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1 Introduction

Meso and large scale models tend nowadays to be
non-hydrostatic. Time step restrictions due to fast
waves are alleviated by considering semi-implicit
schemes (Thomas et al, 2003) or by use of the
anelastic approximation (Meso-NH model, Lafore
et al, 1998, or Clark, 1977 among others); in both
cases an elliptic equation has to be solved. This
equation is typically ill conditioned, due to the
range of scales considered and the ratio of hori-
zontal to vertical scales; it is also non-separable, as
the domain is not parallepipedic, due to the pres-
ence of orography; in most discretizations it is also
found non-symmetric. Thomas et al (2003) make a
survey of the different methods to solve this equa-
tion; they adopt the preconditioning proposed in
Bernardet (1995), hereafter B95 and rely on gen-
eralizations of the conjugate gradient method to
non-symmetric problems such as GCR(k).
In B95 it was noticed that the divergence in the

continuity equation and the gradient of pressure are
naturally adjoint operators, but, if the divergence
is naturally discretized in flux form, two discretiza-
tions of the pressure gradient come naturally, and
moreover the elliptic equation might be discretized
directly without reference to the gradient or di-
vergence operators, with a minimum use of aver-
aging for example. With a certain placement of
the quantities defining the metrics of the computa-
tional grid, it was found that the discretizations of
the pressure terms are equivalent (outside bound-
aries), but that disposition was not used in the
Clark (1977) model nor retained in the Meso-NH
model.
We therefore seek in this paper to convince the

reader that a symmetric elliptic equation can be

obtained by an adequate design of the extrapola-
tions at the boundary for the discretized gradient
and divergence operators; the Helmholtz equation
will then be solved at a minimal cost; for example,
the orthomin solver is adequate for non-symmetric
problems but necessitates two applications of the
preconditioner per iteration, instead of one for the
standard conjugate gradient.

Clark (2003) suggested to examine the trunca-
tion error for the pressure term as a test for con-
sistency of the model. We will show that, with our
discretization, this error has a simple analytic ex-
pression and we will compare it to the result with
other formulations. As Clark (2003) has used a very
smooth orography, we will design a more stringent
test for the comparison. One should note that these
truncation errors may give a yardstick for conver-
gence of pressure.

Many authors (Sundqvist,1976, Lin, 1997, Jan-
jic, 1977, Mahrer, 1984, and in oceanography
Haney, 1991, Mellor et al, 1994) have discussed
pressure gradient errors linked to steep bottom
slope in terrain following coordinates ; D. Dempsey
(1998) give a account of their amplitude and ef-
fect after dissipation of acoustic waves in the con-
text of a non-hydrostatic compressible model; here,
with an anelastic model, pressure is not the primary
variable; it is its gradient which gives the reaction
force necessary to enforce the anelastic constraint,
so pressure force error can be seen more directly.
Pressure force at the meso-scale is determined as
the solution of a global problem, so local consid-
erations of pressure gradient errors are inappropri-
ate. So we will use the same test cases as Dempsey
(1998) to investigate error sources for the pressure
term.
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2 Model description

The analytic equations of the Lipps-Hemler (1982)
system are standard and we follow the conventions
of the Meso-NH model (Lafore et al, 1998):

du

dt
= −ρ∇p+ gθ

0

θ
(1)

dθ

dt
= 0

∇.ρu = 0

Placement of variables for an Arakawa C-grid is as
shown:

w
u,U, x, dxx p, ρ, J u
ζ, dxz w,W, z, θ, dzz

with the horizontal (vertical) velocity u (w), the
contravariant velocities U (W ), the potential tem-
perature θ and its deviation θ0 from the reference
θ (z), the reference density ρ (z) Here the geometry
of the grid is defined by the value of x (z) defined at

the u (w) points with1 dxx = δxx
x
,
³
dzz = δzz

z
´
,

dxz = δxz, J = δxxδzz, in contrast with B95 where
x, z were defined at the ζ point. ρ

¡
θ
¢
is the den-

sity (potential temperature) of the reference state,
p is related to perturbation pressure and eρ = Jρ
is the Jacobian weighted density. At the bottom
(lateral) boundaries the normal velocity is defined
as the outermost velocity point; we need also extra
pressure points at the boundary. With these def-
initions, the pressure gradient in non-conservative
form as advocated in B95 and as they appear in the
Meso-NH model write :

pfx = − eρx
dxx

δxp+
eρx
dxx

dzx

µ
δzp

dzz

¶xz
(2)

pfz = − eρz
dzz

δzp (3)

where eρ = ρJ , pfx, pfz represent the pressure forces
and buoy the buoyancy forces. The form of the gra-
dient is devised so that it is in adjoint relation with
the divergence operator of the continuity equation:

1 δxα = α (x+∆x/2) − α (x−∆x/2) and αx =
1/2 [α (x+∆x/2) + α (x−∆x/2)] are the Schuman (1962)
operators

this equation and the relation between contravari-
ant velocities and Cartesian velocities are :

0 = J


− eρzW ¯̄̄

z=h

δx

³eρxU´+ δz

³eρzW´
eρzW ¯̄̄

z=heρxU = eρxu/dxx
eρzW =

Ãeρzw − ³eρxû/dxx´zdzxx! /dzz

Here the divergence is augmented by the boundary
conditions to match the number of pressure points;
we shall see their role in making it an adjoint of the
non-conservative gradient operator for some scalar
products.
We notice that some of the calculus we have done

above necessitates some extrapolation of the inner
u velocities; they are marked with a hat.
The so-called conservative form of the gradi-

ent effectively preserves momentum and is deduced
from the divergence formula when we remark that
the horizontal unit vector i has a null divergence, so
that i.∇p = ∇.ip; discretized, it gives the follow-
ing momentum equations, where p has a slightly
different meaning :

pfx = − δx
dxx

p− δz

dzz
z

µ
dzx
dxx

pxz
¶

(4)

pfz = − 1

dzz
δzp (5)

3 A symmetric pressure equa-
tion :

A symmetric pressure problem can be solved itera-
tively by the celebrated congugate gradient method
(CG); the CG method can be slightly generalized
by the use a non-trivial scalar product, widening
the class of problems where it can be employed. Let
At denote the transpose of a matrix A and M be
the diagonal matrix representing the scalar prod-
uct. A∗ is the adjoint of A iff for any p, q

hAp; qi = hp;A∗qi
ptAtMq = ptMA∗q

A∗ = M−1AtM

2



and similarly composition of operators gives
(AB)

∗
= B∗A∗. Here, the operator to consider

is the divergence

∇.
µ

ρu
ρw

¶
= JDC

Ã eρxueρzw
!

D is the "flat" divergence, C is the transformation
to contravariant velocities; C itself comprises aver-
aging and extrapolation operators; scalar products
are employed for pressure and u,w components of
velocity to find the adequate adjoint. Usually, if
At is a consistent discretization of an operator, it
will not be so of A∗ when we change the scalar
product. We adjust the scalar products so that
each of the operators composing the divergence has
an adjoint with a physical meaning. As shown in
appendix, the difficulty arises from the averaging-
extrapolation operators and is solved by adjusting
the scalar product on w, by using a simple ex-
trapolation of u by copy and by considering that
the boundary pressure point is collocated with the
boundary w point. The outcome is a different pres-
sure at the boundary than from the standard dis-
cretization, but it is easy to verify that the pressure
gradient is unchanged.

4 Truncation errors:

The inner product of (1) and ρu result in the kinetic
energy equation

∂ρu.u

2∂t
+∇.

h
ρu
³u.u
2
+ p
´i
=

g

θ
wθ0

With q = 1
2

³eρxu2x + eρzw2z´ it can be discretized
as

∂ (q)

∂t
+ Γq = −δx (Upx)− δz (Wpz) + buoy (6)

Γq = δx (Uq
x/2) + δz (Wqz/2)

is estimated from eqn.2,?? multiplied by u,w and
averaged

∂q

∂t
+ 2Γa = upfx

x + wpfz
z (7)

It can be shown that many cancellations occur in
the truncation error for advection Λa = Γa − Γq,

resulting in a third order quantity, and that the
truncation error for the pressure force

Λp = upfx
x + wpfz

z − δx (Up
x)− δz (Wpz)

is third order as well; when the "conservative" pres-
sure force is used (eqn.4,5), no such cancellations
occur.
Such a strong dependence upon wave-length of

the truncation error has led us to make a test
with a high wave-number orography. So to com-
pare the amplitude of the pressure truncation er-
ror with the two formulations (fig.1 and fig.2), we
have used a periodic channel with sinusoidal wave-
number 1 orography with 7 points in the horizon-
tal and the vertical with ∆x = ∆z = 2km; the
pressure term is the one which added to a uniform
velocity u = 1, w = 0 makes the velocity to con-
form with the anelastic constraint and boundary
conditions; results are expressed as the ratio of the
error to the maximum of pressure work, and are of
the order of 3%. Errors decrease rapidly when the
orography is better resolved, from 30% for 5 points
per wave-length to 0.6% for 9 points.
The numerical calculations distinguish the two

schemes,but confirm the result of Clark (2003) that,
although the B95 scheme is more accurate, no great
difference results; the truncation error for the D98
pressure gradient introduced in the next section has
a lower but comparable accuracy, as shown in Fig.3.

5 Accuracy of the pressure
gradient

As mentioned in the introduction, pressure gradient
error in a stratified atmosphere has been a major
concern for a long time; Dempsey (1998), hereafter
D98 reexamines the problem in a mesoscale atmo-
spheric setting; we reproduce his test. A witch of
Agnesi profile mountain is considered with a half
width a = 2∆x = 4km and height h0 = 2km, thus
making a slope 1/2 at mid-height; an atmosphere
at rest with constant stratification N = 0.01s−1

above z = 1km and N = 0.02s−1 under is used,
thus the dependence of the pressure perturbation
under z = 1km is quadratic; vertical mesh size is
∆z = 100m far from the mountain.
"Standard" horizontal pressure gradient used by

D98 is determined as follows: on each side of a
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Figure 1: Relative truncation error for pressure
according to the B95 discretization; values ×10;
2.7%quadratic mean error

u velocity point where horizontal gradient is to be
determined, pressure is first calculated by linear in-
terpolation at the altitude of the u point; then the
pressure gradient is determined from the right and
left interpolated pressures; when the u-point is un-
der the sloping orography, linear extrapolation is
used instead; thus the scheme is rather well suited
to the description of a quadratic departure from
the reference pressure. Note that the "standard"
scheme we have examined involves linear interpo-
lations, in contrast to the "Mahrer scheme" which
uses quadratic interpolations (Mahrer, 1984).
Results show that the B95 (fig.4) and C87

schemes have comparable accuracy, and the D98
scheme has half that error; projection of the pres-
sure gradient to match the boundary conditions
lower the error; for example the B95 error is cut
by a factor of 3 (fig.5), but the projected D98 error
is null, thus the behavior of an anelastic model and
a compressible one is quite different.

6 Summary and conclusion

Three schemes for the calculation of the pressure
gradient were examined: the formulation of Clark
(1977,2003), the proposition of Dempsey (1998)
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Figure 2: same as Fig.1 for the C87 discretization;
2.9% quadratic mean error
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Figure 3: Same as Fig.1 for D98 discretization;
3.4% quadratic mean error
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Figure 4: Horizontal pressure gradient error ac-
cording to B95

and the one from Bernardet (1995).
To get a symmetric problem for pressure, we had

to take for the gradient operator the adjoint of the
divergence; the gradient has to be consistent, so
we had to adjust the scalar product defining the
adjoint and the extrapolation present in the diver-
gence when forming the contravariant velocities. It
happens that the adequate extrapolation is a mere
copy to the outside velocity point; it seems a gen-
eral fact that the extrapolations needed to get a
symmetric problem are less accurate than the in-
ner scheme.
Accuracy of the schemes can be seen through the

calculation of the truncation error, which is the de-
parture from the discrete energy conservation. Al-
though we can formally determine the truncation
error for the B95 scheme (Appendix B), numerical
tests show that the three schemes have a compara-
ble accuracy: truncation error is of the order of 3%
for a seven points per wave-length orography.
On the test-problem set up by Dempsey, the D98

scheme has half the error of the other schemes; sur-
prisingly, after enforcing on the gradient the anelas-
tic and boundary conditions, the D98 scheme has a
null error, in contrast with its behavior in an elas-
tic model. We should remark that standard tests of
the accuracy of a model are made with an isother-
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Figure 5: Horizontal pressure gradient error ac-
cording to B95 after projection of gradient to match
the anelastic and boundary conditions

mal atmosphere flowing over the mountain, thus
the vertical stratification is constant, at the differ-
ence of the test of Dempsey.
We should mention the clever two-time level

technique of Clark (2003) as a means to avoid it-
erative methods; it appears to be a very economic
solution for leap-frog time-stepping, and has to be
tested in semi-implicit models with long time steps.
The paper was presented in a 2-D periodic chan-

nel; however the soundness of the approach has
been tested in a three dimensional box without
further complications;extension to elastic models is
straightforward.
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