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1. Introduction 
 
    Ensemble forecasting is a new modeling 
technique to deal with the uncertainties and errors, 
in either initial conditions or models. The 
National Centers for Environmental Prediction 
(NCEP) has developed ensemble forecast systems 
at both global (since 1996) and short range scales 
(since 2001).   In recent years, NCEP has been 
making efforts to apply its Short Range Ensemble 
Forecast (SREF) System to aviation weather 
forecast (Zhou et al, 2004) and has completed the 
primary framework including system 
configuration, post-processing, preliminary 
aviation-related ensemble products (mean, spread 
and probabilities for turbulence, icing, jet stream 
at different flight levels, surface visibility, wind 
speed/direction, cloud sky type, flight condition 
category, low level wind shear, convection, 
precipitation type, tropopause, frozen height, etc), 
and a web site to display these products. The 
SREF system runs twice a day (09Z and 21Z) out 
to 63 forecast hours with output in every 3 hours. 
The domain is CONUS. There are two basic 
models in the SREF system, the 32km ETA and 
40km Regional Spectral Model (RSM). Perturbed 
initial conditions (breeding method) as well as 
multiple convection schemes are used in both 
models to generate a total of 15 ensemble 
members. The results are stored in GRIB-
extension format files (Grid data) and BUFR 
format files (station data). Unfortunately, all these 
aviation ensemble products have not been verified 
yet since the ensemble forecast verification are not 
set up in NCEP Forecast Verification System 
(FVS). The verification of low level wind 
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shear (LLWS)  is our first attempt at verifying or 
evaluating aviation ensemble products. We are 
trying to put this verification and some other 
aviation ensemble products into NCEP’s FVS. If 
this is successful, such verification can be 
performed routinely in the future. 
              
  This report has examined the SREF LLWS 
forecast with the NCEP EDAS re-analysis data,  
trying to answer the following questions: (1) What 
is the error/bias in SREF LLWS products? (2) How 
is SREF system performance in terms of the LLWS 
forecast? (3) What is the skill level for SREF 
LLWS forecast compared to NCEP current 
operational ETA (now NAM)  and how does it 
change with forecast time? (4) What are the 
uncertainties involved in the SREF LLWS 
forecast? (5)How do we select the forecast 
probability threshold when using probability 
information in forecasting LLWS? Readers will 
find many differences between ensemble forecast  
verification and that of regular deterministic 
forecasts.  In this report,  the general principles of 
ensemble forecast verification are reviewed and 
will be used as a reference for the verification of 
other ensemble aviation products. 
 
   There are 4 sections in this report. Section 1 is 
the introduction, Section 2 is the forecast of  
LLWS in the SREF system, Section 3 first 
introduces the  verification methods, including 
usual skill scores used in the ensemble forecast 
verification,  and  then discusses the results of each 
verification/evaluation scores,  and Section 4 is the 
summery.   
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2. Ensemble forecast of LLWS in SREF  
 
(2.1) LLWS definition 
        Low level wind shear is hazardous to 
airplane landing operations and management 
and is a major concern of aviation weather 
forecasters at airports, particularly in the cold 
season (Cole, et al 2000).  
 
According to NWS Instruction 10-813, 
Terminal Aerodrome Forecasts (2004), the 
definitions  of LLWS are as follows: 
 
 LLWS – Wind vector difference between 
surface and 2000-foot-level (knots/2000 feet) 
 
Severe LLWS – (1) If LLWS > 20 
knots/2000feet, or (2) If LLWS > 20 knots/200 
feet within any 200-layer bellow 2000 feet 
 
(2.2) LLWS Forecast  in the SREF system 
 
      In the SREF system, the above definitions 
are used to compute ensemble LLWS products 
including the mean (i.e. average among the 15 
members), spread (i.e. standard deviation with 
its mean as reference) and probability for 
certain thresholds (i.e. severe LLWS) in the 
post processor.       
  
     It should be noted that, the SREF system is 
post-processing. That is, the 15 ensemble models 
run first to produce general output for each 
ensemble member. The output data only include 
basic meteorological parameters such as winds, 
temperature, humidity, pressure, etc. The aviation 
weather parameters such as LLWS are not included 
in the model output and need an additional post 
processing, applying certain algorithms,  to 
generate the aviation-related parameters for each 
ensemble member. Then, statistical formulas are 
applied to produce their ensemble products.   
          
     In SREF system, each model (ensemble 
member)  outputs are stored in GRIB-212 format 
which covers the domain of CONUS.  Winds (u 
and v components) in the GRIB file  are 
defined on the  pressure levels beginning  at 

1000mb going up to 50mb,  with fixed 
intervals of 25mb (about 200 meters, or 600 
feet). However,  the surface level and 2000-
foot-level usually do not exactly match one of  
these pressure levels. Therefore, the surface 
height  and 2000-foot-level must be 
determined first. Since surface wind is 
represented by the 10m wind,  LLWS is 
calculated from the vector difference between 
the surface wind  and the wind at 2000 feet 
plus 10 meters (2030 feet). The surface height 
is one of model outputs in the GRIB file,   
while  the 2030-foot-level is obtained by 
searching from the surface upward, calculating 
the height of every pressure level until hits a  
level that just above 2000 feet. That means, the 
2030-foot-level is located between this level 
(marked as L) and the level just below (marked 
as L-1). Linear interpolation between the L-1 
and L level wind speeds is used to get the 2030 
feet wind speed (See Figure 1).  
 
    Please note that the GRIB’s vertical level’s 
interval is 25mb or 200 m (about 600 feet), 
which is much larger than 200 feet. That 
means, SREF can not precisely estimate the 
second case of severe LLWS . We only 
compute the wind shear for 25mb layers to 
represent the second category of severe LLWS  
which, as expected, will underestimate the 
second occurrence of the severe LLWS.   

 
    After the LLWS for each ensemble member   
is  computed, it is then used to generate  
LLWS  ensemble products (mean, spread and 
probability). The products are still saved in 
GRIB-212 format files. The 2 cycles of SREF 
LLWS mean, spread and probability are 
routinely displayed at NCEP SREF web page 
at   
http://www.emc.ncep.noaa.gov/mmb/SREF_av
ia/FCST/AVN/web_site/wshr/shr_09z_2000ft.
htm 
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1. Verification with EDAS re-analysis data 
 
2. Conclusion 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                Figure 1:  LLWS computation plot  
 
 
 
 
 
 

PSL

  Z3 

Z2

  Z1 

  Z7 

  Z6 

  Z5 

  Z4 

  P1 

  P5 

  P4 

  P3 

  P2 

  P7 

  P6 

Psrfc 

Psrfc 
W10m 

   W10m

W2000=interpolation(W8, W7) 

2000ft 
W2000=interpolation(W5, W6)

2000ft 

  Z0 



 4

Figures 2 and 3 show  examples of SREF 
LLWS mean-spread and probability 
distribution 09Z forecast   (September 20, 
2004) over CONUS  at forecast time = 6 hour, 
respectively. 
 
    In Figure 2, the mean value is indicated by 
line contours while the spread by the color 
shades. The red colored areas show the most 
uncertain LLWS forecasts, and the blue areas 
show the most certain forecast LLWS. 
 
Figure 3 shows the severe LLWS (>   
20knots/2000feet) probability distributions. 
The red areas indicate the most possible (> 
90%) regions where LLWS is over 

20knots/2000 feet, which is consistent with the 
mean values shown in Figure 3.  
 
  The usage of mean and spread (Figure 2) is 
straight forward. The mean value at a location 
represents the average of all 15 ensemble 
members’ forecasts while the spread is the 
variability range for these forecasts, indicating 
the forecast variation range and uncertainty. 
But how to use the forecast probability plot 
(Figure 3) is not straight forward like selecting 
90% or 100% as a threshold. If the probability 
larger than such high threshold, the forecast 
will lead to a very lower hit rate and a high  
missing rate. We will discuss this issue in the 
later section in section 3.  
 

 
 
         

     
                                Figure 2. Mean and spread distributions 
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                                     Figure 3, forecast probability distributions 
                                      

           
        
       3. Verification  
 
         (3.1) Verification data 

 
   NCEP ETA Data Assimilation System (EDAS) 
reanalysis are used as verified data.  EDAS data are 
generated every 6 hours (00Z,06Z,12Z, and 18Z).  
Since SREF runs twice (09Z and 21Z) per day out 

to 63 hours, every SREF run can be verified by the 
11 later on EDAS data files. For example, if the 
forecast is launched at 20040805 09Z, which 
creates 63 hours forecast up to 00Z of 20040808, 
then the verification can use 20040805’s 12Z, 18Z 
EDAS data, 20040806’s 00Z,06Z,12Z,18Z EDAS 
data, 20040807’s 00Z,06Z,12Z,18Z EDAS data, 
and 20040808’s 00Z EDAS data (See Figure 4).        
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                                           Figure 4: Verification configuration  
    
 
 
    The verification is grid-to-grid.  In this 
report, we will show the verification results 
using 18 days of  EDAS data, from August 18 
to September 5, totally 18 day, representing a 
summer season case.   

               
(3.2)  Verification/evaluation methods, results 
and discussions 
  

     The verification methods for ensemble forecasts 
are broader than traditional deterministic 
forecasts since verification of ensemble forecast 
not only includes error, bias, skills like in the 
deterministic forecast, but also includes the 
evaluation of individual ensemble members as 
well as integration effects of ensemble 
members. The member evaluation is called 
system evaluation, such as performance 
equality, the distribution of observed data 
among the ensemble members. If all member 
behaviors are equal for a variable forecast, we 
say it is good.  If most of the observed data can 
be captured by one of ensemble members, we 
say it is a good ensemble system. The skills of 
an ensemble forecast system are also evaluated 
by a set of scores or parameters, such as Brier 
Skill Scores (BSS), and Ranked Probability 
Skill Score(RPSS). The BSS can further be 
decomposed into reliability, resolution and 
uncertainty.  

The following paragraphs will present each 
measures at first and then the results in detail.  
 
  (3.2.1)  System evaluation 1:  The ability of 
capture observed data 
 
     Such ability is usually evaluated with so-
called Talagrand rank histogram. That, is, for 
each location, the forecast values of all 
ensemble members are first  sorted by  increase 
order, Second, M+1 bins are made (where M is 
the total number of ensemble members), with 
each bin representing the range of nearby 
members. The leftmost and rightmost  represent 
the values < smallest member and > largest 
member, respectively. Last,  examine the bins 
to see which observed data falls into which bin. 
 
    For example, there are 5 members in an 
ensemble. They gives the wind speeds as 2, 3, 
1, 5, 6 m/s. The sorted values are 1,2,3,5,6 m/s, 
and the 6 bins are 0-1 m/s, 1-2 m/s, 2-3 m/s, 3-
5 m/s, 5-6 m/s, >6 m/s.  If the observed wind is 
4 m/s, then it falls in the  4th bin, if observed 
wind is 0.5 m/s, it falls in the first bin, and if 
observed wind is 7 m/s, it falls in the 6th bin.   
 
    The SREF system has 15 members, so has a 
total of 16 bins. LLWS of the 15 members are 
sorted to create 16 bins. Then we see which of 
bins contains the  observed LLWS. After 

  F00   F03    F06   F09    F12    F15   F18    F21   F24   F27    F30    F33    F36    F39   F42   F45    F48    F51    F54    F57    F60    F63 
  09Z  12Z    15Z   18Z    21Z   00Z    03Z   06Z   09Z   12Z   15Z    18Z    21Z    00Z   03Z   06Z   09Z    12Z    15Z   18Z    21Z    00Z  

 D12  D18  D00  D06  D12  D00 D18  D06  D12  D18  EDAS  D06 

20040805 2004080720040806   20040808
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accumulating LLWS  over all locations (grids) 
in the domain for each forecast time, we have a 
Talagrand histogram, as shown in Figure 5.  In 
Figure 5,  the 6 plots are for 6 forecast times. 
Each bin represents the percentage of observed 
data falling in the corresponding bin. We see 
that all plots show a U-shape. This is the typical 
Talagrand histogram for an ensemble forecast 

system, indicating that,  there are about 20 % of 
LLWS observed data (leftmost bin + rightmost 
bin) are not captured by the current SREF 
LLWS forecast (also called an outlier rate of 
20%). The perfect case would be 100% data 
being captured (an Outlier rate of 0%). 
 

    
 
                                     Figure 5: Talagrand Rank Histogram  
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The fact that not all observed data are captured 
has statistical significance: In general, if the 
larger the diversity among the ensemble 
members, the more possible is it that the 
observed data can be captured. The forecast 
diversity is expressed by forecast spread. This is  
good aspect of the spread. However, if the 
spread is too large, the forecast uncertainty is 
also large, and the confidence is then small. 
This is the bad aspect of the spread. In the 

SREF system, the spread is generated from a 
combination of randomly  perturbed initial 
conditions and different convection schemes 
employed in the different members. We always 
hope for a smaller spread but lower outlier rate. 
In both low cases, the Talagrand histogram will 
have a ∩-shape instead of a U-shape.  
Unfortunately, we can not achieve both low 
low spread and outlier rate in the current SREF 
system for LLWS  

 
 (3.2.2)  System evaluation 2: The member  
               equal-likelihood  

 

 
   
                                         Figure 6. Member Equal-likelihood plots 
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    The performance of an ensemble system can 
also be evaluated by the  measurement called 
member equal-likelihood.   Generally, in a good 
ensemble forecast system, all members should 
have equal ability to capture the observations.  
In other words, the observed data set should 
uniformly distributed among the ensemble 
members. This can be tested by using equal-
likelihood plots. In this method,  a bin is set for 
each ensemble member, and then the result is 
checked to see which member’s forecast is 
closest to the observed data.  Figure 6 is a set of 
statistical plots for LLWS at 6 forecast time 
over all LLWS forecasts.  
 
The bin order is arranged in such way that ETA 
members sit in the first 10 bins while RSM 
members in the other 5 bins. It shows that, the 
equality among the 15 members is generally the 
same, except for the initial time. No member 
gets particular high percentage or particular low 
percentage. This test indicates that, all of the 
ensemble members in the SREF system have 
similar ability/performance to capture the 
observed LLWS. This is what we expected.  
 
(3.2.3)  RMSE, Bias, Spread,  Correlation-  
             coefficient, ROC, and  ETS  
 
   RMSE (root mean square error), Bias, 
Correlation-efficient, ETS (equitable threat 
score, or Gilbert skill score) and ROC (relative 
operating characteristic) are the parameters 
often used in the traditional (deterministic)   
forecast verification. The difference here is that 
they are obtained from the ensemble mean 
instead of from single model and ETS and ROC 
are from the accumulated hit rate and false 
alarm rate The spread represents the diversity of 
forecasts among the members as mentioned 
before. Before showing the results, the 
definitions for these parameters are listed below  
since different researchers use different 
definitions at times. 
 

        ∑ −= 2)(1 OiiF
N

RMSE   

 
        where N is the sample size, iF  is mean 
value at location i, Oi is the observed value at 
location i. RMSE indicates the average 
magnitude of forecast errors.   
  

        )1/()1( ∑∑= Oi
N

Fi
N

Bias  

 
     Bias  indicates the average forecast 
magnitude compared to the average observed 
magnitude. 
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     which indicates how well the forecast values 
correspond to the observed data.  F  and O are 
averaged forecast and averaged observation 
over whole domain, respectively. 
 
 
     

random

random

hitssfalseAlarmmisseshits
hitshits

ETS
−++

−
=  

 
where hits is the number of counts where both 
observed LLWS and forecast mean LLWS are 
larger than the severe LLWS threshold,  misses 
is the number of counts where observed LLWS 
is severe, but forecast mean is not severe,  
falseAlarms is the number of counts where  
observed LLWs is not severe, but forecast 
mean is. The hits due to random change are 
            
      

N
sfalseAlarmhitsmisseshitshitsrandom
))(( ++

= ,  

 
Where N is total number of  forecasts. 
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The relationship among hits, misses, and false 
alarms can be expressed in a 2 by 2 contingency 
table: 
 
 
  Table 1: 2 by 2 contingency table 
 

   Observation  

     Not 
   severe 

    
Severe

   Not 
severe 

Correct 
negative 

    
misses

Forecast   
  mean 

      
Severe 

 False 
alarms 

       
 hits 

  
  
      A ROC plot is a plot in which the hit rate is 
drawn against the false alarm rate (FAR). In 
probabilistic forecast, the hat rate is defined by 
the following integrations:  
          

Hit rate:     ∫=
1

)()(
1

)(
pt

dppfcstfpobsvf
s

ptH  

 
FAR:           

∫ −
−

=
1

)()](1[
1

1
)(

pt
dppfcstfpobsvf

s
ptF     

 

where  ∫=
1

0
)()( dppfcstfpobsvfs ,  H(pt),  also 

 
 called  the POD (probability of detection), is 
the hit rate under conditions such that only if  p 
> pt, then a warning forecast is issued. F(pt) is 

the false warning rate under such conditions.  
)( pfobsv  is the observed frequency  for 

probability p, and )( pf fcst is the forecast 
frequency for probability p. Drawing the hit 
rate against the FAR can obtain the so-called 
ROC plot, which indicates the skill of the 
probabilistic forecast in terms of hit rate and 
FAR, if hit rate > FAR, has skill, otherwise no 
skill.  
 
  After examining the above definitions, let us  
now see the results shown in Figure 7(a),(b) 
and (c) 
 
In Figure 7 (a) are the RMSE, Bias and Spread, 
showing that the forecast error and spread 
increases with the forecast time. It is can be 
expected that the model becomes less and less 
inaccurate over time, and the forecast 
uncertainty, which can be expressed by the 
forecast spread,  becomes larger and larger 
after forecast begins. This is consistent with the 
Figure 7 (b), which shows that the skill of the 
SREF system becomes smaller and smaller 
with the time. The ROC area is the area below 
the curve and above the diagonal line shown in 
Figure 7 (c). The area of the best case is 0.5, as 
long as ROC area > 0.0, the forecast has skill. 
We can see that although the ROC area size 
decreases with the forecast time, after 63 hours, 
the SREF LLWS forecast still has relative 
larger skill (0.3). The same thing is true for 
ETS which also decreases with the forecast 
time, indicating the loss of skill with time. 
Figure 7 (c) only depicts ROC plot for one of 
the forecast times here.  
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                              (a)                                                                                              (b) 

                                                                       
                                                                                           (c)                                                                   

 
                                                                Figure 7:  Error and Skills  
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The bias  in Figure 7 (a) shows that the 
averaged forecast of LLWS is a little bit larger 
than observed LLWS with ratio = 1.05, but this 
ratio does not increase with the forecast time.  
  
     We should pay more attention to the 
behavior of spread in Figure 7 (a). As we said 
that magnitude of spread is an indicator of the 
forecast uncertainty. The larger the spread is, 
the larger uncertain the forecast is. In the SREF 
system, 15 ensemble members are generated 
from both initial condition perturbation 
(breeding) and multiple convective schemes. 
That implies that the spread of forecast LLWS 
spread comes from either errors in the initial 
conditions or uncertainty in the model 
convective physics or both. In general,  the 
error in the initial conditions is small but will 
grow gradually with the forecast time while the 
diversity of the model physics is fixed and does 
not changed with forecast time. This implies 
that, the big jump in spread at the initial time is 
caused by the model diversity, and growth of 
error in the initial condition data is responsible 
for the spread’s gradual increase and skill loss 
with forecast time.  
 
   Spread, most of people think, is an indicator 
of ensemble forecast error (This statement is 
still an open issue).  For a good ensemble 
system,  RMSE and spread should consistent in 
both in values and variations over time. In Fig 7 
(a),  at the early time, RMSE and the spread are 
close, while with forecast time, they go away 
gradually.  

 
(3.2.4) Probabilistic measures -- Reliability,  
    Resolution, Uncertainty, Brier Score and  
    Brier Skill Score 
   
     The evaluation of the probabilistic 
performance of an ensemble forecast is through 
following measures: 
 
Reliability –  the difference between a forecast 
probability distribution and observed 

probability  distribution. It is related to bias and 
can be improved by bias-correction techniques.                   
The best value = 0.0 
 
 Resolution – the ability to distinguish forecast 
from averaged observed data or climate data, or 
back-  
ground noise (uncertainty). Can not be improved 
by bias-correction techniques. The worst value = 
0.0 
 
 Uncertainty – the error or variability in the 
observed (climatological) data which  is used in 
either the  initial conditions or in the  
comparison. Always>0.0. Note that, the forecast 
uncertainty is indicated by forecast spread 
 
     Brier score (BS) – the quadratic scoring 
measure for a probabilistic binary forecast 
defined as 
 

                            2

1
)(1

j

n

j
j op

n
B −= ∑

=

                  

 
  where jp  is forecast probability, jo  is observed 
data (1 for the event happening , 0 for the event 
not happening). For a deterministic forecast, jp = 
1 (event happens) or 0 (event doesn’t not 
happen). But for a probabilistic forecast, jp ’s 
value is between 0.0 – 1.0 since ensemble 
forecast usually give uncertain forecast 
(probability is neither 0 nor 100%). The best 
value for a Brier score is 0 (perfect forecast 
system). 
 
      Brier skill score (BSS) – compares the BS to 
that for a reference forecast system, defined as  
 

                
refBS

BSBSS −= 1  

 
where the reference BS (BS ref) can be either 
climate data, observed data or BS for another 
forecast system. A BSS > 0.0 shows skill in 
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comparison to the reference (BS > BSref), 
otherwise, there is no skill. 
 
    It can be theoretically proved that, BSS can be 
decomposed into a BSS reliability part and a BSS 
resolution part, as follows 
 
           

BSSresBSSrel
yUncerta

lsBSS −−=
−

= 1
int

ReRe  

   
since only BSS > 0 shows skill, the ensemble 
system with smaller uncertainty and resolution 
> reliability will be skillful, otherwise, such a 
system has no skill.  

 
    There are some other measures such as 
ranked probability score (RPS) and ranked 
probability skill score (RPSS) which are 
measures for multiple category forecasts. For 
the LLWS case, the severe LLWS forecast is a 
binary forecast (severe or not severe). For  a 
binary forecast, it can be proved that RPS = BS, 
and RPSS = BSS. So  we won’t compute RPS 
and RPSS here. 
 
   The  BS , and BSS referenced by observed 
data and the BSS referenced by operational 
ETA are shown in Figures 8,  9 and 10. 

 
  

 
 
                      Figure 8: Brier Score                                              Figure 9: BSS referenced by observation 
 
 
Figure 8 shows that, the reliability for SREF 
LLWS is very small, indicating a good 
reliability in general. Its value is also much 
smaller than the resolution, and the data which 
does not vary with the forecast time as. The BS 
value increases with the forecast time, 
indicating the forecast skill decreases with time 
which obviously is due to the resolution 
decreases seen in the same figure. 

 
 Figure 9 shows the decomposition of BSS into 
reliability and resolution parts, presenting the 
similar information on reliability and resolution 
as Figure 8. BSS is still larger than 0.0 after 63 
hours in Figure 9 indicating that the SREF 
LLWS forecast is still skillful after 63 forecast 
hours compared to data uncertainty. 
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                                 Figure 10:  Ensemble mean BSS referenced by operational ETA 
 

      Besides using data uncertainty as a reference 
to compute the Brier skill score, we also use the  
operational 12km-resolution ETA model 
forecast to see if ensemble mean is better than 
the operational ETA. First we compute the 
Brier score for operational ETA, then the Brier 
score for the ensemble mean. Using above 
equation, we can obtain the Brier skill score 
shown in Figure 10. If  the Brier skill score is 
less than zero, the ensemble mean LLWS is 
worse than the operational ETA, otherwise, it is 
better than the operational model.  

 
    It can be seen that, at very early times (before 
9 hours), the operational ETA has better skill in 
LLWS forecast mean than the SREF, but after 
15 hours, the SREF LLWS forecast mean is 
increasingly better than the operational ETA. 
This plot illustrates that, the ensemble forecast 
mean is advantageous over a single model 
forecast system, particularly for a little bit 
longer range forecasts, although the operational 

ETA has a higher horizontal resolution (12km) 
than the SREF models (32km for ETA and 
40km for RSM). This result can be found from 
verifications of other SREF variables, such as 
500mb u, v,  T, RH, etc.    From this result, we 
again confirmed our assumption that, even for a 
precise weather forecast model, the errors and 
uncertainties,  which always exist in the initial 
conditions or in the model, will grow rapidly 
with the forecast time. Over very short time, 
they might be not important so that a precise 
model can still give a good forecast. However, 
with forecast time, growing errors will lead to 
more and more forecast error. That is one of 
reasons behind the motivation for using 
ensemble forecasts. 

 
             (3.2.5) Reliability plot 

   
      We have defined reliability and resolution. 
Their relationship can be expressed by so-
called  reliability plot, see Figure 11.  
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                                                      Figure 11. Reliability Plots 
 

            
Figure 11 has reliability plots for 4 forecast 
times, 03 , 27 , 45  and 63 hours respectively. 
The  following information can be found from 
the reliability plot: 
     
    (a) Reliability curve: also called probability 
bias, is the relationship between forecast 
probability and observed frequency. The best 
curve is a diagonal line. At early forecast 

times, the reliability curve is close to  the 
diagonal line, which means good reliability. 
With increasing forecast time, the reliability 
curve goes away from the best line, and 
forecast probability in the SREF system is 
larger than observed frequency, indicating that, 
the reliability has decreased with forecast time. 
This is also consistent with the larger-than-one 
bias shown in Figure 7(a). The reliability is 
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actually the area (distance) between the 
diagonal line and the reliability curve. At the 
initial time, such an area is small, but later on,  
becomes larger. 
 
    (b) Data uncertainty: the variance in 
observation data which is not related to the 
forecast probability, so it is drawn as a constant 
line near the x-axis.  
 
    (c) Resolution: the distance (area) between 
the data-uncertainty line to the reliability curve. 
Therefore, the data-uncertainty line also can be 
seen as a no-resolution level. That is, when the 
reliability curve lowers down to the data-
uncertainty line, the forecast has no resolution, 
or the forecast can not be distinguished from 
data uncertainty. At early times, the resolution 
is bigger, but later on, the reliability curve 
lowers down, and so does the resolution, but 
there is still pretty good resolution after 63 
hours. 
 
    (d) Skill/no skill areas:  the green area is the 
skillful area where the forecast has skill, and the  
blank no skill area is where the forecast has no 
skill. If the forecast probability is lower than 
30%, all reliability curves are within the blank 
area, indicating the forecasts of severe LLWS 
will be not skillful. Only when forecast 
probability > 30%, the forecasts have skill.   
 
    (e) The red bins in the Figure 11 are the 
sample frequency for each forecast category. 
For example, for the case of forecast probability 
= 0 case, the sample frequency is about 83% for 
all the times. That means, of all the sample (or 
grid regions), in 83% of the regions, no any 
ensemble member got LLWS > 
20knots/2000feet - all members predicted no 
severe LLWS. When the forecast probability 
increases, ito 100% , for instance, the sample 
frequency is about 1 %, which means only 1% 
of the region, all members forecasted severe 
LLWS forecasts.    
 

Please note that, as mentioned before, the 
reliability can be improved by so-called bias 
correction method so that the reliability curve is 
closer to the diagonal line.  

 
   (3.2.6) Forecast probability threshold 
selection 
 
     How to select a forecast probability 
threshold (only above which, should LLWS 
warning be issued) is the remaining issue, if set 
it too high, forecast confidence is high but will 
lead to a high missing  rate. On the other hand, 
if set it too low, the missing rate can be 
decreased, but the FAR is increased.  For 
example, In a case of severe LLWS probability 
forecast,  3 forecast categories, 10%, 50% and 
100% regions are identified. Thus, which 
region should be issued severe LLWS warning? 
A common sense argues selecting 100% (red 
color area in Fig. 3) since all ensemble 
members give a severe LLWS forecast and the 
confidence is highest with this selection. But 
one concern is that if the 100% region is 
selected, we might miss some regions where 
severe LLWS actually happens but not all 
members gave a severe LLWS forecast.  
Another choice is to select 50% as threshold. In 
this  case, the missing rate can be lowered, but 
the false alarm rate (FAR) might be increased 
and confidence level is not as high since only 
50% of the members predicted severe LLWS. 
So what forecast probability threshold should 
be used is a very practical problem for 
forecasters who wish to use the probability 
information.  Here we suggest a rule, without 
considering economic factors,  to select a 
probability with which, both the missing rate 
and the FAR are lowest. We have already 
shown that, ETS is related to both the missing 
rate and the FAR. If both the missing rate and 
the FAR are lowest, ETS will be at its largest. 
To confirm this statement,  we computed the 
missing rate, the hit rate, and the FAR as well 
as ETS for different forecast probabilities, and 
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depicted them together in one plot (see Figure 
12).   
      
From Figure 12, it can be seen that, the best 
probability threshold is around 45 %, where 
both the  missing rate and the FAR are lowest 
and ETS is highest (the maximum point of the 
ETS curve). That  means we should select 45% 
as the forecast probability threshold for LLWS 
instead of the100% that common sense would 
say. That is,  as long as an area has severe 
LLWS probability > 45 %, we can be relatively 
confident that severe LLWS will happen and be 
most unlikely to miss severe LLWS, but have 
the lowest false alarm rate. If we select 100% as 
the threshold, the missing rate will be very high, 
as high as 80% at early times, and it becomes 
almost 100%  at 63hr (means no any severe 
LLWS was captured). The hit rate in this case is 
lowest. So back to Figure 3,  those regions 
where the forecast probability > 45% should  
issue a severe LLWS warning.  
  
   It is interesting that the value of 45% is quite 
stable for all forecast times in Figure 12,  
although ETS decreases with the forecast time 
in corresponding to the increase in the missing 
rate and FAR,  and the decrease in hit rate with 
the forecast time. As we expect, for perfect 
forecast system, the FAR and missing rate for 

all probabilities should be zero, and hit rate is 
always equal to 1. In this case, any forecast 
probability can be selected as the threshold. 
Unfortunately, an ensemble system is far from 
perfect . The errors and uncertainties in the 
forecast system always exist.  However, we still 
don’t know why highest ETS for LLWS is at  
45% instead of a relative higher value such as 
70 or 80% even for very early forecast stages. 
We don’t know  if this threshold can be 
increased after the bias is corrected. This will 
be confirmed in a later study.  
 
   Please note that, the above probability 
threshold analysis does not consider the 
economic factors which have an impact on the 
probability threshold selection policy. For 
example, if the economic loss of a FAR 
forecast is larger than a missing forecast,  then 
the weight should have a higher weight, thus 
the threshold will be increased so that the FAR 
is reduced even though the missing rate is 
increased.  Issuing LLWS warning will 
decrease the airport landing rate and affect the 
airport landing management. Thus, selecting a 
probability threshold not only reflects the 
reduction of forecast errors, but also depends 
on an economic cost-benefit or cost-loss 
analysis.  
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                                     Figure 12, The best probability threshold for issuing sever LLWS 
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4. Summary 
 
    In this report, 18 day SREF LLWS forecast 
mean, spread and probability results were 
evaluated and verified against EDAS analysis 
data. The ensemble forecast 
verification/evaluation methods were simply 
reviewed, then the verification results were  
presented, showing that,  
 
    (i)  SREF systematic  performance for LLWS 
forecasts is promising in terms of member 
equal-likelihood and the ability to capture 
observations.  
 
   (ii) The forecast error and uncertainty 
(spread) increase while skills  (ROC, ETS, etc) 
decrease with the forecast time.  
 
   (iii) The reliability, resolution and the 
uncertainty in the SREF LLWS forecast data 
are also captured by decomposing the Brier 
skill score, showing that, the Brier skill score 
decreases in response to the decrease in 
resolution, although the data uncertainty is 
stable for all forecast times.    
 
   (iv) The probability threshold for issuing 
severe LLWS warning was investigated. If  not  
consider the economic factor, the value for this 
threshold is about  45% where both the missing 
rate and FAR are the lowest and ETS value is 
highest. This number is still mysterious and 
need to further investigate. 
  
    From this report, we have already seen the 
features and advantages of ensemble forecasts 
through the evaluation of probabilistic 
measures. With ensemble forecasting,  the 
probabilistic information such as forecast range, 
diversity, probability distribution, uncertainty in 
both data and model, the ability to distinguish 
from the reference observations, etc., are 

numerically quantified, which could not be 
done by traditional deterministic forecasts.         
 
   This work can be considered as an example 
for verifying/evaluating other aviation products 
in the SREF system. Currently, those 
observation data for the other products are not 
available to the SREF system’s verification 
package. If these data are available, the same 
methods or measures employed in this report 
can be applied. 
 
   We are working on the bias-correction 
technique which will be applied for the SREF 
system’s post-processing. Such technique is 
based on the ensemble information from the 
SREF forecast outputs.  The primary results 
have shown that it can reduce the both system 
error and random error significantly. If the 
bias-corrected winds can be further used in 
LLWS computation, we believe that the skill 
will be better than the current SREF LLWS 
forecast. 
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