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1. INTRODUCTION 
 

In a numerical model of the atmosphere, 
a time-difference scheme is needed to discretize 
the governing equations in time and thereby 
make a prediction of the future state of the 
atmosphere. The computational efficiency of a 
hydrostatic numerical model is commonly 
dictated by the size of the time step it can take, 
without violating the so-called Courant-
Friedrichs-Lewy, or CFL, linear-computational 
stability condition on the fastest moving external 
gravity-wave solution of the governing primitive 
equations. In case of fully-explicit time-
difference schemes that are second-order 
accurate in time, this implies that the Courant 
number associated with the external wave-mode 
must be typically less than one half. Thus, a 
relatively large number of time steps would be 
needed by such schemes to complete the 
forecast. 
 
 As opposed to the fully-explicit time-
difference schemes, the semi-implicit and semi-
Lagrangian (SISL) schemes applied to the 
hydrostatic primitive equations, treat the external 
and internal gravity wave-modes in a time-
implicit manner, and treat the relatively slow 
advective processes in a semi-Lagrangian 
manner. The SISL scheme is nearly stable 
unconditionally, thus, significantly larger time 
steps compared to a fully-explicit time-difference 
scheme can be used in the model, generally 
resulting in a significant computational 
economy. The pioneering studies of Dr André 
Robert in the development of SISL methods and 
subsequent application of such methods in 
designing atmospheric numerical models have 
been duly recognized by many authors in a 
memorial volume (Lin et al. 1997). 
 
 An inherent weakness of the SISL 
schemes lies in the fact that certain terms of the 
governing equations that are non-advective (thus 
not stabilized by semi-Lagrangian advection 

scheme) and not responsible for gravity-wave 
propagation (thus not stabilized by semi-implicit 
scheme), are treated in a time-explicit manner. 
This reduces the robustness of the SISL scheme 
and the SISL model would then require 
additional stability measures when relatively 
large time steps are used. The model also 
becomes sensitive towards the choice of the 
reference thermodynamic profile that is used to 
‘linearize’ the governing equations for 
implementation of the semi-implicit scheme. 
 
 To alleviate these problems associated 
with the SISL schemes, a fully-implicit semi-
Lagrangian (FISL) scheme for the hydrostatic 
primitive equations has been developed. The 
FISL scheme presented here is set in a 
horizontally two-dimensional (2D) semi-
Lagrangian framework, with all processes other 
than horizontal advection treated in a time-
implicit manner. The semi-implicit linearization 
of the governing equations, followed up by a 
vertical decoupling of the gravity-wave eigen-
modes of the system, results in a fully-implicit 
system that is solved iteratively. A set of 2D 
Helmholtz-type elliptic equations, one for each 
vertical eigen-mode, forms the Kernel of the 
implicit system. The 2D elliptic equations are 
then solved iteratively by a generalized 
conjugate residual (GCR) algorithm (e.g., Saad 
2003). Recently, a fully-implicit, semi-
Lagrangian, nonhydrostatic, global grid-point 
model has been developed by Yeh et al. (2002). 
 
 The use of a 2D semi-Lagrangian (SL) 
framework rather than a three-dimensional (3D) 
semi-Lagrangian framework for the proposed 
FISL formulation, is preferred because the 2D 
trajectory computations and 2D horizontal 
interpolations are relatively less expensive 
compared to their 3D counter parts. However, 
nothing precludes us from using 3D trajectories 
in place of 2D trajectories in the formulation. 
Specifically for this reason, the 2D SL-
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formulation of FISL is derived as an extension of 
the 3D SL-formulation in the text. 
 
 The hydrostatic primitive equations 
employed in our model is based on a terrain 
following hydrostatic-pressure based vertical 
coordinate, that assumes a constant pressure at 
the model top. Thus, it is a modified form of 
Phillips’ (1957) σ-coordinate. The equations are 
discretized in the vertical using a staggered 
Lorenz grid. Horizontally, the equations are cast 
in conformal-map coordinates, and discretization 
is carried out on an unstaggered A grid. This 
particular choice of horizontal grid is 
computationally convenient for the 2D semi-
Lagrangian advection scheme employed here. In 
terms of the choice of spatial grids and space 
discretizations, and subsequent derivation of the 
implicit system of equations, the FISL scheme 
developed here bears close resemblance with the 
2D SISL hydrostatic, grid-point model 
developed by Kar and Logan (2000) at the 
Bureau of Meteorology Research Centre 
(BMRC), Melbourne, Australia. 
 
 In section 2, we present the formulation 
of the FISL hydrostatic model. The results from 
numerical integrations of the model are 
presented in section 3. In the final section, we 
present some conclusions. 
 
 
2. MODEL FORMULATION 
 
a. The governing equations in a continuous 
form 
 The governing equations for a 
hydrostatic, moist-diabatic atmosphere can be 
written in a generalized vertical coordinate (η): 
Momentum equations 

xFxpxvTdRmvzfutd +Φ∂+∂−= ])()~ln([ ηη ,  (2.1) 

yFypyvTdRmuzfvtd +Φ∂+∂−−= ])()~ln([ ηη ,(2.2) 
 
Mass continuity equation 

,0~ln =∂++∂ ηηη &Dptd                (2.3) 
 
Thermodynamic energy equation 

pdt
v

dt cQpd
q

T
Td =

−+
− ~ln

)1(1 δ
κ ,          (2.4) 

 
Moisture continuity equation 

LQqdt /2−= ,                (2.5) 
 

Hydrostatic equation 
0~ln =∂+Φ∂ pTR vd ηη ,               (2.6) 

 
where 

ηη∂+∂+∂+∂≡ &
yxtt mvmud ,                     (2.7a) 

mvmuff xyz ∂−∂+≡ ,                           (2.7b) 
ϕsin2Ω≡f ,              (2.7c) 

)]/()/([2 mvmumD yx ∂+∂≡ ,                    (2.7d) 

[ ]qTTv )1(1 1 −+≡ −ε ,              (2.7e) 

vd RR≡ε ; pdpv cc≡δ ; pddd cR≡κ .        (2.7f) 
Here (x, y) denote the Cartesian conformal map-
projection horizontal coordinates with the map 
factor m; u and v denote the velocity components 
in the x and y directions, respectively, with the 
associated horizontal divergence D; η&  denotes 
the η-coordinate vertical velocity. T, q, and Tv, 
denote the temperature, specific humidity, and 
virtual temperature, respectively; p~  and Φ 
denote the hydrostatic pressure and the 
geopotential (gz), respectively; (Fx, Fy)  denote 
the friction terms in (u, v) momentum equations, 
respectively;  Q in (2.4) denotes the heating rate; 
Q2 and L in (2.5) respectively denote the 
apparent moisture sink and the latent heat of 
condensation. The numerous physical constants 
have their usual meaning. 
 
 In this model, the vertical coordinate 
(η ) is chosen to be a terrain-following 
coordinate based on p~ ; the model top is 
assumed to be a constant-pressure surface 
( Tpp =~ ) and let ),,(~ tyxpS  denote the surface 
pressure. Then, η is defined by 

 
TS

S

pp
pp

−
−

= ~
~~

η .               (2.8) 

This shows that from the surface to model top, η 
varies from 0 to 1. The surface and the model top 
are assumed to be material surfaces, so the lower 
and the upper boundary conditions on η&  are 
given by 

0=η&  at 0=η  and 1=η .             (2.9) 
 

For later convenience, we introduce the 
variables П and Λ, 

TpSp −≡Π ~ ,            (2.10a) 
Π≡Λ ln .           (2.10b) 

Then, from (2.8) and (2.10a), we obtain 
Π−+=−−= )1()~(~~ ηη TpTpSpSpp ,           (2.11a) 

and 
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Π=−∂ p~η .            (2.11b) 

Notice that with the current choice of η, p~η−∂  
becomes independent of η. 
 
b. Manipulation of the governing equations 
 

Let us now rewrite the governing 
equations so that the fully-implicit (or semi-
implicit) semi-Lagrangian (FISL or SISL) space- 
and time-difference schemes can be readily 
implemented later. (From now on, we omit the 
‘physics’ terms from the governing equations, 
assuming such terms are added up later in a 
‘time-split’ manner.) To start, using (2.11b) and 
(2.10b), we can rewrite the mass-continuity 
equation (2.3) as 

0=∂++Λ ηη &Ddt .             (2.3)´ 
Or 

Λ≡∂+−=Λ FDdt )( ηη & .            (2.12) 
Note that including (2.12) above, the most 
relevant equations derived later in the text, are all 
enclosed in boxes for ease of reference. 
 
 Let us assume an isothermal reference 
atmosphere with the constant temperature, 0T . 
Then, the thermodynamic energy equation (2.4) 
is trivially rewritten in the form: 

 ⎥⎦

⎤
⎢⎣

⎡
Λ−

−+
=Λ− FTptd

q
vT

dTdTtd 0
~ln

)1(1
)0(

δ
κκ ,

                (2.4)´ 
where (2.12) has been used in the right-hand side 
(rhs)  of (2.4)´. Moreover, using (2.10), (2.11a), 
(2.7a), and (2.12), we can rewrite the pd t

~ln  
term in the rhs of (2.4)´, as 
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Or 
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Then, using (2.13)´ in (2.4)´, the thermodynamic 
energy equation is finally expressed as 
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 Next, the horizontal momentum 
equations (2.1) and (2.2) are rewritten as 

uFxpxvTdRmvzf

utd

≡Φ∂+∂−

=

])()~ln([ ηη
,       (2.15a)  

vFypyvTdRmuzf

vtd

≡Φ∂+∂−−

=

])()~ln([ ηη
.    (2.15b) 

 
We ignore the moisture continuity 

equation (2.5) until later, and proceed with the 
hydrostatic equation (2.6) instead. Let us first 
simplify the p~lnη∂  term in (2.6). Using (2.11a), 
we obtain 

)]1/(~ln[)1ln(
])1(ln[~ln

ηη
η

−+−=
Π−+=

p
pp T  ,           (2.16) 

so that (2.6) reduces to 

{ }].)1(~ln)1ln([ ηη ηη

η

−∂+−∂−

=Φ∂

pTR vd

        (2.6)´ 

 
 Vertically integrating (2.6)´ from the 
surface (η = 0, Φ = ΦS) to an arbitrary value of η, 
we obtain 

{ }.)1(~ln

)1ln(

0

0

∫

∫

−−

−−=Φ−Φ

η

η

η

η

pdTR

dTR

vd

vdS

            (2.17) 

Or 

∫−=Φ−Φ
η

0

~ln pdTR vdS .                          (2.17)´ 

Note that (2.17)´ can also be derived directly 
using (2.6). 
  
 Let us now introduce a generalized 
geopotential G, defined by 

Λ+∫ −−Φ≡ 00
)1ln( TdRdTdRSG

η
η ,            (2.18) 

and a ‘virtual’ geopotential Φv, defined by  

∫ −+∫−≡Φ
η

η
η

0
)1ln(

0
~ln dTdRpdvTdRv .          (2.19) 

Then, using (2.18) and (2.19) in (2.17)´, we 
obtain 
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.0

0
)1ln(

Λ−=

∫ Φ+−−=Φ−Φ

TdRG

SdTdRv
η

η
            (2.20) 

Or 
vTdRG Φ+Λ−=Φ 0 .            (2.20)´ 

 
 Lastly, the moisture continuity equation 
(2.5) without the source/sink term is recalled 
 

0=qdt .               (2.21) 
 
 
c. Basics of the FISL/SISL scheme 
 
 For an arbitrary prognostic variable Ψ 
(= u, v, Λ− 0TT dκ , q, or Λ ), each of the 
prognostic equations (2.15a, 2.15b, 2.14, 2.21, 
and 2.12) can be expressed as 

)(Ψ=Ψ Fdt  .                            (2.22) 
 

Let us now discretize (2.22) in space 
and time, along a three-dimensional (3D) 
backward trajectory. Then, a two time-level, 
fully-implicit, semi-Lagrangian (FISL) scheme 
for (2.22) can be written as 

])1()1[( 1
*2

1
1

* −
−

−++=
∆
Ψ−Ψ n

g
n

g

nn

FF
t

εε ,  (2.23) 

where the superscripts n and n-1 denote the two 
time levels, ∆t denotes the time step, and 

]1,0[∈gε  denotes the un-centering parameter. A 
dependent variable at time level n-1, with a 
subscript * is evaluated at the departure point 
(identified here by the asterisk character ‘*’) 
through a 3D spatial interpolation of the same 
variable at time level n-1 carried at the grid 
points. Needless to say, determination of the 
departure points also involves spatial 
interpolation. In (2.23), the dependent variables 
at time level n and without subscripts are carried 
at the arrival grid points. 
 
 Introducing the new variables 

tg ∆+≡ )1(2
1 ετ ,                          (2.24a) 

FR
g

g

ε
ε

τ +
−

+
Ψ

≡
1
1

,           (2.24b) 

we can rewrite (2.23) as 
1

*
1

*

1
*

1
1 −−

−

=
+
−

+
Ψ

=−
Ψ nn

g

g
n

n
n

RFF
ε
ε

ττ
.        (2.23)΄ 

Then, for the semi-implicit/fully-implicit 
‘linearization’ of (2.23)΄, we express nF  as 

nnn NLF += ,              (2.25) 

where a suitable reference state is assumed and 
(L, N) denote the linear and nonlinear parts of F. 
Using (2.25), we can rewrite (2.23)΄ as 

SNRL nnn
n

≡+=−
Ψ −1

*τ
.                           (2.26) 

Notice how (2.26) represents an implicit 
equation that can be solved iteratively for the 
unknown variable Ψn. To this end, equation 
(2.26) can be expressed as 

[ ] )1()1(1
*

)(

−−− ≡+=⎥
⎦

⎤
⎢
⎣

⎡
−

Ψ iinn

i

n
n

SNRL
τ

,          (2.27) 

where the superscript i denotes an iterative 
index. 
 

For the semi-implicit semi-Lagrangian 
(SISL) scheme, the nonlinear term nN in (2.26) 
is defined explicitly using the linear extrapolation 
in time: 

212 −− −≡ nnn NNN .             (2.28) 
Thus, (2.26) together with (2.28) constitute the 
SISL scheme for (2.22). Clearly, the SISL 
scheme, unlike the FISL scheme (2.27), does not 
require any iteration. 
 
 As indicated earlier, the FISL scheme 
proposed here employs 2D semi-Lagrangian 
horizontal advection. Thus, to be consistent with 
the FISL scheme, we would consider the SISL 
scheme that is specifically a 2D SISL scheme. In 
this context, an equivalent form of (2.22) is 
derived, where the 3D material time-derivative 
Ψtd  is written in terms of the 2D material 

time-derivative ΨtHd  as 
Ψ∂+Ψ=Ψ ηη&tHdtd ,            (2.29a) 

where 
Ψ∂+Ψ∂+Ψ∂≡Ψ ymvxmuttHd ,                  (2.29b) 

so that (2.22) is reduced to 
)(~)( Ψ≡Ψ∂−Ψ=Ψ FFtHd ηη& .                        (2.30) 

The derivations of the FISL/SISL schemes 
presented earlier for (2.22) holds for (2.30) as 
well, provided we formally replace F by F~ , as 
defined by (2.30), in equations (2.23), (2.24b), 
and (2.25); also, we need to formally replace N 
in equations (2.25), (2.26), (2.27), and (2.28) by 
N~ , defined by 

Ψ∂−Ψ≡Ψ ηη&)()(~ NN .             (2.31) 
 
d. Implementation of the FISL/SISL scheme 
  

Let us now apply the semi-Lagrangian 
schemes described above to the prognostic 
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equations (2.15a), (2.15b), (2.14), (2.12), and 
(2.21) for u, v, Λ− 0TT dκ , Λ, and q, respectively. 
Thus, using the formal analogy between (2.15a) 
and (2.22), an analog of (2.23)´ for the u-
momentum equation (2.15a) is obtained as 

1
*)( −=− n

u
n

u

n

RFu
τ

,             (2.32) 

where 

u
g

g
u FuR

ε
ε

τ +
−

+≡
1
1

,             (2.33) 

where uF is defined by (2.15a). Then, using 
(2.20)´, we can rewrite and linearize n

uF as 
[ ]
[ ].)(~ln

)(

0

00

n
v

n
d

n
x

n
x

n
vd

nn
z

n
u

TRGpTRm
vfffF

Φ+Λ−∂+∂−

−+=
 

Or 
n
u

n
x

nn
u NGmvfF +∂−= )( 0 ,            (2.34)  

where 0f  is an area-averaged value of f and 

.])~ln([
)(

0

0

vxxxvd

zu

TpTRm
vffN

Φ∂+Λ∂−∂−
−≡

  (2.35) 

Then, using the formal analogy between (2.34) 
and (2.25), an analog (2.26) for the u-momentum 
equation is obtained as 

u
n

u
n
u

n
x

n
n

SRNGmvfu
≡+=∂+− −1

*0 )(
τ

.    (2.36) 

  
Similarly, an analog of (2.26) for the v-

momentum equation (2.15b) is obtained as 

v
n

v
n
v

n
y

n
n

SRNGmufv
≡+=∂++ −1

*0 )(
τ

,    (2.37) 

where 

v
g

g
v FvR

ε
ε

τ +
−

+≡
1
1

,            (2.38a) 

.])~ln([
)(

0

0

vyyyvd

zv

TpTRm
uffN

Φ∂+Λ∂−∂−
−−≡

   (2.38b) 

 
Let us now consider the thermodynamic 

energy equation (2.14). As before, using the 
formal analogy between (2.14) and (2.22), an 
analog of (2.23)´ for the thermodynamic energy 
equation is obtained as 

1
*)(

~
−=− n

T
n

T

n

RFT
τ

,             (2.39) 

where 
Λ−≡ 0

~ TTT dκ ,             (2.40a) 

T
g

g
T FTR

ε
ε

τ +
−

+≡
1
1~

,           (2.40b) 

where TF is defined by (2.14). Then, using (2.14) 
and (2.12), we can rewrite and linearize n

TF  as 

n
T

n

d
n

T NTF +
−

−=
η

ηκ
10

&
,            (2.41a) 

where 

.
1~1

)1(1 0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−+

≡

Λ η
η

δ
κ

&
FT

p
p

q
T

N

Tv
d

T

             (2.41b) 
Then, using the formal analogy between (2.41a) 
and (2.25), an analog of (2.26) for the 
thermodynamic energy equation is obtained as 

TSn
TRn

TN
n

Td

nT
≡−+=

−
+ 1

*)(
10

~

η

η
κ

τ

&
.        (2.42) 

  
Let us now consider the mass-continuity 

equation (2.12). As before, using the formal 
analogy between (2.12) and (2.22), an analog 
(2.23)´ for the mass-continuity equation is 
obtained as 

( ) 1
*)( −

Λ=∂++
Λ nR

n
D

n
ηη

τ
& ,            (2.43) 

where 

Λ+

−
+

Λ
≡Λ F

g

g
R

ε

ε

τ 1

1
.             (2.44) 

Notice that ΛF defined by (2.12) is already in a 
linear form, so that there is no need to derive an 
analog of (2.26) in this case. 
 
 Lastly, we consider the moisture-
continuity equation (2.21). Using the formal 
analogy between (2.22) and (2.21), the latter 
with 0≡qF , an analog of (2.23)´ is readily 
obtained as 

1
*
−= nn qq .              (2.45) 

 
 As mentioned before, the FISL/SISL 
schemes proposed here employs 2D semi-
Lagrangian horizontal advection. In this case, the 
moisture continuity equation (2.21), in view of 
(2.30), is first rewritten as 

qtH Fqqd ~
≡∂−= ηη& .            (2.46a) 

Then, an analog of (2.23)´ is obtained as 
1

*)(~ −=− n
q

n
q

n

RFq
τ

,           (2.46b) 

where 

q
g

g
q FqR ~

1
1

ε
ε

τ +
−

+≡ .            (2.46c) 
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Since qF~ given by (2.46a) is a nonlinear 

function, we express n
qF~ simply as 

n
q

n
q NpartlinearzeroF += ][~ ,           (2.46d) 

where 
qN q ηη∂−≡ & .             (2.46e) 

Then, (2.46b) reduces to the appropriate FISL 
scheme for the moisture continuity equation 
(2.21): 

q
n

q
n
q

n

SRNq
≡+= −1

*)(
τ

.            (2.46f) 

 
 When 2D semi-Lagrangian horizontal 
advection is used for the derivations of the 
FISL/SISL schemes for the prognostic equations 
for u, v, and Λ− 0TT dκ , the functions uF , vF , 
and TF  defined by (2.15a), (2.15b), and (2.14), 
respectively, are modified into 

uFF uu ηη∂−≡ &
~ ,                          (2.47a) 

vFF vv ηη∂−≡ &
~ ,            (2.47b) 

TFF TT ηη∂−≡ &
~ .             (2.47c) 

Clearly, no such modifications are imposed on 
ΛF defined by (2.12), as 0=Λ∂η . Note that the 

functions ( uF~ , vF~ , TF~ ), in turn, will modify the 
functions ( uR , vR , TR ) defined by (2.33), 
(2.38a), and (2.40b), respectively. 
 

Similarly, the functions uN , vN , and 

TN  defined by (2.35), (2.38b), and (2.41b), 
respectively, are modified into 

uNN uu ηη∂−≡ &
~ ,            (2.47d) 

vNN vv ηη∂−≡ &
~ ,             (2.47e) 

TNN TT ηη∂−≡ &
~ .             (2.47f) 

Note that the functions ( uN~ , vN~ , TN~ ), in turn, 
will modify the functions (Su, Sv, ST) defined by 
(2.36), (2.37), and (2.42), respectively. 
  
e. Vertical grid and discretization 
 
 In this section, we discretize the 
governing equations, cast already into the form 
of the FISL/SISL scheme in section 2.d, in the 
vertical assuming a staggered Lorenz grid with 
the placement of variables as shown in Fig. 1. 
We assume there are K (integer-) levels between 
the earth surface ( Spp ~~ = ) and the model top 
( Tpp =~ ). The levels are specified by a sequence 

of η values, { kη } with Kk ≤≤1 , which satisfy 
10 << kη . Each level is bounded by two 

interfaces, so that there are K+1 interfaces (half-
integer levels), including the earth surface and 
the model top. The sequence of interfaces is then 
denoted by { 21+kη } with Kk ≤≤0 , which 
satisfy 10 21 ≤≤ +kη . Having specified the model 
levels, the interfaces are placed at 

11)( 12
1

21 −≤≤∀+= ++ Kkkkk ηηη ,     (2.48a) 
.1.;0 2121 == +Kηη            (2.48b) 

 
We recognize that a model layer, that 

embeds a model level, is confined between two 
consecutive interfaces. Then, the thickness of 
each layer is defined as 

Kkkkk ≤≤∀−≡∆ −+ 1)( 2121 ηηη .       (2.48c) 
Similarly, the vertical grid interval between 
consecutive model levels is defined as 

.11)( 121 −≤≤∀−≡∆ ++ Kkkkk ηηη    (2.48d) 
 

In general, the thickness of each model 
layer given by (2.48c) is not uniform in η. For 
later use, we introduce the η-level variable, kη

~ , 
defined by 

Kkkkk ≤≤∀+≡ −+ 1)(~
21212

1 ηηη .        (2.48e) 
Note that, in general, kk ηη ≠~ . 
 
 Having specified the model levels, 

Kkk ≤≤∀1η , we use (2.11a) to determine p~  
at model levels as 

Π−+= )1(~
kTk pp η .            (2.48f) 

 
 For later use in the thermodynamic 
energy equation, we define the η-coordinate 
vertical velocity at the levels as 

Kkkkk ≤≤∀+≡ −+ 1)( 21212
1 ηηη &&& ,        (2.48g) 

where 
 2121 0 +== Kηη && ,           (2.48h) 
that corresponds to (2.9). Similarly, for later use 
in the hydrostatic equation, we define the virtual 
temperature at the model interfaces (excluding 
the model top) as 

[ ] 11)()()( 12
1

21 −≤≤∀+= ++ KkTTT kvkvkv , 
                            (2.48i) 

( ) ( )[ ] ( )1112
1

21)( vvvv TTTT =+= .           (2.48j) 
 

• Hydrostatic equation 
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Let us apply (2.6) at the interfaces 
1021 −≤≤∀+ Kkk , to obtain 

11),~ln1
~(ln21)(

1
−≤≤−++−

=Φ−+Φ

KkkpkpkvTdR
kk

                           (2.49a) 
)~ln1

~(ln21)(1 SppvTdRS −−=Φ−Φ ,           (2.49b) 

where ( ) 1021 −≤≤∀+ KkT kv , are given by 
(2.48i) and (2.48j). 
 
 Let us now rewrite the kp~ln terms of 
(2.49a) and (2.49b), in view of (2.16), as follows. 
Using (2.48f), we obtain 

Kkpp
k

k
kk ≤≤

−
+−= 1,

1

~
ln)1ln(~ln

η
η . (2.49c) 

Then, 11 −≤≤∀ Kk  
{ }

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
+

−−−=−

+

+

++

k

k

k

k

kkkk

pp

pp

ηη

ηη

1

~
ln

1

~
ln

)1ln()1ln(~ln~ln

1

1

11

 

⎭
⎬
⎫

⎩
⎨
⎧

−
−

+
−
−

=
+

++

1

11

1
1

~
~

ln
1

1
ln

k

k

k

k

k

k

p
p

η
η

η
η

. (2.49d) 

Also, 

⎭
⎬
⎫

⎩
⎨
⎧

−
+−=−

1

1
11 1

1
~
~

ln)1ln(~ln~ln
η

η
S

S p
ppp . (2.49e) 

 
To rewrite (2.49d) and (2.49e) in a 

compact from, let us introduce the ‘interface’ 
variables, 21+kδ  and 21

ˆ
+kδ  10 −≤≤∀ Kk : 

⎭
⎬
⎫

⎩
⎨
⎧

−
≡−≡

1

1
21121 1

1
~
~

lnˆ);1ln(
η

δηδ
Sp

p ,     (2.49f) 

⎭
⎬
⎫

⎩
⎨
⎧

−
−

≡
−
−

≡
+

+
+

+
+

1

1
21

1
21 1

1
~

~
lnˆ;

1
1

ln
k

k

k

k
k

k

k
k p

p
η
η

δ
η
η

δ , 

                                                                   (2.49g) 
and then rewrite (2.49d) and (2.49e) as 

11ˆ~ln~ln 21211 −≤≤∀+=− +++ Kkpp kkkk δδ ,
                          (2.49d)´ 

21211
ˆ~ln~ln δδ +=− Spp .          (2.49e)´ 

 
Using (2.49d)´, (2.49e)´, (2.48i), and 

(2.48j), we can rewrite (2.49a) and (2.49b) as 

( ) ( )[ ]
,11

)ˆ( 212112
1

1

−≤≤∀

++−

=Φ−Φ

+++

+

Kk
TTR kkkvkvd

kk

δδ     (2.49a)´ 

)ˆ()( 212111 δδ +−=Φ−Φ vdS TR .            (2.49b)´ 

The two equations above constitute a vertically-
discrete analog of the continuous-form 
hydrostatic equation (2.6)´.  
 

Changing the subscript in (2.49a)´ from 
k to l, and then summing up the equations over 

11 −≤≤ kl , we obtain 

∑

∑
−

=
+++

−

=
+

++−

=Φ−Φ

1

1
212112

1

1

1
1

)ˆ]()()[(

)(

k

l
lllvlvd

k

l
ll

TTR δδ

 

])ˆ()(

)ˆ()([

1

1
2121

2
21212

1

∑

∑
−

=
++

=
−−

++

+−=

k

l
lllv

k

l
lllvd

T

TR

δδ

δδ

∑
−

=
++−−

−−

++++

+−=
1

2
21212121

21212
1

)ˆˆ()(

)ˆ()[(
k

l
lllllv

kkkvd

T

TR

δδδδ

δδ
 

   )]ˆ()( 23231 δδ ++ vT . 
Or 

∑
−

=
++−− ++++

+−=Φ−Φ
1

2
212121212

1

123232
1

1

))(ˆˆ(

))(ˆ([
k

l
lvllll

vdk

T

TR

δδδδ

δδ

 ]))(ˆ( 21212
1

kvkk T−− ++ δδ .          (2.49h) 
 

Then, adding (2.49h) and (2.49b)´, we 
obtain 

123232
1

2121 ))}(ˆ()ˆ[{( vdSk TR δδδδ +++−=Φ−Φ  

 lv

k

l
llll T )()ˆˆ(

1

2
212121212

1∑
−

=
++−− ++++ δδδδ  

 ]))(ˆ( 21212
1

kvkk T−− ++ δδ .           (2.49i) 
Note that (2.49i) holds for Kk ≤≤2 with the Σ 
term omitted for 2=k . Equation (2.49b)´ holds 
for 1=k .  
 

Equations (2.49i) and (2.49b)´ can be 
written in a compact form: 

,1))(ˆ(
1

,, KkTaaR
k

l
lvlklkd

Sk

≤≤∀+−

Φ=Φ

∑
=

    (2.49j) 

that is a vertically-discrete analog of the 
corresponding continuous-form vertically-
integrated hydrostatic equation (2.17) from 
section 2.b. Here, lka , and lka ,ˆ  are the elements of 

the lower triangular matrices A  and Â of 
dimension KK × , the non-zero elements of 
which are given by 
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211,1 δ=a ,            (2.49k) 

232
1

2,2232
1

211,2 ; δδδ =+= aa .                  (2.49l) 
For Kk ≤≤3  

⎪
⎩

⎪
⎨

⎧

=∀−

−≤≤∀++−

=∀+

=

.212
1

12)2121(2
1

1232
1

21

,
kll

klll

l

lka

δ

δδ

δδ

. (2.49m) 

211,1
ˆˆ δ=a ,            (2.49n) 

232
1

2,2232
1

211,2
ˆˆ;ˆˆˆ δδδ =+= aa .                 (2.49o) 

 
For Kk ≤≤3  

⎪
⎩

⎪
⎨

⎧

=∀−

−≤≤∀++−

=∀+

=

.21
ˆ

2
1

12)21
ˆ

21
ˆ(2

1
123

ˆ
2
1

21
ˆ

,ˆ

kll

klll

l

lka

δ

δδ

δδ

,  (2.49p) 

 
In view of (2.49f) and (2.49g), we note 

that elements of the matrix A are functions of the 
η-values, kη , at the model levels, Kk ≤≤1 . 
Since the { }kη  values are specified constants, the 
matrix A does not change in time. However, a 
similar inspection also reveals that the elements 
of the matrix Â can vary both in space and time. 
This is not a problem, as the matrix Â does not 
need to be computed explicitly anywhere in 
subsequent development of the FISL/SISL 
scheme. 
 
 In analogy with (2.18), the generalized 
geopotential at levels Kk ≤≤1 , is introduced as 

Λ+−Φ= ∑
=

0
1

, TRTaRG d

k

l
llkdSk .          (2.49q) 

Similarly, in analogy with (2.19), the virtual 
geopotential at levels Kk ≤≤1 , is introduced as 

∑∑
==

++−=Φ
k

l
llkd

k

l
lvlklkdkv TaRTaaR

1
,

1
,, ))(ˆ()( .

              (2.49r) 
Then, adding (2.49q) and (2.49r), we obtain 

.

))(ˆ(

)(

00

1
,,

Λ+Φ=Λ+

+−

Φ=Φ+

∑
=

TRTR

TaaR

G

dkd

k

l
lvlklkd

Skvk

         (2.49s) 

Or 
KkTRG kvdkk ≤≤∀Φ+Λ−=Φ 1)(0 .   (2.49t) 

 
 
• Mass continuity equation 
 

 Let us apply (2.43), (2.44), and (2.12) at 
levels Kk ≤≤1 , to obtain 

1
*

2121 ])[(
)(

−
Λ

−+ =
∆
−

++
Λ n

k
k

n
k

n
kn

k

n

RD
η
ηη

τ
&&

,         (2.50a) 

where 

k
g

g
k FR )(

1
1

)( ΛΛ +
−

+
Λ

≡
ε
ε

τ
,           (2.50b) 

⎥
⎦

⎤
⎢
⎣

⎡
∆

−
+−≡ −+

Λ

k

kk
kk DF

)(
)( 2121

η
ηη &&

.                 (2.50c) 

Moreover, let us rewrite (2.50a) as 

k
k

n
k

n
k

n

X=
∆
−

+
Λ −+

)(
2121

η
ηη

τ
&&

,           (2.50d) 

where 
KkDRX n

k
n

kk ≤≤∀−≡ −
Λ 1])[( 1

* .       (2.50e) 
 

Then, summing up (2.50d) times k)( η∆  
over all levels Kk ≤≤1 , we obtain 

∑∑∑
==

−+
=

∆=−+∆
Λ K

k
k

K

k

n
k

n
k

K

k
k

n

X
11

2121
1

)()()( ηηηη
τ

&& , 

or 

∑
=

++ ∆=−+−
Λ K

k
k

nn
KK

n

X
1

21212121 )()()( ηηηηη
τ

&& , 

or 

∑
=

∆=Λ
K

k
k

n X
1

)( ητ .                                     (2.50f) 

Note that to arrive at (2.50f) from the previous 
equation, we have used the lower and upper 
boundary conditions, corresponding to (2.9), on 

n
k 21+η&  given by 

nn
K

n all0;0 2121 ∀== +ηη && ,          (2.50g) 
and also the relations 

1;0 2121 == +Kηη .           (2.50h) 
 
 Similarly, after formally replacing the 
vertical grid-index k by l in (2.50d), and then 
summing up (2.50d) times l)( η∆ over the levels 

Klk ≤≤ , we obtain 

∑∑∑
==

−+
=

∆=−+∆
Λ K

kl
l

K

kl

n
l

n
l

K

kl
l

n

X )()()( 2121 ηηηη
τ

&& . 

Or 

∑
=

−+−+ ∆=−+−
Λ K

kl
l

n
k

n
KkK

n

X )()()( 21212121 ηηηηη
τ

&& . 

Or 

∑
=

−− ∆−
Λ

−=
K

kl
l

n

k
n
k X )()1( 2121 η

τ
ηη& .           (2.50i) 
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Note that in deriving (2.50i) from the previous 
equation, we have used the second equations 
from (2.50g) and (2.50h). 
 
 Then, using (2.50f) to eliminate τnΛ  
from (2.50i), we obtain nη&  at the model 
interfaces, Kkk ≤≤∀− 221 : 

∑
=

∆−∑
=

∆−−=−
K

kl lX
K

l lXk
n
k )(

1
)()211(21 ηηηη& . 

Or 

.2
1

)(21

1

1
)(21

Kk
K

l lXk

k

l lXn
k

≤≤∀∑
=

∆−−

∑
−

=
∆=−

ηη

ηη&

      (2.50j) 

 
 To determine nη&  at the model levels 

Kk ≤≤1 , we substitute (2.50j) in (2.48g) to 
obtain 

∑

∑∑

=
−+

−

==

∆+−

∆+∆=

K

l
lkk

k

l
l

k

l
l

n
k

X

XX

1
21212

1

1

11
2
1

)()(

])()([

ηηη

ηηη&
 

∑∑
=

−

=

∆−∆+∆=
K

l
lk

k

l
lk XXX

1

1

1
2
1 )(~])(2)[( ηηηη  

∑∑
=

−

=

∆−∆+∆=
K

l
lkk

k

l
l XXX

1
2
1

1

1

)(~])()([ ηηηη , 

         (2.50k) 
where (2.48e) has been used. 
 
 Let us introduce a discrete vertical 
integral operator, Σ´, as 

k

k

l
ll

k

l

Ψ+Ψ=Ψ ∑∑
−

==
2
1

1

11

/

,            (2.50l) 

so that (2.50k) can be rewritten as 

KkXX
K

l
lk

k

l
l

n
k ≤≤∀∆−∆= ∑∑

==

1)(~)(
11

/

ηηηη& .

                       (2.50m) 
 
 
• Thermodynamic energy equation 
 

Let us apply (2.42) at model levels 
Kk ≤≤1 , to obtain 

kT
k

n
k

d

n
k STT )(

1

~
0 =

−
+

η
ηκ

τ
&

,            (2.51a) 

where 
 Λ−≡ 0

~ TTT dkk κ ,           (2.51b) 
 1

*])[()()( −+= n
kT

n
kTkT RNS ,           (2.51c) 

 kT
g

gk
kT FTR )(

1
1~

)(
ε
ε

τ +
−

+= ,          (2.51d) 

,)(
1

)(

~1
)1(1

)(
)(

0 kd
k

k
k

dkT

FTF

kp
Tp

kq
kvT

F

ΛΛ −
⎭
⎬
⎫

⎩
⎨
⎧

−
−×

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−+
=

κ
η

η

δ
κ

&

(2.51e) 

,
1

)(

~1
)1(1

)(
)( 0

⎭
⎬
⎫

⎩
⎨
⎧

−
−×

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−+
=

Λ

k

k
k

dkT

F

T
kp
Tp

kq
kvT

N

η
η

δ
κ

&

 

          (2.51f) 
where kF )( Λ is given by (2.50c). 
 
 Eliminating  nΛ  and n

kη&  from (2.51a), 
using (2.50f) and (2.50m), respectively, we 
obtain 

n
d

k

n
k

dkT
n

k TTST Λ+⎥
⎦

⎤
⎢
⎣

⎡
−

−= 00 1
)( κ

η
ηκτ
&

 

∑∑∑
===

∆+⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∆−∆
−

−=
K

l
ld

K

l
lk

k

l
l

k

d
kT XTXXTS

1
0

11

/
0 )()(~)(

1
)( ητκηηη

η
κτ

 

⎥
⎦

⎤
⎢
⎣

⎡
∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

++∆
−

−= ∑∑
==

K

l
l

k

k
d

k

l
l

k

d
kT XTXTS

1
0

1

/
0 )(

1

~
1)(

1
)( η

η
ηκη

η
κτ

 

Or

⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∆−+−+∆
−

−= ∑∑
==

K

l
lkk

k

l
l

k

d
kT

n
k XXTST

11

/
0 )()~1()(

1
)( ηηηη

η
κτ

                                        (2.51g) 
 
• Momentum equations 

 
Let us apply (2.36) and (2.37) at model 

levels Kk ≤≤1 , to obtain 

ku
n
kx

n
k

n
k SGmvfu )(0 =∂+−
τ

,           (2.52a) 

kv
n
ky

n
k

n
k SGmufv )(0 =∂++
τ

,            (2.52b) 

where 

1
*

1
*

])[()()(
;])[()()(

−

−

+=

+=
n

kv
n
kvkv

n
ku

n
kuku

RNS
RNS

,           (2.52c) 

kv
g

gk
kvku

g

gk
ku FvRFuR )(

1
1

)(;)(
1
1

)(
ε
ε

τε
ε

τ +
−

+=
+
−

+= ,    (2.52d) 

{ }
],)(

0
~ln)([

]0)[()(

kvx

xTkpxkvTdRm
kvfkzfkuN

Φ∂+

Λ∂−∂−

−=

    (2.52e) 
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{ }
],)(

0
~ln)([

]0)[()(

kvy

yTkpykvTdRm
kufkzfkvN

Φ∂+

Λ∂−∂−

−−=

,    (2.52f) 

},~ln)({

)()(

kxkpxkvTdRm
kvzfkuF

Φ∂+∂−

=
     (2.52g) 

}.~ln)({

)()(

kykpykvTdRm
kuzfkvF

Φ∂+∂−

−=
     (2.52h) 

 
 Then, from (2.52a) and (2.52b), we 
obtain 

)]()[(ˆ 0
n
ky

n
kxku

n
k GfGmHu ∂+∂−= ττ ,      (2.52i) 

)]()[(ˆ 0
n
kx

n
kykv

n
k GfGmHv ∂−∂−= ττ ,       (2.52j) 

where 
])(1[ˆ 2

0τττ f+≡ ,                         (2.52k) 

.)()()(
;)()()(

0

0

kukvkv

kvkuku

SfSH
SfSH

τ
τ

−=
+=

           (2.52l) 

 
 From (2.52i) and (2.52j), we derive the 
horizontal divergence at the model levels 

Kk ≤≤1 , 
)]()([2 mvmumD n

ky
n
kx

n
k ∂+∂=  

.])(

})({})({[ˆ 2

n
kyyxx

kvykux

G

mHmHm

∂+∂−

∂+∂= τ
 

Or 
KkPGD k

n
kH

n
k ≤≤∀=∇+ 1ˆ 2τ ,         (2.52m) 

where 
Ψ∂+∂≡Ψ∇ )(22

yyxxkH m ,           (2.52n) 

}])({})({[ˆ 2 mHmHmP kvykuxk ∂+∂≡ τ . (2.52o) 
 
 
• Moisture continuity equation 
 

For 3D semi-Lagrangian advection 
based FISL/SISL schemes, we apply (2.45) at 
the model levels Kk ≤≤1 , to obtain 

1
*)( −= n

k
n
k qq .             (2.53a) 

 
 For 2D semi-Lagrangian advection 
based FISL/SISL schemes, we apply (2.46f) at 
model levels Kk ≤≤1 , to obtain 

kq

n
k Sq )(=
τ

,                                                (2.53b) 

where 
1

*])[()()( −+= n
kq

n
kqkq RNS ,            (2.53c) 

kq
g

gk
kq FqR )~(

1
1

)(
ε
ε

τ +
−

+= ,           (2.53d) 

kqkq NF )()~( = ,               (2.53e) 

kkq qN )()( ηη∂−= & .            (2.53f) 
Note that for the vertical advection of an 
arbitrary variable, Ψ: 

.1

)()(
)(

21

1
21

21

1
212

1

Kk
k

kk
k

k

kk
kk

≤≤∀
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∆
Ψ−Ψ

+
∆

Ψ−Ψ
=Ψ∂

−

−
−

+

+
+ η

η
η

ηη η
&&&

                                        (2.53g) 
 
• Elliptic equations 
 

In this section, we use the vertically 
discrete equations established thus far, to derive 
a vertically-decoupled system of 2D elliptic 
equations for the generalized geopotential nG . 
To start, we apply (2.49q) at the time level n, to 
obtain 

∑
=

−Λ+Φ=
k

l
n
lTlkadRnTdRS

n
kG

1 ,0 ,           (2.54a) 

where Kk ≤≤1 . Then, eliminating nΛ and n
lT  

from (2.54a), using (2.50f) and (2.51g), 
respectively, we obtain 

∑
=

∆+Φ=
K

l lXTdRS
n
kG

1
)(0 ητ  

∑ ∑ ∑
= = =

⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ ∆−+−+∆

−
−−

k

m

m

l

K

l
lmml

m

d
mTmkd XXTSaR

1 1 1

/
0

, )()~1()(
1

)( ηηηη
η

κ
τ  

Or 

∑
=

∆+∑
=

−Φ=
K

l lXTdR
k

m mTSmkadRS
n
kG

1
)(01

)(, ηττ  

⎭
⎬
⎫

⎩
⎨
⎧ ∆−+−+∆

−
+ ∑∑∑

===

K

l
lmm

m

l
l

k

m m

mk
dd XX

a
TR

11

/

1

,
0 )()~1()(

1
ηηηη

η
κτ

             (2.54b) 
Note that the subscript m used in (2.54a) and 
(2.54b), and in the equations derived later based 
on these two equations, should not be confused 
with the map factor also denoted by m. 
 
 Let us denote the underlined term in 
(2.54b) by kY  and then using (2.50l) express it as 

mmm

m

l
lmm

k

m m

mk
k XX

a
Y ))(~1()()~11({

1 2
1

1

11

, ηηηηηη
η

∆−+−+∆−+−
−

= ∑∑
−

==

 

}
1

)()~1( ∑
+=

∆−+−+
K

ml lXmm ηηη .     (2.54c)  

 
Let us then introduce the matrix 

KKlmJ ×= ][ ,J : 

⎪
⎩

⎪
⎨

⎧

>∀
=∀
<∀

=
ml
ml
ml

J lm

1

0

2
1

, ,           (2.54d) 

so that 
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⎪
⎩

⎪
⎨

⎧

>∀
=∀
<∀

=−
.0

1
1 2

1
,

ml
ml
ml

J lm   (2.54e) 

Then, using (2.54e), we can rewrite (2.54c) as 

∑∑
==

∆−+−−
−

=
K

l
lmmlm

k

m m

mk
k XJ

a
Y

1
,

1

, ))(~11(
1

ηηη
η

     

∑ ∑
= =

∆−+−+−
−

=
K

l

k

m
lmmlm

m

mk XJ
a

1 1
,

, ))}](~1(1{
1

[ ηηη
η

                            (2.54f) 
 
 Substituting kY  from (2.54f) into 
(2.54b), we obtain 

∑
=

−Φ=
k

m mTSmkadRS
n
kG

1
)(,τ

∑ ∑
= =

∆−+−+−
−

++
K

l

k

m
lmmlm

m

mk
dd XJ

a
TR

1 1
,

,
0 ))}](~1(1{

1
1[ ηηη

η
κτ

                                                     (2.54g) 
 
 Let us introduce the matrix 

KKlkM ×≡ ],[M : 

⎥
⎦

⎤
⎢
⎣

⎡
−+−+−

−
+∆= ∑

=

)}~1(1{
1

1)( ,
1

,
0, mmlm

k

m m

mk
dldlk J

a
TRM ηη

η
κη  

                                        (2.54h) 
and employ (2.50e), to rewrite (2.54g) as 

∑∑
=

−
Λ

=

−+−Φ=
K

l

n
l

n
llk

k

m
mTmkdS

n
k DRMSaRG

1

1
*,

1
, }]){[()( ττ  

Or 

KkkH
K

l
n
lDlkMn

kG ≤≤∀=∑
=

+ 1
1 ,τ ,       (2.54i) 

where 

.
1

1
*])[(,1

)(, ∑
=

−
Λ+∑

=
−Φ=

K

l
n

lRlkM
k

m mTSmkadRSkH ττ

              (2.54j) 
 
 Let us now introduce the K-dimensional 
column-vectors (D, G, P, H) whose respective 
elements are ( n

kD , n
kG , kP , kH ). Then, (2.54i) 

and (2.52m) can be expressed in matrix form: 
 HMDG =+τ ,           (2.54k) 
 PGD =∇+ 2ˆ Hτ .            (2.54l) 
 
 A vertical decoupling transformation is 
also introduced at this stage. Let E be the 

KK × matrix whose column vectors are the 
eigen vectors of M, with the associated eigen 
values (K in number) 1λ , 2λ , …, Kλ . 
Multiplying (2.54k) and (2.54l) on the left by the 
matrix 1−E , we obtain 
 HDG ˆˆ)(ˆ

, =+ lkkδλτ ,         (2.54m) 

 PGD ˆˆˆˆ 2 =∇+ Hτ ,           (2.54n) 
where 

),,,()ˆ,ˆ,ˆ,ˆ( 1 HPGDEHPGD −= ,               (2.54o) 
and ),( lkkδλ  is a diagonal matrix; lk ,δ  is the 

Kronecker delta. 
 
 Resorting to the component form, 
(2.54m) and (2.54n) can be written as 

kkkk HDG ˆˆˆ =+τλ ,           (2.54p) 

kkHk PGD ˆˆˆˆ 2 =∇+τ ,                                     (2.54q) 
where )ˆ,ˆ,ˆ,ˆ( kHkPkGkD  are the elements of the 

respective vectors )ˆ,ˆ,ˆ,ˆ( HPGD  defined by 
(2.54o). 
 
 Eliminating kD̂  from (2.54p) and 
(2.54q), we obtain a set of 2D Helmholtz-type 
elliptic equations for the vertical eigen modes (K 
in number): 

kkHkkk HGPG ˆ]ˆˆˆ[ˆ 2 =∇−+ ττλ . 
Or 

 
k

kH
kPkG

k
kGH τλτλ

τ
ˆ

ˆˆ1ˆ2ˆ −=−∇ . 

Or 

.1

2

ˆˆ
ˆ

2
1ˆ2

2)0(1

1

Kk

k
k

kHkP
kG

k
kGHf

≤≤∀

ℑ≡−=−∇
+ λττλττ

                                         (2.54r) 
Note the elliptic equation (2.54r) is non-
separable, because of the non-separable map-
factor term ),( yxm  that appears inside the 

kHĜ2∇  term defined by (2.52n). 
 
 For KT 3000 = , and number of model 
levels, 10=K , we have computed the eigen-
values Kkk ≤≤∀1}{λ  and the eigen-vectors of 
the matrix M. For simplicity, the model layers 
are assumed of uniform thickness in η, so that 

KkKk ≤≤∀=∆ 11)( η ; and the model levels 
are placed at Kkkkk ≤≤∀+= −+ 1)( 21212

1 ηηη . 
The pure gravity wave speed associated with the 
kth eigen-mode is given by kkgc λ=)(  for  

Kk ≤≤1 . Figure 2 shows kgc )(  as a function 
of the eigen-mode number k. Here the eigen-
values are arranged in a descending order in 
terms of the gravity-wave speed. The 
corresponding eigen-vectors are normalized by 
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making the 1st element of each vector positive; 
and then dividing each element of the vector by 
the largest element of that vector in terms of 
absolute value. The normalized eigen-vectors for 
the eigen-modes 1-5 are shown in Fig. 3a, and 
for the eigen-modes 6-10 are shown in Fig. 3b. 
The eigen-modes 1, 2, 3, …, are identified as the 
external (or Lamb) mode, the 1st internal mode, 
the 2nd internal mode, …, respectively. Since the 
external mode is the fastest, a gravity-wave 
Courant number can be introduced for the model 
as 
 ∆∆≡ tcgg 1)(µ ,             (2.54s) 
where ∆ is assumed to be the uniform grid size in 
x and y. Clearly for any 2nd order time-explicit 
scheme to be linearly stable, it must satisfy the 
CFL restriction: 

21])()[( 1 ≤∆∆≡ exgex tcµ ,           (2.54t) 
where the subscript ex is a reminder for the time-
explicit scheme. 
 
 
f. Horizontal grid and discretization 
 
 As indicated in the Introduction, the 
unstaggered A grid with a uniform grid interval 
∆  in x and y is used to horizontally discretize 
the governing equations. Standard second-order 
centered-difference scheme is used to discretize 
all partial derivative terms in x and y. The 
Laplacian operator defined by (2.52n) is 
discretized horizontally as 

Djijijijiji
ji

jiH Lji
m

∈∀Ψ−Ψ+Ψ+Ψ+Ψ
∆

=Ψ∇/ −+−+ ),()4()( ,1,1,,1,12

2
,

,
2

             (2.54u) 
using a compact stencil of five grid points, where 
the neighboring points are one grid interval 
apart. The limited-area horizontal domain used 
for the model is shown in Fig. 4. The scheme 
(2.54u) has been employed in the Helmholtz-
type equation (2.54r) to eliminate the spurious 
two-grid-interval gravity wave solutions that 
may appear as noisy checkerboard patterns in the 
model forecasts. Use of such a compact stencil 
enables a gravity-wave perturbation introduced 
at one grid point to readily travel to the nearest 
grid points, and thereby eliminate the stationary 
two-grid-interval waves from the solution. 
Further justifications for this particular scheme is 

detailed in Kar (2000) and Kar and Logan 
(2000). 
 
 For implementation of the 2D semi-
Lagrangian advection scheme, we need (a) an 
algorithm to compute the departure points and 
(b) appropriate horizontal interpolation schemes 
to interpolate the field variables and other 
functions from the grid points to the departure 
point. The departure points are computed 
following a space and time-centered iterative 
procedure (Robert 1981). The procedure 
employs an un-centered linear extrapolation: 

])1()3[( 21
2
12)1( −−−− Ψ+−Ψ+=Ψ n

g
n

g
n g εεε , 

         (2.54v) 
to determine ],[ 2)1(2)1( gg nn vum εε −−−−  at the grid 
points and a bilinear horizontal interpolation 
scheme to compute the same at the mid-point of 
the trajectory. Two to three iterations are 
generally sufficient for convergence. Aside from 
this, to interpolate the field variables and other 
functions from the grid points to the departure 
points, we have employed a conventional bicubic 
interpolation scheme.   
    
 
g. Computational steps for the FISL/SISL 
schemes 
 
 Here we outline the computational steps 
for time-integration of the hydrostatic model 
based on the FISL/SISL scheme. Recall that the 
horizontal and vertical extension of the model 
domain are shown in Fig. 1 and Fig. 4, 
respectively. In the following, we use the 
notations 1+DL , 2+DL , 3+DL , … to denote 
the rectangular domains 1BLD + , 21 BBLD ++ , 

321 BBBLD +++ , …, respectively. Also for 
convenience, an arbitrary 3D variable or function 

kji ,,Ψ  is simply denoted by kΨ . Similarly, at the 
i-th iteration of the FISL scheme, an arbitrary 3D 
variable or function )(

,,
in
kjiΨ  is denoted by +Ψk . The 

computational steps to be followed for time-
integration of the hydrostatic model equations 
over one time step using the proposed FISL 
scheme is presented below in the form of a flow 
chart.

.  
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Compute ]4),(,1[),,,,( 1 +∈≤≤∀−
Λ D

n
kqTvu LjiKkRRRRR , 

using (2.52d), (2.51d), (2.53d), and (2.50b).  

Compute ]4),(,1[],[ 2)1( +∈≤≤∀−−
D

n
k LjiKkmvmu gε , using (2.54t). 

Compute 2D-trajectory departure points ]1),(,1[ +∈≤≤∀ DLjiKk . 
For ]1),(,1[ +∈≤≤ DLjiKk : 

• Compute interpolation weights for bicubic interpolation. 
• Compute 1

*]),,,,[( −
Λ

n
kqTvu RRRRR . 

Copy the arrays: 5),(]~,11,1),,,,,[( 11
21

1 +∈∀−≤≤∀≤≤∀ −−
+

−
D

n
S

n
k

n
k LjipKkKkDGqTvu η&  

into the auxiliary arrays: 
5),(]~,11,1),,,,,[( 21 +∈∀−≤≤∀≤≤∀ ++

+
+

DSkk LjipKkKkDGqTvu η& , 
that are used and updated inside the iterative loop below. 

1

Input constants: 
Matrices: A, M, E, E-1 Eigen-values: Kkk ≤≤∀ 1λ  
Vertical grid: 

Kkkkk ≤≤∀∆ 1})(,~,{ ηηη  
11})(,{ 2121 −≤≤∀∆ ++ Kkkk ηη  

Horizontal grid: 
∆=∆=∆ yx , ],[ nynxLD = , 5== nyhalonxhalo  

Time stepping: t∆ , gε , and Iteration_max = 3 
Input variables:  

}4),(,1{),( 21 +∈≤≤∀−
D

n
k LjiKkvu

}),(,11{
}),(,1{),(

5),(]~;1),,,[(

1
21

1

11

D
n
k

D
n
k

D
n
S

n
k

LjiKk
LjiKkDG

LjipKkqTvu

∈−≤≤∀

∈≤≤∀

+∈∀≤≤∀

−
+

−

−−

η&
 

5),( +∈∀Φ DS Lji  
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Compute ]1),(,1[),,,( +∈≤≤∀+
DkqTvu LjiKkNNNN , using  

(2.52e), (2.52f), (2.51f), and (2.53f), respectively. The rhs of 
these equations are computed using the auxiliary variables, 
introduced earlier. 

Compute ]1),(,1[),,,( +∈≤≤∀ DkqTvu LjiKkSSSS , using  
(2.52c), (2.51c), and (2.53c).

Compute ]1),(,1[),( +∈≤≤∀ Dkvu LjiKkHH , using (2.52l). 

Compute ]),(,1[),( Dk LjiKkHP ∈≤≤∀ , using (2.52o) and 
(2.54j), respectively. 

Transform from physical space into vertical eigen-mode space:

• For ]),(,1[ DLjiKk ∈≤≤ , compute kHP )ˆ,ˆ(  using (2.54o) and 
compute kℑ  using (2.54r). 

• For ]1),(,1[ +∈≤≤ DLjiKk , compute kĜ  using the auxiliary +
kG  in 

(2.54o) to provide initial and boundary condition for the elliptic 
equation (2.54r)  for updated +

kĜ . 

b

Iteration count

  start = 1 
  stop = Iteration_max 
  step = 1 

1

a 
c
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For each vertical eigen-mode Kk ≤≤1 , over DLji ∈),(
• Solve the Helmholtz-type equation (2.54) for +

kĜ . 

• Compute +
kD̂ using (2.54p). 

Transform back into the physical space from 
the vertical eigen-mode space:

Compute ]),(,1[),( DLjiKkkDG ∈≤≤∀+  from +
kDG )ˆ,ˆ(  

using variation of (2.54o). 

Compute ]),(,1[),( Dk LjiKkvu ∈≤≤∀+ , substituting 

kvu HH ),( and +
kG  in (2.52a) and (2.52b). 

Compute ]),(,1[)( Dk LjiKkX ∈≤≤∀∆η , substituting 
1

*])[( −
Λ

n
kR  and +

kD  into (2.50e). Then, 

• Compute +Λ , and thus +
Sp~ , using (2.50f). 

• Compute Kkk ≤≤∀+
− 221η& , using (2.50j). 

• Compute Kkk ≤≤∀+ 1η& , using (2.50m).

Compute ]),(,1[ Dk LjiKkT ∈≤≤∀+ , substituting kTS )(  and 

kX )( η∆  into (2.51g). 

Compute ]),(,1[ Dk LjiKkq ∈≤≤∀+ , substituting kqS )(  into 
(2.53b). 

a 
b c

2
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3. NUMERICAL SIMULATION 
 
 The FISL model is at its early stage of development and various tests are being performed to 
debug the model code and check the effectiveness of the model formulation. Thus, the results presented 
here are only preliminary. Recently, we employed the model to simulate the nonlinear evolution of mid-
latitude disturbances. To this end, the model domain is horizontally reduced to a cyclic-in-x, mid-latitude β-
plane channel. The pressure at the model top is set to 1 hPa, with 41 uniformly spaced layers in the vertical. 
The length and width of the β-channel are 4000 km and 10000 km, respectively. The horizontal grid size, 
uniform in x and y, is 100 km. There are five grid points in the x and y halo regions. The reference 
isothermal atmosphere is set to 330 K. The initial condition consists of a zonally uniform geostrophically 
balanced basic state and small-amplitude random perturbations in the temperature and surface pressure 
fields superimposed on the basic state.  
 

For this simulation, we have included a Newtonian heating term in the thermodynamic energy 
equation that relaxes the temperature to an equilibrium state. Thus, the heating term is given by 

kkpdk TTcQ )(/ * −= γ ,                   (3.1) 

where kγ  assumes constant specified values and )(* yT k  is the zonally uniform equilibrium temperature. 
 

We have also included Rayleigh-damping type friction terms in the ),( vu momentum equations, 
given by 

kkkxkx uuCF )()( −= , 

kkkyky vvCF )()( −= ,              (3.2) 
with kyx CC ),( defined by 

1)10()()( −== kkykx CC τ ,              (3.3) 
where kτ assumes constant specified values. We have included such simple thermal forcing and friction 
terms, because the model does not include comprehensive physical processes at this stage. However, a dry 
convective adjustment is included in the model to restore a neutral stratification between adjacent unstable 
layers when necessary. The heating parameters are set at 10=kγ days for Kk ≤≤2  and 11 =γ day. The 
friction is applied only at the lowest four levels with 5.01 =τ day. Note that the lowest four layers add up to 
an approximate thickness of 100 hPa. 

Copy the auxiliary arrays: 
DSkk LjipKkKkDGqTvu ∈∀−≤≤∀≤≤∀ ++

+
+ ),(]~,11,1),,,,,[( 21η&   

into the output arrays: 
DS

n
k

n
k LjipKkKkDGqTvu ∈∀−≤≤∀≤≤∀ +

+ ),(]~,11,1),,,,,[( 21η& .   
Apply boundary-relaxation scheme to the output arrays over the halo region.  
This completes one FISL time step. 

Repeat these steps, for the specified number of time 
steps and then stop. 

2
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 The FISL scheme employs a time step of 20 min, with 3 outer iterations and =gε 0. To remove 
some residual grid-scale noise from the solutions, a horizontal 2D filter is used at each time step. There is 
no other explicit damping or diffusion used in the present simulation. 

  
 The model is integrated for 20 days. The model predicted surface pressure together with the 
potential temperature at level 1 for days 6 to 20 is presented in Fig. 5. The geopotential height and the 
potential temperature at level 21 for the same time period are shown in Fig. 6. Note that initially, the levels 
1 and 21 are located at 988 hPa and 500 hPa, respectively. Early stages of development (days 6 and 8) 
shows two unstable waves with wavelengths of approximately 1000 km and 4000 km. However, starting at 
day 12, a single domain-size long wave dominates. Frontal zones develop at the surface and the upper 
troposphere. Well-defined fronts develop at the surface and upper troposphere; the disturbance continues to 
grow and the low pressure center deepens until day 16. Both low and high pressure maxima begin to 
weaken after day 16. 
 
 Clearly, the model is able to simulate the nonlinear evolution of a mid-latitude disturbance on the 
β-plane. We have found that such simulations are indeed sensitive towards the prescription of initial 
condition and the parameters related to heating and friction. We are currently addressing such issues. 
 
 
4. CONCLUSIONS 
 
 A fully-implicit, semi-Lagrangian, 3D 
hydrostatic, limited-area, grid-point model has 
been developed at NCEP/EMC. We are currently 
testing the model to simulate the nonlinear 
evolution of a mid-latitude disturbance on the b-
plane. We are also applying the model in a 
vertical ),( ηx slice version to simulate linear 
and nonlinear hydrostatic mountain waves over 
idealized mountain shapes. Preliminary results 
will be presented at the conference. 
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Figure 1. Vertical grid and distribution of variables. 
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Figure 2. The pure gravity wave speed (m s-1) of the vertical eigen-modes of a 10 layer version of the 
FISL/SISL 3D hydrostatic model. The reference atmosphere is isothermal (300 K), and the vertical layers 
are of uniform thickness. 
 

 
Figure 3. Non-dimensional amplitudes of the vertical eigen-vectors of the FISL/SISL 3D hydrostatic model 
are plotted as a function of the vertical levels. The curves with the embedded symbols (+, *, ◊, ∆, and □) 
correspond respectively to the eigen-modes 1-5 in (a) and  6-10 in (b). 
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Figure 4. A schematic of the horizontal limited-area computational domain. The innermost subdomain is 
denoted by LD. The dashed-line rectangles 4321 and,,, BBBB  represent the first four lines of grid points 
surrounding LD. The solid-lined rectangle 5B  represents the lateral boundary of the limited area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DL
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Figure 5. Surface pressure (solid lines) and the potential temperature (dashed lines) at the lowest model 
level for day 6 to day 12. Contour intervals are 2 hPa for surface pressure and 3 K for potential 
temperature. 
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Figure 5. (Continued) 
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Figure 6. Geopotential height (solid lines) and the potential temperature (dashed lines) at the model level 21 
for day 6 to day 12. Contour intervals are 100 gpm for geopotential and 1 K for potential temperature. 
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Figure 6. (Continued) 
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