15B.6 Impact of Model Error and Imperfect Initial Condition Perturbations on
Ensemble-Based Probabilistic Forecasts: UNPREDICTABLE SPOTS

Jun Du*
Environmental Modeling Center/NCEP/NOAA and SAIC, Washington DC

Abstract

The ultimate goal of ensemble forecasting is to reliably
estimate the time-evolution of a probabilistic density func-
tion (PDF) of meteorological fields by quantifying forecast
uncertainties both at the initial time and over the entire
model integration. In this study, using the NCEP short-
range ensemble forecasting (SREF) system, two “perfect
model” experiments were conducted to address the follow-
ing three issues: (1) given a near-perfect Ensemble Predic-
tion System (EPS), how well can PDF be predicted? (2)
how can bad PDF forecast regions be identified (referring
to “unpredictable spots”)? and (3) what is the relative
importance between model error and imperfect initial con-
dition (IC) perturbations over the evolution of the PDF?

Although a good ensemble system could produce good
mean, spread and probability forecasts at the majority of
model grid points, it’s almost certain that it also generates
extremely bad and misleading forecasts at some locations
which are defined as “unpredictable spots”. As long as the
model used is imperfect, “unpredictable spots” will never
diminish even if the IC perturbations used in an EPS is
perfect. Identifying the location of “unpredictable spots”
is important for forecast calibration, but it’s not an easy
task because those spots are not well correlated with en-
semble spread (or predictability) in general, i.e., ensemble
spread alone might not be a good indicator for identifying
them. Our results further indicate that the correctness of
the model physics might be more important than that of
the IC perturbations in order to have a correct PDF fore-
cast, at least in the big picture (but it is not conclusive at
this point). Only if given a perfect model and very realistic
IC perturbations could an EPS produce good (but still not
perfect) forecasts over nearly the entire model domain. In
a word, the task of correctly predicting the probability dis-
tribution or PDF using ensembles is extremely challenging
if not impossible in reality.
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dictable spots

1 Introduction

Given the existence of intrinsic uncertainties in both
initial conditions (IC) including boundary forcing and the
model (including physics, dynamics and numerical calcu-
lations), an ensemble approach, a group of model fore-
casts started using slightly different but equally-likely ICs
and various versions of model physics, including stochas-
tic physics (Leith, 1974; Mullen et al., 1999; Palmer et
al., 2000; Palmer, 2001; Du, 2002), might be the only
way to possibly give a full picture of future state of the
atmosphere, which is a highly nonlinear and often unsta-
ble system. The ultimate goal of ensemble forecasting is
to reliably estimate the time-evolution of the probabilistic
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density function (PDF) of meteorological fields by quan-
tifying uncertainties in forecasts both at the initial time
and over the entire model integration (Brooks et al., 1995;
Du et al. 1997; Hamill et al., 2000). However, due to
model error and the imperfect IC perturbations used in
any real-world Ensemble Prediction System (EPS), it is
believed that this task is extremely difficult if not impos-
sible (Lorenz, 1963; Smith, 2000; Judd and Smith, 2001,
Zhang et al., 2002). Currently, little is known about the
impact of model error and imperfect IC perturbations on
the evolution of ensemble-based PDF's within operational,
state of the art numerical weather prediction (NWP) mod-
els.

In this study, using the NCEP operational Short-Range
Ensemble Forecast (SREF) system (http://wwwt.emc.ncep.
noaa.gov/mmb/SREF/SREF.html) (Stensrud et al., 1999;
Du and Tracton, 2001; Du et al., 2004), the following three
issues will be discussed: (1) given a near-perfect EPS, how
well PDF can be predicted; (2) how can bad PDF forecast
regions be identified [defined as “unpredictable spots” (see
Section 2.2)] so that a special post-processing (such as Du
et al., 2000) might be applied to the forecasts over these re-
gions before those forecasts are used by end users; and (3)
what is the relative importance of model error versus im-
perfect IC perturbations over PDF evolution? Since there
is no way to know “true” PDFs in the real atmosphere,
two “perfect model” experiments were conducted to study
these issues.
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Figure 1: The model computation domain (large with
dash line) and output/verification domain (small with
solid line).



Experiment I

09z, 8/22/03

21z, 8/22/03

09z, 8/23/03

217, 8/23/03

09z, 8/24/03

21z, 8/24/03

09z, 8/25/03

21z, 8/25/03

09z, 8/26/03

09z, 9/11/03

21z, 9/11/03

09z, 9/12/03

21z, 9/12/03

09z, 9/13/03

21z, 9/13/03

09z, 9/14/03

21z, 9/14/03

09z, 9/15/03

21z, 9/15/03

09z, 9/16/03

Experiment 11

09z, 8/22/03

21z, 8/22/03

09z, 8/23/03

21z, 8/23/03

09z, 8/24/03

21z, 8/24/03

09z, 8/25/03

21z, 8/25/03

09z, 8/26/03

Table 1: The cases used in this study, listed by their model initiation time (UTC, mm/dd/yy). The forecast
length is 63 hour with outout at every 3 hour. Model’s horizontal resolution is about 48km with a large North
American domain (Fig. 1). There are total 20 cases from August and September 2003.

EPS membership model/physics IC/perturbations representativeness
Eta.BMJ 5 Eta with BMJ convective scheme | EDAS/bred from Eta.BMJ “truth”
RSM.SAS 5 RSM with SAS convective scheme | GDAS/bred from RSM.SAS very “good” system

Eta.KF 5 Eta with KF convective scheme EDAS/bred from Eta.KF near “perfect” system

Table 2: Design of Experiment I: how well PDF can be predicted with a near perfect EPS?

2 Experiment I: How Well PDF
Can be Predicted?

Table 1 is the list of the cases used by both exper-
iments I and II. Table 2 describes the design of Experi-
ment I, where Eta refers to the NCEP (National Centers
for Environmental Prediction) Eta model (Black, 1994),
RSM to the NCEP Regional Spectral Model (Juang and
Kanamitsu, 1994), BMJ to the Betts-Miller-Janjic convec-
tive scheme (Janjic, 1994), KF to the Kain-Fritsch scheme

(Kain and Fritsch, 1990, 1993), SAS to the simplified Arakawa-

Schubert scheme (Arakawa and Schubert, 1974; Pan and
Wu, 1995), EDAS to the Eta Data Assimilation System
(Rogers et al., 1996), GDAS to the NCEP Global Data
Assimilation System (Parrish and Derber, 1992), and Bred
to the NCEP breeding method for generating ensemble IC
perturbations (Toth and Kalnay, 1997 and 1993). Since
it’s reasonable to assume that the difference between any
current NWP model (analysis) and the real atmospheric
system (state) is much larger than that between any two
“good” (widely accepted) operational NWP models (analy-
ses), the EPS of “Eta.KF” could represent a near “perfect”
ensemble system, while the “RSM.SAS” a very “good” en-
semble system with respect to the “true” ensemble system
(“Eta.BMJ”). Given such ideal EPSs as described in Table
2, how well can PDF be predicted?

2.1

For simplicity, only the 12h-accumulated precipitation fore-
cast (12h-apcp, so chosen because of its importance) was
investigated as an illustration. The model output or veri-
fication domain is shown in Fig. 1, and has 185x129 grid
points with 40km grid spacing covering the entire conti-
nental United States. Figure 2 shows the domain-averaged
values of various standard scoring matrics as a measure of
EPS’s general performance. In particular, readers are re-
ferred to Epstein (1969) and Murphy (1971) for the original
definition of Ranked Probabilistic Score (RPS, Fig. 2f),
to Schaefer (1990) for the definition of Equitable Threat
Score (ETS), and also to the Appendix of Du et al. (1997)
for a brief summary of both RPS and ETS. Note that the
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Figure 2: Scores of very “good” and near “perfect”
EPS against the “truth”. The verification was per-
formed over a 40km resolution, US Continental Do-
main (IxJ=185x129=23865 grid points, Fig. 1) aver-
aged over the all 20 cases during August and Septem-
ber 2003 (Table 1). (a)-(d) for ensemble mean [root-
mean-squared error, correlation coefficient, Equitable
Threat Score and bias (value 1.0 represents no bias),
respectively], (e) correlation coefficient between fore-
cast spread and true spread; and (f) Ranked Proba-
bilistic Score of probability distribution over 5 MECE
(mutually exclusive, collectively exhaustive) categories
(less than 0.017, 0.017-0.25”, 0.25”-0.5”, 0.5”-1.0”,
and greater than 1.0”).




category 1 2 3 4 5 6
RPS value 0 0,1) | [1,2) | [2,3) | [3:4) 4
meaning | perfect | good | useful | bad | worse | worst

Table 3: Definition of RPS score category. For a probability distribution over 5§ MECE categories, the perfect
RPS score is 0.0 and the worst is 4.0 (see the Appendix of Du et al. (1997)).

smaller the RPS value is, the better a probabilistic forecast
is (zero being the perfect score), while the larger the ETS,
the better the forecast. As expected, for both “good” and
near “perfect” EPSs, their general performances are rea-
sonably good in all aspects, including the ensemble mean
(Fig. 2a-d), spread (Fig. 2e) and probability distribution
(Fig. 2f) verifying against the “truth”.

It’s also clear that with improving model physics and
IC perturbations (from “good” to near “perfect” EPS), the
overall performance of an EPS generally improves too: from
the solid curves to the dashed curves in Fig. 2. This result
certainly encourages scientists to further improve model
and ensemble IC perturbation schemes in ensemble fore-
casting research and operations.

2.2 Local Performance

RPS Spatial Distr Stat(%) (Perfect,12h-apcp.9/16/03)
(12hr) e -

(24hr)

(12-60hr avel

Figure 3: Percentage distribution of the number of
grid points over the six RPS score categories for 12h,
24h, 36h, 48h and 60h probability forecasts as well as
12-60h average. It is from the near “perfect” EPS for
09z, Sept. 16, 2003 case.

Although the domain-wise performance is reasonably
good, what is the spatial variation of the performance? By
examing the values of Ranked Probabilistic Score (RPS) at
each grid point over the entire model output domain (Fig.
1), the spatial variation in the quality of the probability
forecast can be revealed. Figures 3 and 4 show the percent-
age distribution of the numbers of grid points over the six
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Figure 4: Same as Fig. 3 but averaged over the 20
cases.

RPS score categories (Table 3) for the near “perfect” EPS
for a single case (Fig. 3) and the 20-case average (Fig. 4),
respectively. Although the majority of grid points (about
80 %) have good probability forecasts (categories 1 and 2),
about 4 % of grid points have extremely bad probability
forecasts (categories 4 and 5) averaged over the 20 cases
during August and September 2003. For the very “good”
EPS (Figs. 5-6), the percentage of the numbers of grid
points having very bad probability forecasts (categories 4
and 5) increased to about 5 %, with a small number of grid
points even entering category 6 (a completely opposite dis-
tribution). Further study shows that over these bad-PDF
regions, not only the probability forecast is bad, but en-
semble spread and mean forecasts perform very poorly too
(Fig. 7). These bad PDF spots can be defined as “un-
predictable spots” since even a near-perfect ensemble
prediction system cannot predict weather well over those
spots by any means (mean state, uncertainty, and proba-
bility distribution).

2.3 How To Identify “Unpredictable

Spots”?

What we see here is that given a near-perfect EPS, it can
produce a reasonably good ensemble forecast (PDF, spread
and mean) over the majority of model grid points, but it’s
almost certain that it will, on the other hand, also gener-
ate extremely bad, misleading forecasts (in all aspects of



RPS Spatial Distr Stat(%) [Good,12h-apcp.B8/22/03)
(12hr) (24hr)

(12-60hr avel

Figure 5: Same as Fig. 3 but from the very
EPS for 21z, Aug. 22, 2003 case.
RPS Spatial Distr Stat(%) ("Good",12h-apcp.20@ cases)
2hr) (24hr)

Figure 6: Same as Fig. 5 but

cases.
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Figure 7: Increase of forecast errors with the decrease
of probability forecast accuracy (from category 1 to 5).
Solid curve is the absolute difference of ensemble mean
forecasts between the “good” EPS and the “true” EPS,
while the dash curve the absolute difference of ensem-
ble spread between the same two EPSs, both averaged
over regions with a same RPS category. Result is the
average over all 20 cases.

mean, spread and probability) at some locations (the un-
predictable spots). Those “unpredictable spots” are likely
to be flow-dependent as well as model dependent. Their lo-
cation varies from time to time and case to case. However,
almost all current statistical post-processing methods (for
bias, spread, PDF calibrations) for an EPS are based on
the general performance (statistically) of its past forecasts;
therefore, they are unlikely to help in correcting a future
forecast over those “unpredictable spots” where calibration
is really needed the most (while over other regions the fore-
casts are already reasonably good and don’t need much cor-
rection!). Therefore, a case-dependent or location-, time-

and flow-dependent dynamical post-processing method is strongly

desired. The author of this paper is now researching sev-
eral approaches into this issue. The Hybrid Ensembling
method is one of these approaches (Du, 2004).

A major question is how to identify those “unpredictable
spots” beforehand, and is it even possible to do so? Since
those “unpredictable spots” might be likely associated with
highly unpredictable regions where the ensemble spread
should be large, the correlation between RPS score and
ensemble spread was calculated over the entire model out-
put domain and shown in Fig. 8. If PDF forecast accu-
racy is truly related to flow predictability, a positive cor-
relation between RPS and ensemble spread should be ob-
served. Unfortunately, Fig. 8 shows that “unpredictable
spots” are not closely correlated to ensemble spread and
only slightly positively correlated in general. It is suspected
that this correlation might improve but only by focusing
on those areas with extreme spread (either very large or
near zero) rather than on the entire domain. This weak
correlation implies that the task of locating those “unpre-
dictable spots” is not an easy one, if not impossible, and
that ensemble spread alone might not be a good indicator



in this regard.

One might argue that as long as a majority of model
grid points are well predicted, who cares about the small
percentage number of grid points that have bad forecasts?
First of all, one might expect that those “unpredictable
spots” are possibly related to weather of interest (to be in-
vestigated) since extreme or high impact events are often
associated with unstable and complex flow situations. Sec-
ondly, as a model’s resolution becomes higher and higher
and the end-users’ requirement more and more sophisti-
cated and detailed, such as mesoscale convection modes,
cloud structures, city air pollution and nuclear material
release in an urban area, these few locations could be very
important to many users under certain circumstances.
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Figure 8: Spatial correlation between RPS score and
ensemble spread for near “perfect” (dash) and “good”
(solid) EPSs, averaged over the 20 cases.

3 Experiment II: Relative Im-
portance Between Model Er-
ror and Imperfect IC Uncer-
tainty Over PDF Evolution

Table 4 shows the design of Experiment II. Nine cases
from August 2003 (Table 1) were investigated. Results are
shown in Figs. 9-10 (a “model error only” scenario) and
Figs. 11-12 (an “imperfect IC perturbations only” sce-
nario). Figures 9-10 tell us that as long as a model has
error (always the case in the real world), it is almost cer-
tain that there are some spots (about 2 % of grid points
in caterories 4 and 5 for the average of the 9 cases) which
cannot be predicted well even given perfect IC perturba-
tions when initiating an EPS. Figures 11-12 imply that only
when given a perfect model plus very realistic IC pertur-
bations (“Eta.BMJx”), will good probability forecasts at
almost all model grid points become a possibility, though

RPS Spatial Distr Stat(%) (PHY,12h-apcp.8/25/083)
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Figure 9: Same as Fig. 3 but for “perfect IC pertur-
bations but slight model error” scenario (“Eta.KF” in
Table 4) for 21z, Aug. 25, 2003 case.
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Figure 10:
cases.

Same as Fig. 9 but averaged over the 9



EPS membership model/physics IC /perturbations representativeness
Eta.BMJ 5 Eta with BMJ scheme | EDAS/bred from Eta.BMJ truth
Eta.BMJx 5 Eta with BMJ scheme | EDAS/bred from Eta.KF | slight diff IC pert/no model error
Eta.KF 5 Eta with KF scheme | EDAS/bred from Eta.BMJ | same IC pert/slight model error

Table 4: Design of Experiment II: what is the
perturbations over PDF evolution?
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Figure 11: Same as Fig. 3 but for “perfect model
but slightly imperfect IC pertuebations” scenario
(“Eta.BMJx” in Table 4) for 21z, Aug. 22, 2003 case.
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Figure 13: The domain averaged value of RPS scores
for “model error only” (solid line) and “imperfect IC
perturbations only” (dash line) scenarioes. The result
is averaged over the 9 cases from August of 2003.




they are still not perfect forecasts (the majority of them
are in category 2 and a small number of points (about 1
%) are still in category 3 which is not a good forecast).

Figure 13 is the domain averaged value of RPS scores
for the nine cases for the scenarios “model error only” (cor-
responding to Fig. 10) and “imperfect IC perturbation
only” (corresponding to Fig. 12). The result shows that
the correctness of the model physics might play a more im-
portant role than that of IC perturbations in obtaining a
better PDF forecast based on these limited cases. However,
it is fully recognized that this result is not yet conclusive
but needs further research. It is suspected that model error
might depict “the big picture”, such as what can and can-
not be resolved (which is critical to the existence of a PDF
for a particular event) and model climate shift (which af-
fects the central location of a PDF), while IC uncertainties
might give “the small picture”, such as location, amounts,
timing and detail structures. If so, the correctness of IC
perturbations could be much more important than that of
model physics in a practical sense (not in measuring scores)
and from the users’ point of view, since “big pictures” are
relatively easier to systematically correct in post process-
ing, such as in bias correction, but “small pictures” are
basically unpredictable.

Experiment II vividly illustrates how tough it is to cor-
rectly predict PDF based on an EPS in operational en-
vironment where the model always has errors and the IC
perturbation scheme is far from perfect.

4 Summary

Although a “good” ensemble system can produce good
mean, spread and probability forecasts at the majority of
model grid points, it’s almost certain that it also can gen-
erate extremely bad and misleading forecasts in some loca-
tions, which are defined as “unpredictable spots”. As long
as the model used is imperfect, which is always the case in
the reality, the number of “unpredictable spots” will never
diminish even if the IC perturbations used in an EPS are
perfect.

Since those areas have bad forecasts, “unpredictable
spots” are, needless to say, the areas where calibration is
needed the most. Given that the location of “unpredictable
spots” varies from time to time and case to case, flow-
dependent dynamical post-processing methods (rather than
traditional statistically based approaches) are, therefore,
needed to calibrate an ensemble prediction system. Some
research is currently underway by the author of this paper
(Du 2004) and at other locations such as the University of
Washington (Grimit, personal communication).

Identifying the locations of “unpredictable spots” is im-
portant before doing any post-processing calibration of a
forecast. Unfortunately, our result shows that it’s difficult,
if not impossible, to predict their locations because those
spots are not well correlated with ensemble spread (pre-
dictability) in general. Further research is needed to study
if “unpredictable spots” are related to particular weather
systems or flow patterns to help in identifying them. It’s
also reasonable to expect that the forecaster’s human ex-
pertise might play an important role in locating the “un-
predictable spots”.

The results from Experiment IT imply that the correct-
ness of model physics might be more important than that
of IC perturbations in making a correct PDF forecast from
an EPS. However, this is not a conclusive result, and needs

further research. Answer could be different from different
angles such as measuring by numerical scores or by its util-
ity. In Experiment II, we see that only if given a perfect
model (impossible in reality) and very realistic IC pertur-
bations (difficult to achieve), is an ensemble system able
to produce good (but still not perfect) forecasts in terms
of ensemble mean, spread and probability distribution over
nearly the entire model domain.

In short, the task of correctly predicting probability
distribution or PDF using ensembles is extremely challeng-
ing if not impossible.

Acknowledgement Thanks to Prof. Fuqing Zhang of
Texas A&M University and Dr. Eric Grimit of University
of Washington for their scientific comments and to Mary
Hart of NCEP for English language check.
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