in such a way as 
to minimize computational dispersion in sheared 
flows.  In the third step, forced conservation is 
imposed. 
 
7. TIME DIFFERENCING 
 
 Following the same proven principles for time 
discretization as in its hydrostatic predecessors, 
the hydrostatic core of the equations used in the 
NMM is split into two energy conserving 
subsystems (Janjic, 1979, 2003; Janjic et al., 
2001).  These two subsystems are solved using 
different time stepping methods.  The splitting is 
not done by automatically separating all the 
advection terms since the advection of pressure in 
the omega-alpha term of the thermodynamic 
equation should not be separated from the 
contribution of the pressure gradient force.  An 
economical forward–backward scheme (Ames, 
1969; Gadd, 1974; Janjic and Wiin–Nielsen, 1977; 
Janjic, 1979) is used for the gravity-inertia waves.  
The Adams–Bashforth scheme is applied for the 
contributions of the horizontal advection terms.  
The advection time step is the same as that for the 
gravity-inertia waves.  Note that the ratio between 
the advection time step and the gravity-inertia time 
step is restricted to only about 2 by the CFL 
criterion on the semi-staggered grids, where longer 
gravity-inertia steps can be used than on the 
staggered grid C .  The trapezoidal scheme for the 
Coriolis force terms (Janjic and Wiin-Nielsen, 
1977) has been replaced by the Adams-Bashforth 
scheme in order to avoid overestimating the 
amplitude of the divergent part of the flow (Janjic 
and Wiin-Nielsen, 1977). 
 For the vertical advection, the Matsuno 
scheme has been replaced in later versions of the 
NMM by the neutral Crank-Nicholson scheme.  
Namely, as a legacy from the Eta model, which 
required very high vertical resolution in order to 
resolve topography and the PBL over elevated 
terrain, the NMM is often run with higher vertical 
resolution than necessary with the hybrid 
coordinate, so that the vertical advection 
sometimes dangerously approaches or exceeds 
the limit imposed by the CFL criterion. 
 As pointed out in Janjic (2003), a novelty in the 
treatment of the nonhydrostatic terms is that the 
iterative method for solving the vertical implicit 



pressure equation discussed in Janjic et al. (2001) 
has been replaced by a direct solver.  This 
modification has brought a further improvement of 
the computational efficiency of the model. 
 
8. OPERATIONAL APPLICATIONS 
 
 Since July 2002, the NMM has been run 
operationally in NCEP High Resolution windows in 
six nested domains (West, Central, East, Alaska, 
Hawaii, Puerto Rico) shown in Fig. 6.  The 
horizontal resolution is 8 km for all domains except 
for Alaska where the horizontal resolution is 10 km.  
On 21 June 2005 the gridpoint spacing of the nests 
was decreased to about 5.1 km.  The model has 
60 unequally spaced levels in the vertical.  In 
addition, the model is used for fire weather 
forecasting and other purposes on call. 
 

 
 
Fig. 6.  The six High Resolution Windows: 
Western, Central, Eastern, Alaska, Hawaii and 
Puerto Rico domains embedded into the Eta 
domain (solid black line). 
 
 The topography is defined as grid-box means 
of the USGS 30’’ global Digital Elevation Model 
data.  Except in ten rows along the lateral 
boundaries, no smoothing or filtering is applied.  
Although unfiltered topography introduces forcing 
at the smallest resolvable scales that can 
adversely affect particularly precipitation forecasts, 
this choice was made hoping that realistic 
topography would result in better forecasting of 
low-level flow over complex terrain, and in 
particular, in more realistic simulation of channeling 
effects of topography. 
 The model as run in the nested domains does 
not have its own dedicated data assimilation 

system.  The initial and boundary conditions are 
defined by interpolation of the operational Eta 
model data.  The Eta model is run with 12 km 
resolution and 60 levels in the vertical. 
 In the two small domains the model is run 
twice a day (Hawaii cycles 00Z and 12Z, Puerto 
Rico cycles 06Z and 18Z).  In the remaining four 
domains, the model is run once a day starting from 
00Z (Alaska), 06Z (West), 12Z (Central) and 18Z 
(East).  The forecasts are computed up to 48 
hours. 
 The computational efficiency of the model has 
been very high, and substantially higher than the 
computational efficiency of most nonhydrostatic 
models.  Moreover, further significant improvement 
of the computational efficiency of the model is 
possible.  The model has been highly reliable. 
 Results of a recent comprehensive diagnostic 
study demonstrate the potentials of the WRF-NMM  
(http://www-ad.fsl.noaa.gov/fvb/rtvs/wrf/retro_runs/).  In 
this study the forecasts have been evaluated using 
the standard NCEP verification package.  This 
package computes a number of traditional scores 
versus observations, which in the free atmosphere 
basically measure how well large-scale features 
are predicted.  The scores computed for near 
surface variables are more representative for 
smaller-scale features. 
 The WRF-NMM scores obtained in this study 
have been very good in relative terms despite 
numerous factors that have had adverse effect on 
the quality of the forecasts.  Among these, perhaps 
the most important are inconsistently defined initial 
and boundary conditions, small integration 
domains, an imperfect physical package, unfiltered 
mountains, as well as seemingly insignificant 
computational inaccuracies and inconsistencies in 
the preparation of the initial and boundary 
conditions.  As an example of such seemingly 
insignificant computational inaccuracies, after the 
completion of the study, an inconsistency in 
conversion of geopotential data into temperature in 
the initial and boundary conditions was found that 
was causing significant positive bias in 
temperature at upper model levels.  The impact of 
such a bias is clearly visible in the study in the 
scores for temperature and geopotential at the 
highest model levels. 
 For more information on the model 
performance as measured by the NCEP standard 
verification system, the reader is referred to the 
quoted study and other NCEP web sites.  In 
subsequent sections various other aspects of 
model performance will be discussed. 



 
 
9. THE NONLINEAR DYNAMICS OF THE NMM 
 
 The problem of accumulation of energy at the 
small scales due to false nonlinear energy cascade 
and other computational problems has been 
known for a long time (c.f. Phillips, 1956, 1959; 
Arakawa, 1966, 1972; Sadourny 1975a, 1975b).  If 
unchallenged, this process may lead to numerical 
instability.  Historically, the simulated spectrum has 
been kept under control either by removing the 
spurious energy at the small scales by numerical 
filtering, or by preventing excessive nonlinear 
energy transport to the small scales by energy and 
enstrophy conservation as proposed by Arakawa 
(1966).  The Arakawa approach is physically better 
founded, but requires application of carefully 
designed, complex finite-difference schemes. 
 Nastrom and Gage (1985) examined 
measurements made by commercial aircraft and 
found that one-dimensional kinetic energy spectra 
along their flight-paths in the lower stratosphere 
and in the upper troposphere follow the –3 slope 
on the larger scales, and the –5/3 slope on the 
scales from several hundred kilometers to several 
kilometers.  Several possible explanations for the –
5/3 spectral shape at the small scales have been 
proposed (e.g. Gage, 1979; Lilly, 1983; Gage and 
Nastrom, 1986; Tung and Orlando, 2003).  They 
include the downscale nonlinear energy cascade 
and an inverse cascade from smaller to larger 
scales.  Using two-parameter quasi-geostrophic 
dynamics, Tung and Orlando (2003) demonstrated 
that given enough time, the –5/3 spectral range 
can be generated through downscale cascade of 
energy.  Similar statistical properties of the spectra 
were obtained in extended simulations using the 
GFDL SKYHI model with modest, but still higher 
than usual resolution for a climate model (e.g., 
Hamilton et al., 1999; Kosyik and Hamilton, 2001).   
 It is interesting what shape of energy spectrum 
can be realistically expected in short-range 
integrations of mesoscale models.  The statistical 
properties of atmospheric spectra typically are 
investigated in extended integrations (tens or 
hundreds of days), and the spectra are averaged 
over long periods (tens or hundreds of days) in 
order to ensure that statistical equilibrium is 
reached.  The need for extended integrations and 
long averaging periods arises due to the time scale 
of the nonlinear cascade.  In addition, the 
mesoscale integration domains are typically 
smaller than the large-scale atmospheric 

disturbances that feed the downscale nonlinear 
cascade, so that the large-scale disturbances 
cannot transfer the energy to the small scales in an 
adequate manner across the domain scale.  Thus, 
if the energy in the small-scale part of the spectrum 
is missing in the initial data, where can it come 
from in the integration?  Considering the temporal 
and spatial limitations, it appears that physical or 
spurious sources of energy other than the 
downscale nonlinear cascade from the large-scale 
motions are needed in order to develop and 
maintain the –5/3 spectra in mesoscale 
atmospheric models. 
 In order to clarify this issue, several tests have 
been performed using two versions of the NMM, 
the parallel version on the E  grid and the PC 
version on the B  grid (NMM-B).  Both versions 
were designed applying exactly the same 
principles in the discretization of the model 
dynamics, and share the same physical package 
(Janjic, 2003).  They are both well qualified for 
investigating atmospheric spectra.  They conserve 
energy and enstrophy, which generally improves 
the accuracy of nonlinear dynamics and controls 
the downscale nonlinear energy cascade 
restricting spurious energy transfer toward smaller 
scales.  In addition, the NMM and the NMM-B use 
hybrid pressure-sigma vertical coordinate, so that, 
except for the errors propagating from below, in the 
upper troposphere and in the stratosphere where 
the Nastrom and Gage (1985) spectrum was 
observed, they are free of the sigma coordinate 
errors that are largest at higher altitudes.  Thus, 
two major sources of small-scale noise, the 
spurious energy cascade and the sigma coordinate 
errors, are well controlled.  The energy 
conservation eliminates the need for excessive 
dissipation (either explicit or built into the finite-
difference schemes), and explicit formulation of 
major dissipative processes allows precise 
“dosage” of dissipation. 
 A test with the operational setup of the NMM 
over the Central Domain (8km, 60 levels), but in 
the sigma coordinate, generated spectra on 
constant pressure surfaces in the upper 
troposphere and in the stratosphere that were very 
similar to the observed ones.  An example of the 
300 hPa spectrum (white diamonds) averaged over 
forecast times from 24 to 36 hours is shown in Fig. 
7.  The forecast started from the September 08, 
2003, 12Z GFS data.  In agreement with the 
observations, the model develops the spectrum 
(white diamonds) following the –3 (gray squares) 
and –5/3 (black triangles) slopes.  However, the 



interpretation of this result is not straightforward.  
Namely, when the operational setup of the NMM 
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Fig. 7.  The NMM spectrum (white diamonds) at 
300 hPa averaged over forecast times from 24 to 
36 hours with 3 hour intervals produced with 
operational HiRes configuration in Central Domain, 
but in the sigma coordinate.  September 8, 2004, 
12Z cycle, GFS data.  The –3 (gray squares) and –
5/3 (black triangles) slopes are shown for 
comparison. 
 
is run in the hybrid coordinate, the spectrum at 300 
hPa remained steeper than the –5/3 slope at the 
small scales, and approached the –3 slope (not 
shown).  Furthermore, as can be seen from Fig. 8, 
the spectrum of the square of unfiltered 
topography in the Central domain (white diamonds) 
closely follows the –5/3 slope in the mesoscale 
range.  The topography spectrum, together with 
the lack of the –5/3 range in the hybrid coordinate 
run, indicate that the model spectrum may have 
been simply saturated at the small scales by the 
noise due to the sigma coordinate errors.  If so, the 
computational noise would be mistaken for the 
atmospheric spectrum. 
 As another example, the time average over 
forecast hours 36-48 of the spectra at 300 hPa 
(white diamonds) obtained in the NMM run for the 
case of Hurricane Isabel in the East domain with 
the resolution of 8 km and 60 levels is shown in 
Fig. 9 using the same arrangement as before.  The 
model was run from the September 17, 2003, 18Z 

Eta data.  In order to facilitate and accelerate 
development of the small-scale part of the  
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Fig. 8.  The spectrum (white diamonds) of the 
square of unfiltered topography height in the NMM-
B Central Domain with 15 km resolution.  The –3 
(gray squares) and –5/3 (black triangles) slopes 
are shown for comparison. 
 
spectrum, the lateral diffusion was turned off, and 
only weak divergence damping was retained.  The 
East domain is much less mountainous than the 
Central domain, and in contrast to the previous run 
in the Central domain, this run was performed 
using the hybrid coordinate.  Thus, the impact of 
the sigma coordinate errors was substantially 
reduced in the upper troposphere and in the 
stratosphere.  As can be seen from the figure, the 
spectrum spun up by the model agrees remarkably 
well with the observed spectrum.  Apparently, the 
tropical storm provided a sufficiently strong 
physical energy source at the small scales, so that 
the model spectrum indeed could be generated by 
at least some of the mechanisms responsible for 
generating the spectrum in the real atmosphere. 
 In order to further investigate possible 
mechanisms responsible for the development of 
the spectrum observed by Nastrom and Gage 
(1985), the NMM-B was run using the resolution of 
15 km in the horizontal and 32 levels in the vertical 
in a domain of the same size as the Central 
domain, but over the Atlantic Ocean.  Hence, the 
possibility of mountains influencing the energy 
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spectrum was eliminated.  As before, the lateral 
diffusion was turned off in order to facilitate and  
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Fig. 9.  Time average over 36-48 hours of the 
NMM spectra (white diamonds) at 300 hPa in the 
East domain.  The –3 (gray squares) and –5/3 
(black triangles) slopes are shown for comparison.  
Run starting from 18Z, 09/17/2003 (Hurricane 
Isabel), Eta data, 8 km, 60 levels resolution.  No 
lateral diffusion, weak mass divergence damping. 
 
speed-up accumulation of energy at the small 
scales, and only weak divergence damping was 
retained.  The model was run from the September 
7, 2003, 12Z GFS data.  During most of the 48 
hour integration a vigorous extra-tropical system 
was present near the northern boundary of the 
domain.  Hence, again, there was a significant 
physical source of energy at the small scales 
through the forecast period. 
 Two experiments were run with the described 
setup.  In one of them the physical package was 
turned off, while in the other the model was run 
with the full physics.  The evolution of the NMM-B 
spectrum at 300 hPa over the Atlantic Ocean 
(white lines) in the test with no physics is shown in 
Fig. 10 at 6-hour intervals (0-24 hours, top to 
bottom in the left column, and 30-48 hours, top to 
bottom in the right column).  The –3 (gray lines) 
and –5/3 (black lines) slopes are also shown.  The 
36-48 hours average of the spectra (white 
diamonds) is shown in Fig. 11 using the same 
arrangement as before.  As can be seen from Figs. 

10-11, by the end of the forecast, the model (white 
lines/diamonds) failed to develop the –5/3 (black 
lines/triangles) spectral range, and the slope of the 
spectrum remained generally steeper than the –5/3 
at all times. 
 On the other hand, the evolution of the NMM-B 
spectrum at 300 hPa over the Atlantic Ocean 
(white lines) in the test with physics is shown in 
Fig. 12 at 6-hour intervals (0-24 hours, top to 
bottom in the left column, and 30-48 hours, top to 
bottom in the right column).  The –3 (gray lines) 
and –5/3 (black lines) slopes are again shown.  
The 36-48 hours average of the spectra (white 
diamonds) is shown in Fig. 13.  As can be seen 
from Figs. 12-13, this time the model (white 
lines/diamonds) developed the –3 (gray 
lines/squares) and –5/3 (black lines/triangles) 
spectral ranges that agree very well with 
observations.  However, as can be seen from Fig. 
12, it needed up to 24 hours to do so.  Note that 
the sharp drop-off of the spectrum that is usually 
seen in numerical simulations (e.g. in Fig. 7) at the 
small-scale end of the spectrum is missing here 
due to weak dissipation. 
 As expected from theoretical considerations, 
and as confirmed by the examples shown, the 
nonlinear dynamics of the NMM work well, and 
reproduce the spectrum observed in the 
atmosphere successfully.  Moreover, the simulated 
spectrum shows no sensitivity to horizontal 
resolution in the considered resolution range.  
However, a sufficiently strong physical or spurious 
energy source on the small scales is needed in 
order to develop the –5/3 spectral range.  In the 
examples considered, the physical energy sources 
were the physical parameterizations in case of 
Hurricane Isabel and the storm over the Atlantic.  
The spurious energy was supplied by the sigma 
system errors in the run over the Central domain. 
 Unfortunately, it is often difficult to establish 
whether the appropriate conditions for reproducing 
atmospheric spectra in short-range mesoscale 
runs are satisfied.  As experience has shown, 
unless special care is taken, computational noise 
due to model imperfections is likely to contaminate 
the small-scale part of the spectrum.  The 
dissipation may keep the level of the noise at a 
tolerable level, but the noise spectrum modified by 
the dissipation should not be mistaken for the 
observed atmospheric spectrum, nor can it be 
taken as a proof of accuracy of nonlinear energy 
transfers (Sadourny, 1975a).  The fundamental 
problem here is to keep the physical, and eliminate 
spurious energy sources at the small scales.  In 
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the NMM two major sources of small-scale computational noise, the sigma coordinate errors 
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Fig. 10.  Time evolution of the NMM-B 
spectra (white lines) at 300 hPa over 
Atlantic Ocean in the experiment with no 
physics.   The –3 (gray lines) and –5/3 
(black lines) slopes are shown for 
comparison.  Run starting from 12 UTC, 
09/07/2003, GFS data, 15 km, 32 levels 
resolution.  No lateral diffusion, weak mass 
divergence damping.  Plots every 6 hours, 
top to bottom, 0-24 left column, 30-48 right 
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Fig. 11.  Time average over 36-48 hours of the 
NMM-B spectra (white diamonds) at 300 hPa over 
Atlantic Ocean in the experiment with no physics.  
The –3 (gray squares) and –5/3 (black triangles) 
slopes are shown for comparison.  Run starting 
from 12 UTC, 09/07/2003, GFS data, 15 km, 32 
levels resolution.  No lateral diffusion, weak mass 
divergence damping. 
 
and the computational nonlinear energy cascade 
are effectively controlled. 
 It is also interesting how the NMM nonlinear 
dynamics reproduce the energy spectrum in the 
case of three-dimensional turbulence.  In order to 
address this problem, the NMM-B was run with 
horizontal resolution of 1 km, and an average 
vertical resolution of about 500 m.  The horizontal 
domain had 112 by 112 points.  Double periodic 
boundary conditions were specified along the 
lateral boundaries.  Similarly as in Takemi and 
Rotunno (2003), the model was initialized with the 
vertical thermodynamic structure of the Fort Sill 
storm of May 20, 1977, and the initial wind was set 
to zero.  The spectrum of 2w  at the 700 hPa level 
(c.f. Takemi and Rotunno, 2003) corresponding to 
decaying turbulence generated by moist 
convection was obtained by averaging the spectra 
between forecast hours 3 and 4.  The time 
averaged spectrum (white diamonds) is shown in 
Fig. 14 together with the –5/3 slope (black 

triangles).  The agreement between the computed 
and the theoretical spectrum is again evident. 
 
10. HIGHLIGHTS OF MODEL PERFORMANCE 
 
 In terms of performance, generally, the model 
has been highly competitive with mature 
operational high-resolution NWP models, despite 
the fact that it has been handicapped by 
inconsistent initial and boundary conditions taken 
from the Eta model, relatively small integration 
domains, and suboptimal tuning of the physical 
package.  Although it is difficult to compare directly 
the performance of the NMM to that of e.g. the Eta 
model, statistical scores and numerous examples 
(Black et al., 2002, Janjic et al. 2003) indicate that 
the NMM adds value to the forecasts of the driving 
Eta model.  This applies particularly to the details 
of flow over complex terrain. 
 However, as illustrated in Fig. 15, the most 
dramatic differences between the Eta and the 
NMM are seen in vertical structures developing 
due to effects of topography.  The panels in the left 
column are from the 12 km Eta run, and the panels 
in the right column are from the NMM East domain 
run.  The middle and bottom panels of the two 
columns represent 12 hour and 15 hour forecast 
cross sections, respectively, starting from 18Z, 
January 7, 2003.  The cross sections are taken 
along the blue lines in the top panels.  The 
topography is indicated in the top panels by color 
shading with the contours at 100, 175, 250, 375, 
500, 750, 1000, 1250 etc. meters, and by the 
shaded area at the bottom of the cross sections.  
The blue and brown contour lines indicate the 
negative (upward) and positive (downward) vertical 
velocity dtdp /=ω , respectively.  The contour 
interval is 0.2 Pa s-1.  The potential temperature is 
represented by the dashed red contour lines with 
the contour interval of 4 degrees.  The background 
color shading in the cross sections represents 
isotachs with the contour interval of 10 knots. 
 Apparently, the NMM develops much more 
vigorous mountain waves than the Eta, and the 
wavelength of the mountain waves in the NMM is 
much shorter than in the Eta.  The effect of vertical 
transport of momentum is visible in the bottom 
panels, particularly in the case of the NMM.  
Apparently, flying through the Eta cross sections 
would be quite a different experience from flying 
through the NMM profiles. 
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Fig. 12.  Time evolution of the NMM-B
spectra (white lines) at 300 hPa over
Atlantic Ocean in the experiment with
physics.   The –3 (gray lines) and –5/3
(black lines) slopes are shown for
comparison Run starting from 12 UTC,
09/07/2003, GFS data, 15 km, 32 levels
resolution.  No lateral diffusion, weak mass
divergence damping.  Plots every 6 hours,
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Fig. 13.  Time average over 36-48 hours of the 
NMM-B spectra (white diamonds) at 300 hPa over 
Atlantic Ocean in the experiment with physics.  The 
–3 (gray squares) and –5/3 (black triangles) slopes 
are shown for comparison.  Run starting from 12 
UTC, 09/07/2003, GFS data, 15 km, 32 levels  
 
 An experimental 12 hour forecast of the sea 
level pressure starting from September 17, 2003, 
12Z GFS data (Hurricane Isabel) is shown in Fig. 
16.  The predicted pressure in the center of the 
storm was 952 hPa, while the observed value at 
that time was 953 hPa.  The 30 hour forecast of 
the accumulated 3 hour precipitation for this case 
is shown in Fig. 17.  The landfall occurred at about 
this forecast time, and as can be seen from Fig. 
17, it was accurately predicted by the model.  This 
example demonstrates that the NMM has the 
ability to spin up and maintain realistically deep 
tropical storms and to predict their tracks 
accurately.  The work on the development of the 
Hurricane WRF based on the WRF-NMM is well 
under way (e.g. Surgi et al., 2004) 
 Particularly interesting results were obtained 
during the joint 2004 SPC/NSSL Spring Program 
(Kain et al., 2005).  This was a carefully controlled 
experiment in which the model was run once per 
day starting from 00Z at near-cloud-resolving 
resolution of 4.5 km and without parameterized 
convection.  As an example, the 24 hour forecast 
of accumulated 1 hour precipitation valid at 00Z 
April 21 is shown in the upper panel of Fig. 19,  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0

 
Fig. 14.  Decaying 3D turbulence.  Time average 
over hours 3-4 of the NMM B spectra of w2 (white 
diamonds) at 700 hPa in a domain with double 
periodic boundary conditions. 
 
while the verifying radar reflectivity is shown in the 
lower panel.  As can be seen from the figure, the 
predicted precipitation pattern and timing were very 
similar to the verification.  During the experiment, 
the model demonstrated the ability to spin up 
severe convective systems more frequently, and 
with a stronger signal, than if this were happening 
only by chance.  This was reflected in the 
verification scores (Kain et al., 2005) that showed 
that the WRF-NMM with near-cloud-resolving 
resolution for the first time clearly outperformed the 
operational NCEP mesoscale forecasts with 
parameterized convection.  This result also 
suggests that further improvements in deterministic 
forecasting of severe weather phenomena still may 
be achieved with increased resolution. 
 
11. CONCLUSIONS 
 
 The NCEP nonhydrostatic mesoscale model 
(NMM) (Janjic et al., 2001; Janjic, 2003) has been 
formulated building on the experiences of high-
resolution hydrostatic numerical weather 
forecasting.  In this way, the favorable features of 
hydrostatic model formulation are preserved in the 
range of validity of the hydrostatic approximation.  
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Fig.  15.  The 12 km Eta (left column) and the 8 km NMM East domain (right column) cross sections taken 
along the blue lines in the top panels.  The middle and bottom panels are 12 hour and 15 hour forecasts, 
respectively, starting from 18Z, January 7, 2003.  The topography is indicated in the top panels by color 
shading with the contours at 100, 175, 250, 375, 500, 750, 1000, 1250 etc. meters, and by the shaded 
area at the bottom of the cross sections.  The blue and brown contour lines are the negative (upward) and 
positive (downward) values of vertical velocity dtdp /=ω , respectively.  The contour interval is 0.2Pa s-

1.  The dashed red contour lines are potential temperature with the contour interval of 4 degrees K.  The 
background color shading in the cross sections represents isotachs with the contour interval of 10 knots. 



 Sea Level Pressure                                                             
 9/17/2003    12 GMT + 12                                                       

 
Fig.  16.  An experimental 12 hour forecast of the 
sea level pressure starting from September 17, 
2003, 12Z (Hurricane Isabel).  The NCEP GFS 
data were used for initial and boundary conditions. 
 

 Accumulated Total Precipitation                                                
 9/17/2003    12 GMT + 30                                                       

 
Fig.  17.  The 30 hour forecast of the accumulated 
3 hour precipitation indicating the location of the 
landfall.  The forecast started at September 17, 
2003, 12Z (Hurricane Isabel).  The NCEP GFS 
data were used for the initial and boundary 
conditions. 
 
No linearization or additional approximation is 
required with this approach. 
 The nonhydrostatic module can be turned on 
and off, so that the same model can be run in both 

 
 
Fig. 18.  The 24 hour forecast of accumulated 1 
hour precipitation valid at 00Z April 21 (upper 
panel) and verifying radar reflectivity (lower panel). 
 
hydrostatic and nonhydrostatic modes.  This allows 
easy comparison of hydrostatic and nonhydrostatic 
solutions of an otherwise identical model.  This 
feature also allows the model to be run in the 
hydrostatic mode at lower resolutions with reduced 
computational cost.  This is an advantage in the 
case of unified global and regional forecasting 
systems designed for a wide range of horizontal 
resolutions. 
 At very high resolutions, a two-dimensional 
version of the model successfully reproduced the 
classical nonhydrostatic solutions demonstrating 
the soundness of the formulation.  Compared to 
the hydrostatic version of the model, no additional 
computational boundary conditions at the top have 
been needed in real data runs in a wide range of 
horizontal resolutions. 
 The nonlinear dynamics of the NMM model 
demonstrate the ability to reproduce the observed 
atmospheric spectrum (Nastrom and Gage, 1985).  
Moreover, at higher resolution, the NMM 

951.72 mb
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successfully reproduces the theoretical spectrum 
of decaying three-dimensional turbulence. 
 Despite application of sophisticated numerical 
methods, the computational efficiency of the model 
is very high, and substantially higher than the 
computational efficiency of most nonhydrostatic 
models.  Moreover, further significant improvement 
of the computational efficiency is possible.  This 
will allow further increase of the resolution and 
application of more sophisticated physical 
parameterizations.  The model has been highly 
reliable. 
 In terms of performance on the synoptic 
scales, generally, the model has been highly 
competitive with mature high-resolution NWP 
models, despite the fact that it has been 
handicapped by inconsistent initial and boundary 
conditions, relatively small integration domain, and 
little retuning of the physical parameterizations.  
Plans for future work address each of these issues.  
The model demonstrates ability to add value to the 
forecasts produced by the driving model (the Eta 
model).   
 Significant differences between the NMM and 
the NCEP hydrostatic high resolution Eta model 
can be seen on smaller scales.  The differences 
are particularly striking in mesoscale vertical 
structures developed by the two models over 
complex topography.  In addition to resolution, the 
representation of mountains and the 
nonhydrostatic dynamics are believed to have 
played a role in producing such different results. 
 With near-cloud-resolving resolution, the 
model was able to spin up severe convective 
systems more frequently, and with a stronger 
signal, than if this were happening only by chance.  
This result indicates that further improvements in 
deterministic forecasting of severe weather 
phenomena still may be possible with increased 
resolution. 
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