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1. INTRODUCTION

In a numerical model of the atmosphere,
a time-difference scheme is needed to discretize
the governing equations in time and thereby
make a prediction of the future state of the
atmosphere. The computational efficiency of a
hydrostatic numerical model is commonly
dictated by the size of the time step it can take,
without violating the so-called Courant-
Friedrichs-Lewy, or CFL, linear-computational
stability condition on the fastest moving external
gravity-wave solution of the governing primitive
equations. In case of fully-explicit time-
difference schemes that are second-order
accurate in time, this implies that the Courant
number associated with the external wave-mode
must be typically less than one half. Thus, a
relatively large number of time steps would be
needed by such schemes to complete the
forecast.

As opposed to the fully-explicit time-
difference schemes, the semi-implicit and semi-
Lagrangian (SISL) schemes applied to the
hydrostatic primitive equations, treat the external
and internal gravity wave-modes in a time-
implicit manner, and treat the relatively slow
advective processes in a semi-Lagrangian
manner. The SISL scheme is nearly stable
unconditionally, thus, significantly larger time
steps compared to a fully-explicit time-difference
scheme can be used in the model, generally
resulting in a significant computational
economy. The pioneering studies of Dr André
Robert in the development of SISL methods and
subsequent application of such methods in
designing atmospheric numerical models have
been duly recognized by many authors in a
memorial volume (Lin et al. 1997).

An inherent weakness of the SISL
schemes lies in the fact that certain terms of the
governing equations that are non-advective (thus
not stabilized by semi-Lagrangian advection

scheme) and not responsible for gravity-wave
propagation (thus not stabilized by semi-implicit
scheme), are treated in a time-explicit manner.
This reduces the robustness of the SISL scheme
and the SISL model would then require
additional stability measures when relatively
large time steps are used. The model also
becomes sensitive towards the choice of the
reference thermodynamic profile that is used to
‘linearize’ the governing equations for
implementation of the semi-implicit scheme.

To alleviate these problems associated
with the SISL schemes, a fully-implicit semi-
Lagrangian (FISL) scheme for the hydrostatic
primitive equations has been developed. The
FISL scheme presented here is set in a
horizontally  two-dimensional (2D) semi-
Lagrangian framework, with all processes other
than horizontal advection treated in a time-
implicit manner. The semi-implicit linearization
of the governing equations, followed up by a
vertical decoupling of the gravity-wave eigen-
modes of the system, results in a fully-implicit
system that is solved iteratively. A set of 2D
Helmholtz-type elliptic equations, one for each
vertical eigen-mode, forms the Kernel of the
implicit system. The 2D elliptic equations are
then solved iteratively by a generalized
conjugate residual (GCR) algorithm (e.g., Saad
2003). Recently, a fully-implicit, semi-
Lagrangian, nonhydrostatic, global grid-point
model has been developed by Yeh et al. (2002).

The use of a 2D semi-Lagrangian (SL)
framework rather than a three-dimensional (3D)
semi-Lagrangian framework for the proposed
FISL formulation, is preferred because the 2D
trajectory computations and 2D horizontal
interpolations are relatively less expensive
compared to their 3D counter parts. However,
nothing precludes us from using 3D trajectories
in place of 2D trajectories in the formulation.
Specifically for this reason, the 2D SL-



formulation of FISL is derived as an extension of
the 3D SL-formulation in the text.

The hydrostatic primitive equations
employed in our model is based on a terrain
following hydrostatic-pressure based vertical
coordinate, that assumes a constant pressure at
the model top. Thus, it is a modified form of
Phillips’ (1957) o-coordinate. The equations are
discretized in the vertical using a staggered
Lorenz grid. Horizontally, the equations are cast
in conformal-map coordinates, and discretization
is carried out on an unstaggered A grid. This
particular choice of horizontal grid is
computationally convenient for the 2D semi-
Lagrangian advection scheme employed here. In
terms of the choice of spatial grids and space
discretizations, and subsequent derivation of the
implicit system of equations, the FISL scheme
developed here bears close resemblance with the
2D SISL  hydrostatic, grid-point model
developed by Kar and Logan (2000) at the
Bureau of Meteorology Research Centre
(BMRC), Melbourne, Australia.

In section 2, we present the formulation
of the FISL hydrostatic model. The results from
numerical integrations of the model are
presented in section 3. In the final section, we
present some conclusions.

2. MODEL FORMULATION

a. The governing equations in a continuous
form

The governing equations for a
hydrostatic, moist-diabatic atmosphere can be
written in a generalized vertical coordinate (#):
Momentum equations

dyu= fv=mR,;T, 0y Inp)y +(0,®)y]+Fy, 2.1
d==fu-mR,T, (0, np), +(@,0),]+F, ,(2.2)

Mass continuity equation
d ln|6,7ﬁ|+D+6,77'7 -0, (2.3)

Thermodynamic energy equation

T
dT -k, ——d Inp= , 2.4
TS e P =0fen s @

Moisture continuity equation
dg=-0,/L, 2.5)

Hydrostatic equation

0.0 +RTO,Inp=0, 2.6)
where

d,=0,+mud, +mvo, +no,, (2.72)
f.=f+ud m—-vom, (2.7b)
f=2Qsing, 2.7¢)
D=m’[0, (u/m)+0d,(v/Im), (2.7d)
T =T+ -1)q], (2.7¢)

e=R,[R ;6=c,[c, k,=R,[c,. (270
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Here (x, y) denote the Cartesian conformal map-
projection horizontal coordinates with the map
factor m; u and v denote the velocity components
in the x and y directions, respectively, with the
associated horizontal divergence D; 7 denotes
the n-coordinate vertical velocity. T, ¢, and T,
denote the temperature, specific humidity, and
virtual temperature, respectively; p and ©
denote the hydrostatic pressure and the
geopotential (gz), respectively; (Fy, Fy) denote
the friction terms in (#, v) momentum equations,
respectively; Q in (2.4) denotes the heating rate;
0, and L in (2.5) respectively denote the
apparent moisture sink and the latent heat of
condensation. The numerous physical constants
have their usual meaning.

In this model, the vertical coordinate
() 1is chosen to be a terrain-following

coordinate based on p; the model top is
assumed to be a constant-pressure surface
(p=p,) and let p.(x,y,t) denote the surface
pressure. Then, # is defined by

n="Ls"P 2.8)

Ps —Pr

This shows that from the surface to model top, #
varies from 0 to 1. The surface and the model top
are assumed to be material surfaces, so the lower
and the upper boundary conditions on 7 are
given by

n=0atn=0and n=1. 2.9)

For later convenience, we introduce the
variables IT and A,

O=pg-prs (2.10a)

A=InTI. (2.10b)
Then, from (2.8) and (2.10a), we obtain
p=pg-n1pg-pp)=pp+1-ml, (2.11a)

and



~0pp=T1. (2.11b)
Notice that with the current choice of 5, -0, 5

becomes independent of 7.
b. Manipulation of the governing equations

Let us now rewrite the governing
equations so that the fully-implicit (or semi-
implicit) semi-Lagrangian (FISL or SISL) space-
and time-difference schemes can be readily
implemented later. (From now on, we omit the
‘physics’ terms from the governing equations,
assuming such terms are added up later in a
‘time-split’ manner.) To start, using (2.11b) and
(2.10b), we can rewrite the mass-continuity
equation (2.3) as

dA+D+0,17=0. (2.3)

Or

dA=—~(D+08,7)=F,| (2.12)

Note that including (2.12) above, the most
relevant equations derived later in the text, are all
enclosed in boxes for ease of reference.

Let us assume an isothermal reference
atmosphere with the constant temperature, 7.

Then, the thermodynamic energy equation (2.4)
is trivially rewritten in the form:

T,
dt(T—KdTOA)=Kd|:md Inp TOFA:|’
2.4y
where (2.12) has been used in the right-hand side
(rths) of (2.4)". Moreover, using (2.10), (2.11a),
(2.7a), and (2.12), we can rewrite the d, Inp

term in the rhs of (2.4), as

~ 1 ~
dInp=—d(p-p,)
p
=Ll g (5 - p,) 2.13)
p
=( —p—JJd, In[(1—m)11}
p

Or

dl ll'lﬁ = [ _p_NTJ[df 11’1(1 - 77) + drA]

(-] -3

Then, using (2.13)" in (2.4)’, the thermodynamic
energy equation is finally expressed as

BN

.13y’

d, (T -k TyA) =

dO

T T
P _7(F (2.14)

-T F |=F,.
0 A T

Next, the horizontal momentum
equations (2.1) and (2.2) are rewritten as

du=
L (2.152)
fov— mR T,(0 1np),7+(6 tl))ﬂ =
dyv=
- (2.15b)
—fzu—m[RdTv(ﬁy lnp)n+(6yCI))77]EFv

We ignore the moisture continuity
equation (2.5) until later, and proceed with the
hydrostatic equation (2.6) instead. Let us first
simplify the 0, Inp term in (2.6). Using (2.11a),
we obtain
Inp =In[p, +(1-mII]

=In(l=n)+In[p/1-m] "
so that (2.6) reduces to
0,0 =

~R,T,[0,In(1-1)+d, In{p/(1-n)}].

(2.16)

2.6)’

Vertically integrating (2.6)" from the
surface (7 = 0, ® = @) to an arbitrary value of 7,
we obtain

n
-, =R, [T,dIn(1-)
0

” 2.17)
R, [ T.dmn{p/(1- 1)}

N d

D-, :—RdJZT‘,dlnfa. .17y

Note that (2.17)" can also be derived directly
using (2.6).

Let us now introduce a generalized
geopotential G, defined by

n
GE(DS—Rdélen(l—n)+RdTOA, (2.18)

and a ‘virtual’ geopotential @,, defined by

n n
<1>vE—Rd(j)rvdln;+1ed(j)rdln(1—q). (2.19)

Then, using (2.18) and (2.19) in (2.17)", we
obtain



n
o-0, :—Rd(J)len(l—n)+Cl)S

(2.20)
=G-R,TyA.
Or
®=G-R,TyA+®,. (2.20)°

Lastly, the moisture continuity equation
(2.5) without the source/sink term is recalled

dg=0| (2.21)

c. Basics of the FISL/SISL scheme

For an arbitrary prognostic variable ¥
=u v, T-x,TJA, q, or A), each of the
prognostic equations (2.15a, 2.15b, 2.14, 2.21,
and 2.12) can be expressed as
d¥Y=F(Y) . (2.22)

Let us now discretize (2.22) in space
and time, along a three-dimensional (3D)
backward trajectory. Then, a two time-level,
Sfully-implicit, semi-Lagrangian (FISL) scheme
for (2.22) can be written as
DA

At
where the superscripts » and n-1 denote the two
time levels, At denotes the time step, and
&, €[0,1] denotes the un-centering parameter. A

=1+ )F" +(1-¢,)F""], (2.23)

dependent variable at time level n-1, with a
subscript * is evaluated at the departure point
(identified here by the asterisk character ‘*’)
through a 3D spatial interpolation of the same
variable at time level n-1 carried at the grid
points. Needless to say, determination of the
departure  points also  involves  spatial
interpolation. In (2.23), the dependent variables
at time level n and without subscripts are carried
at the arrival grid points.

Introducing the new variables

r=t(l+e)Ar, (2.24a)
1_
.l (2.24b)
T l+eg,

we can rewrite (2.23) as
\Pn \I_[nfl 1 -
—F'=——+—LF" =R". (2.23y
T T l+e,

Then, for the semi-implicit/fully-implicit
‘linearization’ of (2.23)", we express F" as
F"=L+N", (2.25)

where a suitable reference state is assumed and
(L, N) denote the linear and nonlinear parts of F.
Using (2.25), we can rewrite (2.23)" as

‘P——L” =R"+N"=S. (2.26)

T

Notice how (2.26) represents an implicit
equation that can be solved iteratively for the
unknown variable ¥". To this end, equation
(2.26) can be expressed as

g (@) _
{ -L"} =RV =5 @)
T

where the superscript i denotes an iterative
index.

For the semi-implicit semi-Lagrangian
(SISL) scheme, the nonlinear term N"in (2.26)
is defined explicitly using the linear extrapolation
in time:
N"=2N"'—=N"2. (2.28)
Thus, (2.26) together with (2.28) constitute the
SISL scheme for (2.22). Clearly, the SISL
scheme, unlike the FISL scheme (2.27), does not
require any iteration.

As indicated earlier, the FISL scheme
proposed here employs 2D semi-Lagrangian
horizontal advection. Thus, to be consistent with
the FISL scheme, we would consider the SISL
scheme that is specifically a 2D SISL scheme. In
this context, an equivalent form of (2.22) is
derived, where the 3D material time-derivative

d,‘P is written in terms of the 2D material

time-derivative d ,HlP as

d¥ =d ¥ +10,¥, (2.29a)
where

dtH‘I—’Eat‘{/+mu6x‘{—’+mv8y‘~P, (2.29b)
so that (2.22) is reduced to

d¥=F¥)—no,¥ = F(¥) . (2.30)

The derivations of the FISL/SISL schemes
presented earlier for (2.22) holds for (2.30) as

well, provided we formally replace F by F, as
defined by (2.30), in equations (2.23), (2.24b),
and (2.25); also, we need to formally replace N
in equations (2.25), (2.26), (2.27), and (2.28) by

N, defined by
N(¥)=N(¥)-70,¥ . (2.31)

d. Implementation of the FISL/SISL scheme

Let us now apply the semi-Lagrangian
schemes described above to the prognostic



equations (2.15a), (2.15b), (2.14), (2.12), and
(2.21) foru, v,T —x,T,A , A, and g, respectively.
Thus, using the formal analogy between (2.15a)
and (2.22), an analog of (2.23)" for the u-
momentum equation (2.15a) is obtained as

n

u

—=F'=(R).", (2.32)
T
where
l1-¢
 =ot—=F,, (2.33)
T 1+ £,

where F is defined by (2.15a). Then, using
(2.20)", we can rewrite and linearize F as
E =l (=1

~m[R,T'0, Inp" +8,(G" R, T,\" +D")}

Or

F'=(fv'-md G")+N_, (2.34)
where f, is an area-averaged value of fand

N, =(f. - f,)v

- (2.35)
—m[R,(T,0,Inp—-T,0.A)+0.® ]
Then, using the formal analogy between (2.34)
and (2.25), an analog (2.26) for the u-momentum
equation is obtained as

n

L v +md G =N'+R)" =8| (236)
T

Similarly, an analog of (2.26) for the v-
momentum equation (2.15b) is obtained as

n

Y v uw+md G =N"+(R) =S| (237)
. .

— My

where
1_
R =2+ —tip, (2.38a)
T l+eg,
N, ==(f. = f)u

2.38b
~m[R(T,0,Inp~T,0,A)+0,®,1 (2.380)

Let us now consider the thermodynamic
energy equation (2.14). As before, using the
formal analogy between (2.14) and (2.22), an
analog of (2.23)" for the thermodynamic energy
equation is obtained as

fn

—=F =(R).", (2.39)
T
where
T=T-xTA, (2.40a)
T l-¢
R =—+—"*F,, (2.40b)
T l+te,

where F, is defined by (2.14). Then, using (2.14)

and (2.12), we can rewrite and linearize F,' as

F' =T, 1’7 +N", (2.41a)
where
N, =
. .
“|roml 5B
+(6-1q P 1-n
(2.41b)

Then, using the formal analogy between (2.41a)
and (2.25), an analog of (2.26) for the

thermodynamic energy equation is obtained as
fn n

T 1-

Ty = N R =L (242)
n

Let us now consider the mass-continuity
equation (2.12). As before, using the formal
analogy between (2.12) and (2.22), an analog
(2.23)" for the mass-continuity equation is
obtained as

A _
—+(D+8,77'7)n —r O (2.43)
T
where
1_
R, AL T Fy- (2.44)
T 1+gg

Notice that r, defined by (2.12) is already in a

linear form, so that there is no need to derive an
analog of (2.26) in this case.

Lastly, we consider the moisture-
continuity equation (2.21). Using the formal
analogy between (2.22) and (2.21), the latter
with F =0, an analog of (2.23)" is readily

obtained as

. (2.45)

As mentioned before, the FISL/SISL
schemes proposed here employs 2D semi-
Lagrangian horizontal advection. In this case, the
moisture continuity equation (2.21), in view of
(2.30), is first rewritten as

d,q=-10,q= 1:"; . (2.46a)
Then, an analog of (2.23)" is obtained as
9" me_p oy
. -F'=(R).", (2.46b)
where
l1-¢, ~
R=L4_"<F (2.46¢)
r l+e, !



Since I?q given by (2.46a) is a nonlinear

function, we express F,' simply as

I?;" = [zero linear part]+ N, (2.46d)
where
N,=-10,q - (2.46e)

Then, (2.46b) reduces to the appropriate FISL
scheme for the moisture continuity equation
(2.21):

4" _ -
=N (R =S| (2.461)

When 2D semi-Lagrangian horizontal
advection is used for the derivations of the
FISL/SISL schemes for the prognostic equations
for u, v, andT —x,T,A , the functions F,, F ,
and F, defined by (2.15a), (2.15b), and (2.14),

respectively, are modified into

F,=F,—ndu, (2.47a)
F,=F -nd,v, (2.47b)
F,=F,—10,T. (2.47¢)

Clearly, no such modifications are imposed on
F, defined by (2.12), as 0,A =0. Note that the
functions (17", , E " F} ), in turn, will modify the
functions (R,, R,, R,) defined by (2.33),
(2.38a), and (2.40D), respectively.

Similarly, the functions N,, N, , and
N, defined by (2.35), (2.38b), and (2.41b),
respectively, are modified into

N,=N,-1du, (2.47d)
N,=N,-10,v, (2.47¢)
N,=N,-,T. (2.479)

Note that the functions (N,,N,,N,), in turn,

will modify the functions (S,, S,, Sy) defined by
(2.36), (2.37), and (2.42), respectively.

e. Vertical grid and discretization

In this section, we discretize the
governing equations, cast already into the form
of the FISL/SISL scheme in section 2.d, in the
vertical assuming a staggered Lorenz grid with
the placement of variables as shown in Fig. 1.
We assume there are K (integer-) levels between
the earth surface (p =p,) and the model top

(P = p,)- The levels are specified by a sequence

of 5 values, {7, } with 1<k <K, which satisfy
0<n,<1. Each level is bounded by two
interfaces, so that there are K+1 interfaces (half-
integer levels), including the earth surface and
the model top. The sequence of interfaces is then
denoted by {7,,,} with 0<k <K, which

satisfy 0<#,,, <1. Having specified the model

levels, the interfaces are placed at
Meap =5 +1m) ¥V 1<k<K-1, (2.48a)

My =05 7, =1 (2.48b)

We recognize that a model /ayer, that
embeds a model level, is confined between two
consecutive interfaces. Then, the thickness of
each layer is defined as
(Aﬂ)k =y — e vV 1<k<K. (248C)
Similarly, the vertical grid interval between
consecutive model levels is defined as
Ay =n—n ¥V 1<k<K-1. (2.48d)

In general, the thickness of each model
layer given by (2.48c) is not uniform in #. For
later use, we introduce the #-level variable, 77, ,

defined by
M=% +1,) ¥V 1<5k<K. (2.48¢)

Note that, in general, 77, #7, .

Having specified the model levels,
7 V1<k<K, we use (2.11a) to determine p

at model levels as
P =p, +(1-p)I. (2.48f)

For later use in the thermodynamic
energy equation, we define the #-coordinate
vertical velocity at the levels as
M =5y 1) ¥V 1Sk<K,  (2.48g)
where

771/2 =0= 771(+1/2 > (2.48h)
that corresponds to (2.9). Similarly, for later use
in the hydrostatic equation, we define the virtual
temperature at the model interfaces (excluding
the model top) as
(T =3T) + (T VI k<K -1,

(2.481)
(1), =41, +(1)]=(1),. (2.48))

Hydrostatic equation



Let us apply (2.6) at the interfaces
k+1/2V 0 <k <K-1, to obtain

Pry ~ P =
RNy —Inpp), 1<k<K-1
(2.49a)
D) =@ =R, (1)), (Inp; ~Inpg), (2.49b)
where (7 )M/z VO0<k<K-1, are given by
(2.481) and (2.48)).

Let us now rewrite the Inp, terms of

(2.49a) and (2.49b), in view of (2.16), as follows.
Using (2.48f), we obtain

In , =ln(1—77k)+1n1pk , 1<k <K .(2.49)
-7

k
Then, V1<k<K-1
lnﬁkﬂ _1nl~7k = {ln(l_mu)—ln(l—’?k)}

+{ln pk+l _ln pk }
1_77k+1 1—’7k

- 51—
=In 77’”‘+ln{pk” il }.(2.49d)

1_77/c ]N7k 1_77k+l
Also,
5 s 3 p, 1
Inp —Inp, =In(l-7,)+Iny=-——;. (2.4%)
Ds 1_771

To rewrite (2.49d) and (2.49¢) in a
compact from, let us introduce the ‘interface’

and 5, . V 0<k<K-1I:

variables, o, A

k+1/2

S, =In(1-7); Sl/zzln{%%}, (2.49f)

-7 2 Pia 1-7
§k+l/2 Eln - ;§k+l/2 Eln{ r\k/ : : }’
1_77k Py l_ﬂkﬂ

(2.49¢)

and then rewrite (2.49d) and (2.49¢) as

np, ~Inp, =6,,+5.,, V 1Sk<K-1,
(2.49d)

Inp, —Inp, =5, +38 (2.49¢)

12 2

Using (2.49d)’, (2.49¢)’, (2.48i), and
(2.48j), we can rewrite (2.49a) and (2.49b) as
o, -0, =
- %Rd [(T» )k+l + (T» )k ] (5k+1/2 + 5k+1/2) (2493)’
VvV 1<k<K-1,

q)l - q)s = _Rd (Tv)l(&l/z + 81/2) . (249b)’

The two equations above constitute a vertically-
discrete analog of the continuous-form
hydrostatic equation (2.6)".

Changing the subscript in (2.49a)" from
k to [, and then summing up the equations over
1<1<k-1, we obtain

k-1
(D, -D )=
I=1

SR LT+ (T8 + 80

k ~
=—1R,[D.(T),(5,,,+5, )
1=2

k-1 N
+ (T (8, +06,,5)]
=1
= _%Rd [(]-'v )k (5I<—l/2 + 5‘/(71/2)
k-1 R R
+ Z(ﬂ ), (5171/2 + 5171/2 + 51+1/z + 51+1/2)
=

+(T), (9,

s+

Or
P, -0, =-R, [%(53/2 +53/2)(Tv)1

k-1
+z%(514/2 + 51—1/2 + 51+1/z + 51+1/z )(Tv )1
=2

+4 (B +8,,)T), 1. (2.49h)

k-1/2

Then, adding (2.49h) and (2.49b)’, we
obtain

q)k - q)s = _Rd [{(51/2 + 31/2) +%(53/2 + 33/2)}(Tv)1
k-1 . .
+ Z%(é‘m/z + 5171/2 + 51+|/2 + é‘m/z )(T‘»)l

+3(0 . + 6T, ] (2.491)
Note that (2.491) holds for 2 <k < K with the
term omitted for & =2 . Equation (2.49b)" holds
for k=1.

Equations (2.49i) and (2.49b)" can be
written in a compact form:
D, =0,

\ 2.49j
_Rdz(ak.l+aﬂk<z)(Tv)zvlSkSK, ( i)
=1

that is a vertically-discrete analog of the
corresponding  continuous-form  vertically-
integrated hydrostatic equation (2.17) from
section 2.b. Here, a, ,and a,, are the elements of

the lower triangular matrices A and Aof
dimension K x K, the non-zero elements of
which are given by



a, = 51/2 ) (2.49k)
a,, = 51/2 +%53/2; a,, = %53/2 . (2491)
For 3<k <k
1 _
51/2+253/2 v =1
_Jl : _
a = 2(51_1/2 +3) ¥ 2<1<k-1.(2.49m)
1 _
Yo, v 1=k
[IH =0,,, (2.49n)
&2,1 = 51/2 +%53/2; &2,2 = %53/2 . (2.490)
For 3<k <k
a 12 _
Sy +383, vV I=1
. )1 S _
ap ;= 2(5[71/2%[“/2) vV 2<i<k-1, (2.49)
1s _
Yo, v L=k

In view of (2.49f) and (2.49g), we note
that elements of the matrix A are functions of the
n-values, 7,, at the model levels, 1<k <K.
Since the {7, } values are specified constants, the

matrix A does not change in time. However, a
similar inspection also reveals that the elements
of the matrix A can vary both in space and time.
This is not a problem, as the matrix A does not
need to be computed explicitly anywhere in
subsequent development of the FISL/SISL
scheme.

In analogy with (2.18), the generalized
geopotential at levels 1 <k < K, is introduced as

k
G, =® -R,> a, T +RTA. (2.49q)
1=1

Similarly, in analogy with (2.19), the virtual
geopotential at levels 1 <k < K, is introduced as

k k
(@), = _RJZ(a/c,z +a, )T,), + RazawT/ :
=1 I=1

(2.49r)
Then, adding (2.49q) and (2.49r), we obtain
G, + ((Dv-)k =0,

_Rd i(ak,/ +d/:,/ )(T‘)/ (2-495)

+R,T,A=®, +R,TA.
Or
D, =G, -RTA+(D), VI<E<K. (249)

e Mass continuity equation

Let us apply (2.43), (2.44), and (2.12) at
levels 1<k <K, to obtain

A_+le +M =[(R),]", (2.50a)
(A7),
where
A - &,
(RA )k =—+ (FA)ka (250b)
T l+e,
77/”1/2 - ﬁk—l/z
F), =D, +———|. 2.50c
( A)k |: k (Aﬂ)k :| ( )

Moreover, let us rewrite (2.50a) as

ﬁ_}_ 77:“/2 B 77:71/2
T (Am),

where

X, =[(R)I7'-D! ¥V 1<k<K. (2.50¢)

=X, (2.50d)

Then, summing up (2.50d) times (A7),
over all levels 1<k < K, we obtain
An K K . . K
Z(Aﬂ)k + Z(n:n/z - 77/11/2) = Z(XAﬂ)k s
k=1 k=1 k=1

T

or
An . . K
7(’7K+l/2 - 771/2) + (771n<+1/2 - 77172) = Z (XAn), ,
k=1
or
K
A =7) (XAn),| (2.50f)
k=1

Note that to arrive at (2.50f) from the previous
equation, we have used the lower and upper
boundary conditions, corresponding to (2.9), on

M. given by
M, =0 15,,=0 V¥ alln, (2.50g)

K+1/2

and also the relations
My =05 7 =1. (2.50h)

Similarly, after formally replacing the
vertical grid-index £ by / in (2.50d), and then
summing up (2.50d) times (A7), over the levels
k <I< K, we obtain
Aﬂ K K . . K

DA, + 300y =) = 2 (XAT),
I=k

T = 1=k
Or
A . . <
7(771<+1/2 - 77/(71/2) + (77;”/2 - 77/:71/2) = Z(XAﬂ)/ .
I=k

Or

n K

. A .
My =A=1p)—= > (XAn), . (2.50i)

1=k



Note that in deriving (2.501) from the previous
equation, we have used the second equations
from (2.50g) and (2.50h).

Then, using (2.50f) to eliminate A”/r
from (2.50i), we obtain 7" at the model
interfaces, k-1/2 v 2<k<K:

.n K K
Mty = (= Myyp) 2 (KA = 2 (XA,

Or

n k-1
77k_1/2 = lél (XAU)I )
(2.50§)

K
777k_1/2l§1(XA77)l vV 2<k<K.

To determine 7" at the model levels
1<k <K, we substitute (2.50j) in (2.48g) to
obtain

i =43 (XA, +Z(XAn),]

K
_%(77/”1/2 + /) )Z(XA 77)1
1=1

K

= L[(XAp), + 2Z(XAn),]—ﬁkZ<XAn),

1=1

= [ (XAD), +$(XAT),1=7, ) (XAn),

(2.50k)
where (2.48¢) has been used.

Let us introduce a discrete vertical
integral operator, X, as

DW= LY, (2.501)
so that (2.50k) can be rewritten as
k| K
Al=, (XAm), =77, ) (XA, V1<k<K|
1=1 =1

(2.50m)

o Thermodynamic energy equation

Let us apply (2.42) at model levels
1<k <K, to obtain

L oer (s, (2.51a)
T l—m
where
T,=T,-x,TA, (2.51b)

(8 =N +IR), 1S (2:51¢)

7
R) =%+
Re)i =—+17

S (F),,  (2.51d)
&

(T )
(Fr)k:Kdﬁ _Ii_T
U Pk (2.51¢)
X{(F/\)k_li]k }_KdTO(FA)k’
T
(Nr)k:Kd i l_r’i_T _To
1+(5—1)qk pk
X{(FA)I(_ ﬁk }’
1—77k
Q2.51f)

where (F,), is given by (2.50c).

Eliminating A" and 77, from (2.51a),

using (2.50f) and (2.50m), respectively, we
obtain

T = {(Sr)k R }K,,TOA“
n

k

© T k LS K
= T|:(ST)I< - 1 dﬂ” {Z (XA77)I — I Z(XA”)I}} + K.zT(;TZ(XAU)/
Mk U= I=1 I=1

k1= T )=

{(Snk’“d% > (XAn),m,T{H s ]i(XM)’}
1-7n -7

Or

I = r[(sm - ff; {Z (XA, + (14, —ﬁnZ(XAn),H

M L=t I=1

2.51g)

o Momentum equations

Let us apply (2.36) and (2.37) at model
levels 1<k < K, to obtain

n

L pvr+md. Gl =(S,), (2.52a)
T
Y ful +md Gl =(S,), (2.52b)
T
where
S, =(N,); +[(R), 17
(5, =V +IR), LS 0526
(S.) =(N) +[(R), .

(2.52d)

u l-g, v, l-g,
R), =—%+—5(F); R), =—"+—=(F)°
T l+e, T l+eg,

(Nu)k =[(.fz)k _f()]vk
~m[R;\(T,); 0 Inp, —ToaxA} (2.52¢)

F0x (@), ],



Ny =102 = foluy
~m[R \(T,), 0, Inp, —ToayA}, (2.521)
+0,,(0,), 1

(F)y = (f2v),
~m{R (1)), 0 Inp +0, D},

(Fy)y =~(fz0),

~m{R ;(T,), 0, Inf, +0,®,}.

(2.52¢)

(2.52h)

Then, from (2.52a) and (2.52b), we
obtain

u] =%[(H,), -m(0,G; + f,r0,G})], (2.52i)
v =7[(H,), -m(0,G; - f,r0.G])],  (2.52))
where

t=1/[1+(f,7)], (2.52k)
(H,), =(S,), + 1,7(S)),;

2.521)
(Hv)k = (Sv)k - foT(Su)k'

From (2.52i) and (2.52j), we derive the
horizontal divergence at the model levels
1<k<K,

D} =m0, (u; /m)+0,(v] /m)]
=tm’[0 {(H,), /m}+0 {(H ), m}
-0, +0,)G;]

Or

D} +#ViGi =P, V 1<k<K|  (2.52m)
where

V¥, =m’(@,+0,)¥, (2.52n)

P, =tm’[0{(H,),/m}+0 {(H,),/m}].(2.520)

e Moisture continuity equation

For 3D semi-Lagrangian advection
based FISL/SISL schemes, we apply (2.45) at
the model levels 1<k < K, to obtain

q, =(q)"". (2.53a)

For 2D semi-Lagrangian advection
based FISL/SISL schemes, we apply (2.46f) at
model levels 1 <k < K, to obtain

4 _ (S,), (2.53b)
T
where
(S,), =(N); +[(R) I, (2.53¢)
q: l—g, 5
(R), =—"+—=(F),, (2.53d)
T l+e

g

(F),=(N,),, (2.53¢)

(N,), =—(10,9), - (2.531)
Note that for the wvertical advection of an
arbitrary variable, V:

. R vy
(Ua,,‘{')k =3 /P = - R/ - =
(Aﬂ)k+l/2 (An)kfl/z
vV 1<k<K.
2.53¢g)

e  Elliptic equations

In this section, we use the vertically
discrete equations established thus far, to derive
a vertically-decoupled system of 2D elliptic
equations for the generalized geopotential G”.

To start, we apply (2.49q) at the time level n, to
obtain

Gl =®,+R,T,\A" -R § T (2.54a)
k=7s T a%0 dz %100 > :

where 1 <k <K . Then, eliminating A" and T

from (2.54a), using (2.50f) and (2.51g),
respectively, we obtain

K
n
Gy =g+ RdTOTE](XAq)I

“R7Ya,, {(sn,,, —%{Z (XA, +(-1+7, 7, )Z(XA")’H
Or
G

k K
n
r =P 71'Rdm2=l]ak’m(ST)m +erTol§1(XA77)l

k a m - K
+Rx,T, Y 1 — {Z (XAn), +(=1+7n, - nm)Z(XAn),}
m=1 =1 =1

T

(2.54b)
Note that the subscript m used in (2.54a) and
(2.54b), and in the equations derived later based
on these two equations, should not be confused
with the map factor also denoted by m.

Let us denote the underlined term in
(2.54b) by Y, and then using (2.501) express it as

1-

k a,m . m—1 ~
Y= *-ﬂ {(=1+7, —7,)Y (XAn), +(3=1+n, -7, )(XAn),
m=1 'm =1

K
*(7 1 +m 777m) Z (XAT])I} . (254C)
—— I=m+1

Let us then introduce the matrix
J=[J, L :
V I<m
vV l=m, (2.54d)
VY I>m

S

J =

m.l

— ol

so that
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1 V I<m
1-J,, =493 V Il=m (2.54¢)
0V [I>m.

Then, using (2. 54e) we can rewrite (2.54c) as

k
e i S 11, ~ 7 )(XAD),

, =

— z[z lak m

1= m=1 m

‘]m,l + (_ 1 + 77m - ﬁm)}](XAﬂ)1
(2.541)
Substituting Y, from (2.54f) into

(2.54b), we obtain

G}’l

=

S—TR Za (S Im

FeR TN mZﬁ{l =+ (L, = 77,)1(XA),
1=1 m=1 m

(2.54g)

Let us introduce  the  matrix

(2.54h)
and employ (2.50e), to rewrite (2.54g) as

k K
G =@, ~R, ) a,,(S), +7 ) M, {(R)]" -D/}
m=1 I=1

M =M Jge

P
a
M, :RdTO(Aﬂ),|:1+K‘dzl An
m=1 L7

v 1<k<K|  (2.540)

P =Pg Ry za (ST)m+TZM 1[(RA)

(2.54j)

Let us now introduce the K-dimensional
column-vectors (D, G, P, H) whose respective
elements are (D;, G;, P,, H,). Then, (2.541)
and (2.52m) can be expressed in matrix form:

G+rMD=H, (2.54k)

D+7V:G=P. (2.541)

A vertical decoupling transformation is
also introduced at this stage. Let E be the
K x K matrix whose column vectors are the
eigen vectors of M, with the associated eigen
values (K in number) A, 4,, ..., A.
Multiplying (2.54k) and (2.541) on the left by the
matrix E™', we obtain

G+7(48,)D=H, (2.54m)

D+7ViG=P, (2.54n)

where

(D,G,P,H)=E"'(D,G,P,H), (2.540)
and (4 kl) is a diagonal matrix; 5/{’1 is the
Kronecker delta.

Resorting to the component form,
(2 54m) and (2. 54n) can be written as

G + 74, D H (2.54p)
D +7V3, G H (2.54q)
where (D k Ak, H ) are the elements of the

respective vectors (D, G,P,H) defined by
(2.540).

Eliminating ﬁk from (2.54p) and

(2.54q), we obtain a set of 2D Helmbholtz-type
elliptic equations for the vertical eigen modes (K
in number):

G +A[P-tV:G,1=H,.

Or
4G, -—G, = b, -,
z%k rﬁk
Or
1 i .. P H
—2V12F1Gk* 7 =S -—t=s,
1+(f01-) T j’k T 7 }“k
v 1<k<K.
(2.54r)

Note the elliptic equation (2.54r) is non-
separable, because of the non-separable map-
factor term m(x,y) that appears inside the

V3G, term defined by (2.52n).

For T, =300K , and number of model
levels, K =10, we have computed the eigen-
values {4,} V1<k <K and the eigen-vectors of

the matrix M. For simplicity, the model layers
are assumed of uniform thickness in #, so that
(An), =1/K V1<k <K ; and the model levels

are placed at 7, =3(7,,, +7,.,) VI<k<K.
The pure gravity wave speed associated with the
K™ eigen-mode is given by (c,), = \/Z for
1<k <K . Figure 2 shows (c,), as a function

of the eigen-mode number k. Here the eigen-
values are arranged in a descending order in
terms of the gravity-wave speed. The
corresponding eigen-vectors are normalized by

11



making the 1% element of each vector positive;
and then dividing each element of the vector by
the largest element of that vector in terms of
absolute value. The normalized eigen-vectors for
the eigen-modes 1-5 are shown in Fig. 3a, and
for the eigen-modes 6-10 are shown in Fig. 3b.

The eigen-modes 1, 2, 3, ..., are identified as the
external (or Lamb) mode, the 1* internal mode,
the 2™ internal mode, ..., respectively. Since the

external mode is the fastest, a gravity-wave
Courant number can be introduced for the model
as

u, = (cg)lAt/A R (2.54s)

where A is assumed to be the uniform grid size in
x and y. Clearly for any 2™ order time-explicit
scheme to be linearly stable, it must satisfy the
CFL restriction:

u,, =[(c,), (A0, /Al <1/2, (2.54t)
where the subscript ex is a reminder for the time-
explicit scheme.

f. Horizontal grid and discretization

As indicated in the Introduction, the
unstaggered A grid with a uniform grid interval
A in x and y is used to horizontally discretize
the governing equations. Standard second-order
centered-difference scheme is used to discretize
all partial derivative terms in x and y. The
Laplacian operator defined by (2.52n) is
discretized horizontally as

) m; -
(V;I\P)i.i = T;(W, + \*’1—1.,’ + \P,A,H + \P,A,‘—l 74\*’1,,) v o (i,))el,

(2.54u)
using a compact stencil of five grid points, where
the neighboring points are one grid interval
apart. The limited-area horizontal domain used
for the model is shown in Fig. 4. The scheme
(2.54u) has been employed in the Helmholtz-
type equation (2.54r) to eliminate the spurious
two-grid-interval gravity wave solutions that
may appear as noisy checkerboard patterns in the
model forecasts. Use of such a compact stencil
enables a gravity-wave perturbation introduced
at one grid point to readily travel to the nearest
grid points, and thereby eliminate the stationary
two-grid-interval waves from the solution.
Further justifications for this particular scheme is

+1,j

detailed in Kar (2000) and Kar and Logan
(2000).

For implementation of the 2D semi-
Lagrangian advection scheme, we need (a) an
algorithm to compute the departure points and
(b) appropriate horizontal interpolation schemes
to interpolate the field variables and other
functions from the grid points to the departure
point. The departure points are computed
following a space and time-centered iterative
procedure (Robert 1981). The procedure
employs an un-centered linear extrapolation:
PR = (B e )Y - (146, P,

(2.54v)
to determine mfu"""*"* v"""**] at the grid
points and a bilinear horizontal interpolation
scheme to compute the same at the mid-point of
the trajectory. Two to three iterations are
generally sufficient for convergence. Aside from
this, to interpolate the field variables and other
functions from the grid points to the departure
points, we have employed a conventional bicubic
interpolation scheme.

g. Computational steps for the FISL/SISL
schemes

Here we outline the computational steps
for time-integration of the hydrostatic model
based on the FISL/SISL scheme. Recall that the
horizontal and vertical extension of the model
domain are shown in Fig. 1 and Fig. 4,
respectively. In the following, we use the
notations L, +1, L, +2, L, +3, ... to denote

the rectangular domains L, +B,, L, + B, +B,,
L,+B +B,+8B,,
convenience, an arbitrary 3D variable or function
Y, . is simply denoted by ¥, . Similarly, at the

i.Jk

..., respectively. Also for

i-th iteration of the FISL scheme, an arbitrary 3D
variable or function ¥} is denoted by ¥, . The

computational steps to be followed for time-
integration of the hydrostatic model equations
over one time step using the proposed FISL
scheme is presented below in the form of a flow
chart.
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Input constants:

Matrices: A, M, E, E”! Eigen-values: 4, V 1<k<K
Vertical grid:

n,n.,(An) V1<k<K

Deyps (AN} VISE <K -1

Horizontal grid:

Ax=Ay=A, L, =[nx,ny], nxhalo = nyhalo =5
Time stepping: At , & o » and Iteration_max =3
Input variables:

w,v),"” V {1<k<K,(i,j)el, +4}
[(w,v,T,q);" VY 1<k<K; pi'1V (i,j)el, +5
(G,D)' VvV {1<k<K,(i,j)eL,}

Moy ¥V 1<Sk<K-1,(1,/)eL,}

O,V (,j)el, +5

v
Compute (RU,I’Z’L‘,I’Z’T,Rq,RA)Z’I V [1<k<K,(@ j)eL,+4],
using (2.52d), (2.51d), (2.53d), and (2.50b).

v
Compute [mu,mv]. """ V [1<k <K, (i, ) e L, +4], using (2.54t).
Compute 2D-trajectory departure points V [1<k <K, (i,j)e L, +1].
For [1<k<K,(, j)eL,+1]:

e Compute interpolation weights for bicubic interpolation.
® Compute [(R,R,R,,R,R), 1"

v

\ 4

Copy the arrays: [(u,v,T,q,G, D), V1<k<K,n,, VI<k<K-1,p "1V, j)el,+5
into the auxiliary arrays:
[(w,v,T,q,G,D), V1<k<K,7n,,VI<k<K-1,p]V(,jel,+5,

that are used and updated inside the iterative loop below.
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start =1
stop = Iteration max

NS

Iteration count

\ 4
Compute (N,,N,,N,,N ), V[1<k<K,(,j)eL,+1], using

(2.52¢), (2.521), (2.511), and (2.53f), respectively. The rhs of
these equations are computed using the auxiliary variables,
introduced earlier.

v
Compute (S,,S,,S,,S,), V [1<k<K,(i,j)eL,+1], using
(2.52¢), (2.51c¢), and (2.53c¢).

A\ 4

Compute (H,,H,), V [1<k<K,(i,j)eL,+1], using (2.52]).

v
Compute (P,H), V [1<£k<K,(i,j)eL,], using (2.520) and
(2.54j), respectively.

r
1 Transform from physical space into vertical eigen-mode space:

For [1<k <K, (i,j)€L,], compute (ﬁ,ﬁ)k using (2.540) and
compute I, using (2.54r).

For [1<k <K, (i,j) € L, +1], compute (A}k using the auxiliary G, in
(2.540) to provide initial and boundary condition for the elliptic
equation (2.54r) for updated é,f .
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For each vertical eigen-mode 1 < k < K , over (7, j) € L,

e  Solve the Helmholtz-type equation (2.54) for G; .

e Compute ﬁ; using (2.54p).

r
1 Transform back into the physical space from

: the vertical eigen-mode space:

Compute (G,D); V[I<k<K, (ij)eLp] from (é,b);

using variation of (2.540).

A 4

Compute (u,v), V[1 <k <K, (i, j) € L,], substituting

(H,,H,), and G| in (2.52a) and (2.52b).

A 4

Compute (XAn), V[1<k<K,(i,j)e L,], substituting
[(R,),]:" and D, into (2.50¢). Then,

e Compute A", and thus f?; , using (2.50f).

e Compute 77,:_1/2 V 2 <k £ K, using (2.50j).

e Compute 77, V 1<k <K, using (2.50m).

A 4

Compute 7, V [1 <k <K, (i, j) € L,], substituting (S, ), and
(XAR), into 2.51g).

A 4

A

Compute ¢, V [ <k <K, (i, j) € L,], substituting (S,), into

(2.53b).
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Copy the auxiliary arrays:

[(w,v,T,q,G,D), V1<k<K,7,,V1<k<K-1,p ]V jel,
into the output arrays:

[(u,v,T,q,G, D), V1<k<K,n ,V1<k<K-1,p 1V (G, j)el,.

k+1/2
Apply boundary-relaxation scheme to the output arrays over the halo region.
This completes one FISL time step.

A 4

Repeat these steps, for the specified number of time
steps and then stop.

3. NUMERICAL SIMULATION

The FISL model is at its early stage of development and various tests are being performed to
debug the model code and check the effectiveness of the model formulation. Thus, the results presented
here are only preliminary. Recently, we employed the model to simulate the nonlinear evolution of mid-
latitude disturbances. To this end, the model domain is horizontally reduced to a cyclic-in-x, mid-latitude [3-
plane channel. The pressure at the model top is set to 1 hPa, with 41 uniformly spaced layers in the vertical.
The length and width of the B-channel are 4000 km and 10000 km, respectively. The horizontal grid size,
uniform in x and y, is 100 km. There are five grid points in the x and y halo regions. The reference
isothermal atmosphere is set to 330 K. The initial condition consists of a zonally uniform geostrophically
balanced basic state and small-amplitude random perturbations in the temperature and surface pressure
fields superimposed on the basic state.

For this simulation, we have included a Newtonian heating term in the thermodynamic energy
equation that relaxes the temperature to an equilibrium state. Thus, the heating term is given by

O, /c,, =y, (T =T),, 3.1)

where 7, assumes constant specified values and T"«(y) is the zonally uniform equilibrium temperature.

We have also included Rayleigh-damping type friction terms in the (#, v) momentum equations,

given by

(Fx)l( = _(Cx)k|uk|ul« >

(Ev)k = _(Cy)k|vk|vk > (32)
with (C,,C,), defined by

(C), =(C), =00r,)", (3.3)

where 7, assumes constant specified values. We have included such simple thermal forcing and friction

terms, because the model does not include comprehensive physical processes at this stage. However, a dry
convective adjustment is included in the model to restore a neutral stratification between adjacent unstable
layers when necessary. The heating parameters are set at y, =10days for 2<k <K and y, =1day. The

friction is applied only at the lowest four levels with 7, = 0.5 day. Note that the lowest four layers add up to
an approximate thickness of 100 hPa.
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The FISL scheme employs a time step of 20 min, with 3 outer iterations and &, = 0. To remove

some residual grid-scale noise from the solutions, a horizontal 2D filter is used at each time step. There is
no other explicit damping or diffusion used in the present simulation.

The model is integrated for 20 days. The model predicted surface pressure together with the
potential temperature at level 1 for days 6 to 20 is presented in Fig. 5. The geopotential height and the
potential temperature at level 21 for the same time period are shown in Fig. 6. Note that initially, the levels
1 and 21 are located at 988 hPa and 500 hPa, respectively. Early stages of development (days 6 and 8)
shows two unstable waves with wavelengths of approximately 1000 km and 4000 km. However, starting at
day 12, a single domain-size long wave dominates. Frontal zones develop at the surface and the upper
troposphere. Well-defined fronts develop at the surface and upper troposphere; the disturbance continues to
grow and the low pressure center deepens until day 16. Both low and high pressure maxima begin to
weaken after day 16.

Clearly, the model is able to simulate the nonlinear evolution of a mid-latitude disturbance on the
B-plane. We have found that such simulations are indeed sensitive towards the prescription of initial
condition and the parameters related to heating and friction. We are currently addressing such issues.

4. CONCLUSIONS

A fully-implicit, semi-Lagrangian, 3D
hydrostatic, limited-area, grid-point model has
been developed at NCEP/EMC. We are currently
testing the model to simulate the nonlinear
evolution of a mid-latitude disturbance on the b-
plane. We are also applying the model in a
vertical (x,7) slice version to simulate linear

and nonlinear hydrostatic mountain waves over
idealized mountain shapes. Preliminary results
will be presented at the conference.
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Figure 1. Vertical grid and distribution of variables.
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Figure 2. The pure gravity wave speed (m s') of the vertical eigen-modes of a 10 layer version of the
FISL/SISL 3D hydrostatic model. The reference atmosphere is isothermal (300 K), and the vertical layers
are of uniform thickness.
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Figure 3. Non-dimensional amplitudes of the vertical eigen-vectors of the FISL/SISL 3D hydrostatic model
are plotted as a function of the vertical levels. The curves with the embedded symbols (+, *, 0, A, and 0)
correspond respectively to the eigen-modes 1-5 in (a) and 6-10 in (b).
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Figure 4. A schematic of the horizontal limited-area computational domain. The innermost subdomain is
denoted by Lp. The dashed-line rectangles B,, B,, B,, and B, represent the first four lines of grid points

surrounding Lp. The solid-lined rectangle B, represents the lateral boundary of the limited area.
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Figure 5. Surface pressure (solid lines) and the potential temperature (dashed lines) at the lowest model
level for day 6 to day 12. Contour intervals are 2 hPa for surface pressure and 3 K for potential

temperature.
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Figure 6. Geopotential height (solid lines) and the potential temperature (dashed lines) at the model level 21

for day 6 to day 12. Contour intervals are 100 gpm for geopotential and 1 K for potential temperature.
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