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1 Introduction

Most implementations of the adjoint method em-
ploy global models and attention now turns to lim-
ited area models where the use of variational meth-
ods is more complicated . This problem has already
been given attention; Lu and Browning (2000) fol-
low the theory of Gustaffson et al (1972) for systems
of hyperbolic equations, and show the well posed-
ness of the adjoint equations; however they do not
address the discretization problems and the deter-
mination of the incoming boundary forcing in their
numerical experiment. On the practical side, Zou
and Kuo (1996) used the grid point model MM5
and made a first attempt to determine a boundary
forcing along with the interior solution : the trend
at the boundary was optimized, and they concluded
that this trend had a major impact on the quality
of the retrieved fields.
Trying to address the boundary control, we will

encounter problems with the convergence of the ad-
joint; use of the discretization of the continuous
adjoint model is often advocated. We will meet
this problem and instead we will bring the adequate
modification to the direct model so that the prob-
lem disappears.
The difficulties encountered even with the sim-

plest models lead us to address first the prob-
lem with the simplest prototype model, advection
in one dimension, discussed at length in Bennett
(2002) and we consider the determination of the
boundary forcing along with the initial state of the
model.
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Different space discretizations have been studied:
centered differences, grid-point methods, Legendre
polynomial finite element method, Ikawa spectral
method; we have retained only centered differences
in this presentation.
The questions we will address are :

• Does the adjoint of the discretized direct equa-
tions approximate the continuous adjoint?

• does the optimal control of the discretized
problem converge to the physical one, even in
the case the adjoint of the model equations has
a pathological behavior?

• An iterative minimization method is practical
only when the discretized problem is well con-
ditioned; is it the case?

2 Adding boundary forcing in
the control :

We consider the advection equation on the segment
[a, b] = [0, 1]. The direct equation is :

∂u

∂t
= Lu = −U ∂u

∂x
u(a, t) = f(t)

u (x, ti) = u0

and the resolvent is :

u (x, tf ) = L (u0, f)
We assume observations are complete and lo-

cated at final time tf = 0, that is u is given at
final time :
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u (x, t = 0) = eu
Variational assimilation considers a functional of

the initial state u0 and boundary forcing f (t) de-
signed to minimize the discrepancy at final time
between model state and observations :

J (u0, f) = 1/2
Z b

a

(u(x, tf )− eu)2 dx
Notice that we omit at first a penalty on the

smoothness of the control (u0, f). J will be at a
minimum if its first variation is null; let v(x, tf ) =
u(x, tf )− eu; then

δJ =

Z b

a

v(x, tf )δu(x, tf )dx

If the adjoint variable v satisfies :

v(x, tf ) = u(x, tf )− eu
∂v

∂t
= −L∗v

v (b, t) = 0

the variation of J is expressed under the required
form :

δJ =

Z b

a

v(x, 0)δu(x, 0)dx+ U

Z 0

ti

v(a, t)δfdt

where the variation of the controls appears solely.
We see that two scalar products are present : one

for u (x, tf ) on [a, b] :

hu; vi =
Z b

a

uvdx

and the other one on the control space
{u (x, ti) , f (t)}:

hh(u, f) ; (v, g)ii =
Z b

a

uvdx+ U

Z 0

ti

fgdt

and L∗ is defined by :

hL (u, f) ; vi = hh(u, f) ;L∗ (v)ii
We see that the adequate scalar product for the

control considers the advecting speed U . So, as
it was obvious, the adjoint is the same advection
backwards, and boundary control should be given
as f (t) = eu (a− Ut) for tf − t < (b− a) /U

3 Pathology of the adjoint in-
tegrations :

There are two steps in the forward model: we re-
place the left value of u by the boundary forcing
after advection on the other points. We leave to
the reader the detail of the adjoint; the result is :

gn =
vn1∆x

U∆t

¡
= vn+12

¢
vn−11 =

U∆t

∆x
vn2

vn−1j = vn+1j +
U∆t

∆x
(vnj+1 − vnj−1)

vn−1J = vn+1J +
U∆t

∆x
(0− vnJ − vnJ−1)

The boundary gradient takes the value g (tf ) =
vN1 ∆x
U∆t at time step N for tf , thus the shock es-
pecially for small time steps; null values enter by
relaxation to the right and here the refection of
physical modes to computational modes at the left
boundary is obvious (fig.1)
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Figure 1: Adjoint integration with a uniform final
state and courant number .125; a) (top) : adjoint
v at t = −.5 b) (bottom) : boundary values g from
tf = 0 to ti = −.5. Dashed lines show theoretical
solution.
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4 Modification of the forward
model :

4.1 The scheme

Given the form of the boundary forcing at the right
in the adjoint model, we guess what should be the
forcing in the direct model by adjusting the weight
of the scalar product at the boundary and the co-
efficient of relaxation upon u1, u2; the outcome is
:

∂u1
∂t

=
U

∆x
(2f(t)− u1 − u2) (1)

∂uj
∂t

=
U

2∆x
(uj−1 − uj+1)

∂uJ
∂t

=
U

∆x
(uJ−1 − uJ) (2)

with scalar product

hu; vi = ∆x
Ã
1

2
u1v1 +

J−1X
2

ujvj +
1

2
uJvJ

!

. The adjoint is identical to the direct model. We
notice that the forcing in a implies the sum of u1
and u2; this is precisely a radiative condition for
the computational modes that travel to the left in
the direct model.
So the key to a convergent adjoint is to enter in-

formation in the direct model through a Newtonian
relaxation. This way of dealing with the bound-
ary forcing is not standard; we will call it weak
forcing, and the ordinary forcing with imposition
of the boundary value will be called Tau method
following the terminology of finite elements. We
see now (fig.2) that the adjoint integration behaves
normally.

4.2 Accuracy of weak forcing :

Again we consider a semi-infinite domain [a,∞[
and forcing by a periodic boundary value f =
f̂ exp (iωt); for centered differences the steady re-
sponse with strong forcing is equal to the ideal re-
sponse u = û exp i (kx− ωt) with û = f̂ and with
k determined by the dispersion relation; we want
to estimate the response with weak forcing. As the
computational mode propagates to the left, only
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Figure 2: Same as fig.1 but with weak forcing;

the physical wave is present. Replacing in Eq.(1)
we get :

û (1 + exp (ik∆x) + 2i sin (k∆x)) = 2f̂

which means that the response is correct for
small wave-numbers, but that the forcing accuracy
matches the first order accuracy of the radiating
condition Eq.(2). As during the minimization pro-
cess we determine the forcing f (t) from boundary
gradients, we are sure that high frequencies are ab-
sent (see below).

5 Solution space :
We ask what control θ =

¡
u0 (x) , f (t)

¢
such that

at final time Lθ = u is chosen by a descent
method, with L the resolvent for the N time steps
of the discretized model with J modes, minimiza-
tion starting from the guess θG. Gradients are
∇J = L∗ (Lθ − eu), so the minimization runs in
the subspace θG + L∗(BJ) of the K + N space
of controls, where BJ is the space of grid-point
values. Let v be the departure from the guess :
v = ũ − L (θG); the condition for the minimum is
∇J = 0 :

L∗L∆θ = L∗v

L is rectangular of dimension J×(N+J), so L∗L
is not invertible; however LL∗ is, its eigenvalues are
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those non-null eigenvalues of L∗L. One verifies that
the solution in θG + L

∗(BJ) is :

θ = θG + L
∗ (LL∗)−1 v

6 Conditioning of the system

The solution above will easily be reached by a gra-
dient method provided that κ, condition number
of LL∗ is small; the condition number κ has been
evaluated for our two discretization methods with
appropriate time steps and ti = −3 and is displayed
below.

cond(LL∗) J = 8 J = 16
Tau forcing 1.E4 2.2E5
weak forcing 4.E2 9.E3
Condition number , number of points J .
For all the methods, κ increases rapidly with K;

conditioning is better with weak method than with
Tau method; the high condition number of finite
differences reflects the fact that these methods have
a plentiful of computational modes with a reverse
group velocity that, forced by the wrong side, decay
exponentially to the right : if the observation eu
presents computational noise, it will be difficult to
attain.
Thus another approach has to be taken to show

controllability of physical modes only; one should
consider a subspace of eigenvectors of the advection
equation describing long modes, as is suggested in
Infante and Zuazua, 1998, and show that the solu-
tion can be approached using that subspace; how-
ever here the eigenvectors are more complex and
their computational part remains dominant near
x = a even for small eigenvalues ω; we have not
pursued along this line.
Instead, we have tried to detect when the min-

imization makes its way through completely un-
physical states by displaying the quantity û =
(LL∗)−1 eu; we will call û the precursor of the solu-
tion θ as θ = L∗û.

7 Convergence of the solution

Solution θ = (us, fs) of the minimization problem
with, again, eu (x) = 1, U = 1, tf = 0, ti = −1/2 =
− (b− a) /2,∆x = (b− a) /16 and using traditional

centered differences is displayed in fig.3; the solu-
tion departs from the theoretical one significantly.
The boundary part of the solution fs is roughly
equal to 1/2; us in the left part of the domain is
a superposition of a constant unity value, which
will be advected to the right part, and of numerical
noise of wave-length 2∆x and amplitude 1/2, which
will be reflected in a and add to values forced by
fs to give the unit amplitude of eu. Examination
of the precursor up shows its left part has a rea-
sonable amplitude, but that its right part shows
large amplitude noise, that will propagate to the
right by L∗ to give the right part of us; as we have
shown, the reflection coefficient is small, which ex-
plains the size of the noise. One might wonder why
the internal solution us needs to have unit values
to the right instead of zero values as one would ex-
pect : in this latter case, we would have also have
short waves propagating from the discontinuity to
the left, spoiling the solution.
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Figure 3: Solution with normal forcing : a) pre-
cursor û = (LL∗)−1 eu; b) boundary solution; c)
Internal solution

Fig..4 shows the solution for centered differences
with weak forcing; the solution is nearly perfect,
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with, again, unit values of us extending in the right
half of the domain and a similar precursor.
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Figure 4: Same as fig.3 but with weak forcing

Apparently when we solve the minimization
problem up to the exact solution we generate un-
physical states. So we would like to penalize the
precursor. First let us notice that it is equivalent
to minimize :

Jθ (θ) =
1

2
(Lθ − eu)t (Lθ − eu)

∇Jθ = L∗Lθ − L∗eu
or :

Ju (û) =
1

2
ûtLL∗û− ûteu

∇Ju = LL∗û− eu
as their solution are related by θ = L∗û and gradi-
ents by :

∇Jθ = L∗∇Ju
So we can penalize Ju by considering :

Ju (û) = 1

2
ûtLL∗û− ûteu+ ε

2
ûtû

which is equivalent to the problem for θ :

Jθ (θ) == 1

2
(Lθ − eu)∗ (Lθ − eu) + ε

2
θ∗θ

as we can check from the gradients. This formula-
tion has been tried for the grid-point method with
weak forcing and ε = 1 (fig.5); the scheme limits the
value of the precursor without significant damping
of the solution.
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Figure 5: Same as fig.4 but with penalization

When computational modes are not allowed to
interfere, it is either that they are not present or
that the scheme suppresses them (Lax-Wendroff
scheme damps them, weak forcing allows no re-
flection), there is no other choice than the exact
solution. To illustrate this, we take ti = −2 and
the traditional centered differences; as the model is
damping, we expect that the interior solution will
play no part, so the computational modes; this is
what we observe in fig.6 : the boundary solution
has this time the right amplitude.
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Figure 6: normal forcing, no penalization, ti = −2;
solution : top :Precursor; bottom: boundary forc-
ing

8 Discussion :

We have evidenced that the adjoint of the dis-
cretized forward model should converge towards
the continuous adjoint in order to get the right so-
lution when computational modes are allowed to
influence the minimization process. With a cau-
tious discretization of the forward model, the ad-
joint of the discretized converges; that means that,
given a state eu to be reached with an appropriate
boundary forcing θ, and an error target, it suffices
to choose the discretization J to attain the solution
at the first step of a descent method.
We have shown that, even in the case of a weak

forcing of our advection equation, the condition
number of the Hessian of the cost function is only
indicative; its high value shows it does not convey
the appropriate information about the difficulty of
the minimization process. We have proposed an-
other criterion, amplitude of the precursor, to give
additional information.
We have employed for didactical purposes the

most simple cost function; caution should be em-
ployed in its formulation : a penalty upon the con-
trol should be incorporated so that to prevent er-
roneous solutions due to forcing in a short period
of time; this point has been advocated already by
Bennett et al (1990); computational modes should
be eradicated by an appropriate representation er-
ror penalty or by a damping scheme; we should
seek a smooth control to handle the problem of the
shock in the adjoint integrations when observations
depart from the guess at the boundaries of the do-
main.
In a more complete study, we have shown some

superiority of the spectral method. The only spec-
tral methods practically used in limited area mod-
eling are Fourier methods with periodisation (Hau-
gen and Machenhauer, 1993), or a sin expansion
null at the boundary, completed by a cosine to
match the boundary values (Ikawa, 1987); Tau and
weak method have been tested on the latter with
the same conclusions.
Ongoing studies pertaining to the forcing of lim-

ited area models tend to get rid of the traditional
Davies (1976) relaxation zones, and to discriminate
between the different types of waves; weak forcing
as introduced here should be considered, as it is
more natural and eliminates reflections under the
form of computational modes at the boundary.
I thank L. Amodei for fruitful discussions during

the development of this work.
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