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An approach to the assimilation of Doppler radar radial winds into a high resolution Numerical Weather Prediction
(NWP) model is described. In this paper, we discuss the types of errors which might occur in radar radial winds.
A new approach to specifying the radial velocity observation error is proposed based upon the radial gradient of the
velocity across the pulse volume. The variation of this error with range is derived for a specific case. The production of
”super-observations” for the input to a 3D-Var assimilation system is discussed. Impact of the assimilation of Doppler
velocities on the 3D-Var analysis and on the model forecasts, for a case study, is investigated.

1. Introduction

Numerical Weather Prediction (NWP) is consid-
ered as an initial-boundary value problem: given an
estimate of the present state of the atmosphere, the
model simulates (forecasts) its evolution. Specifica-
tion of proper initial conditions and boundary condi-
tions for the numerical dynamical models is essential
in order to have a well-posed problem and subse-
quently a good forecast model. (A well-posed ini-
tial/boundary problem has a unique solution that
depends continuously on the initial/boundary con-
ditions.) The goal of data assimilation is to con-
struct the best possible initial and boundary condi-
tions, known as the analysis, from which to integrate
the NWP model forward in time.

Assimilation of Doppler radar wind data into at-
mospheric models has recently received increasing at-
tention due to developments in the use of limited
area high resolution numerical models for weather
prediction. The models require observations with
high spatial and temporal resolution to determine
the initial conditions, for which purpose radar data
are particularly appealing. However, the resolution
of Doppler radar observations is much higher than
that of the mesoscale NWP model. Before the assim-
ilation, these data must be preprocessed to be repre-
sentative of the characteristic scale of the model. To
reduce the representativeness error and correspond
the data more closely to the model resolutions than
do the raw observations, one may spatially interpo-
late (average) the raw data to generate the so called
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super-observations; see Section 4.
Over the last thirty years or so networks of weather

radars, providing measurements of radar reflectivity,
from which rainfall has been estimated, have been es-
tablished within operational observing systems. Ini-
tially the radars, operating at S-band (10 cm) or C-
band (5-6 cm) wavelengths, did not have the capa-
bility to measure the motion of the targets (mainly
hydrometeors but also insects and birds, and for high
power systems, refractive index inhomogeneities) to-
wards or away from the radar site. During the last
twenty years or so weather radars having Doppler ca-
pability measuring radial motion of the targets have
become standard such that now in Europe well over
half of the operational radars are Doppler systems
(see [2]).

Considerable effort has been, and continues to
be, put into the development of nowcasting tech-
niques based upon the extrapolation of radar re-
flectivity fields aimed at generating forecasts of pre-
cipitation up to 3-6 hours ahead (for a review; see
[3,10]). Whilst such systems have met with some
success, particularly when incorporating wind fields
from mesoscale numerical models [5], they are not
appropriate for forecasting to longer lead times. Im-
provements to forecasts for these lead times are now
being sought through the assimilation into mesoscale
models of radar reflectivity using latent heat nudg-
ing methods [15] and variational techniques in which
model ’reflectivity’ is compared with actual mea-
sured reflectivity [22]. More recently Doppler radar
radial winds have also been assimilated into NWP
models as vertical wind profiles derived from Velocity
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Azimuth Display (VAD) analysis ([1,12]) and using
variational techniques (see [23,24]).

In order to assimilate Doppler radial velocity ob-
servations, the observation errors which come from
several sources are estimated for inclusion in the vari-
ational system. In this paper we outline the likely er-
rors in estimates of Doppler radar radial winds, and
how they might be represented mathematically. To
illustrate the results, we apply the methodology to a
case study for data collected using the 3GHz radar
situated at Chilbolton in southern England (51.14o

N and 1.44o W). The large 25m antenna affords a
beam width of 0.28o, using PPI data2 at 300m range
resolution and 0.25o azimuth resolution. We describe
the radial wind and error representation as part of a
system for generating simulated data for use in the
Met Office variational system. We also investigate
the impact of assimilation of Doppler radial veloci-
ties and their errors on the variational analysis and
on the model forecasts.

1.1. Errors in the determination of Doppler
radial velocity

Targets moving away from or towards a radar pro-
duce a Doppler shift between the frequency of the
transmitted signal (pulse), and the signal reflected
from the targets and received back at the radar.
However, ambiguities may arise in these measure-
ments due to range folding and velocity aliasing (see
[4]). Fortunately procedures have been developed to
minimize these problems (see for example [6]).

Other problems remain, namely the existence of
data holes (where there are no targets), and irreg-
ular coverage, instrumental noise and sampling er-
rors. Various types of interpolation schemes have
been used to fill in data holes and poor coverage (see
for example [11]), although such schemes are unnec-
essary when three dimensional assimilation schemes
are implemented. However, the impacts of instru-
mental noise and sampling are more problematic.

May et al. (1989) discuss, and assess, a number of
techniques used to estimate the Doppler shift in the
received signals. The Doppler shift is proportional to
the slope of the phase of the autocorrelation function
(at zero lag) of the returned signals. An estimator of
the shift is the phase at the first lag divided by the
value of the lag in time units. This is known as pulse
pair processing, and may be improved by averaging
more than one value of the phase divided by the lag
(poly pulse pair).

An alternative approach is to estimating the
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Figure 1. Distribution of wind speed error due to (a)
variations of instrumental noise, and (b) strong velocity
gradient along the pulse volume at a specific range and
azimuth.

Doppler shift directly from the first moment of the
Doppler spectra [4] perhaps using a maximum like-
lihood estimator (similar to a least squares fit) of
the logarithmic spectral signal. A further technique
is possible based upon the analysis of the power
spectrum, its circular convolution and Fast Fourier
Transform (FFT) of the same. Interestingly, it was
concluded by May et al. (1989) that the major
limitation to the radar performance is the small-
scale variability of the wind along the pulse volume.
Therefore there is little to be gained by using compli-
cated algorithms to estimate the Doppler shift. The
width of the Doppler spectrum, usually assumed to
be Gaussian, determines the correlation time of the
signal. Therefore, the error in the radial velocity
measurements depends on the strength of the re-
turned signal and the spread or width of the Doppler
velocity spectrum which in turn depends mainly on
reflectivity and velocity gradients within and across
the pulse volume; see [4].

Instrumental errors may be reduced by selecting
measurements at range intervals somewhat longer
than the radar range gate resolution [8]. For exam-
ple, [25] selected data every 1 km along each radar
beam for a radar having a range gate resolution of
250 m.

Sampling errors depend upon the size of the pulse
volume corresponding to each data point. The
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Chilbolton radar in central South England has a
pulse volume of about 300 m by 0.25 degree, and,
even though this is relatively small, even smaller
scale wind variability may introduce different sam-
pling errors from measurement point to measure-
ment point. In practice the sampling errors could
be weakly correlated from point to point, but only
a very small additional error will be introduced if
this is ignored. Practically, sampling errors domi-
nate since instrumental errors are usually minimized
in operational systems. In the following we out-
line a system for creating artificial radar radial wind
data sets within which different types of error may
be included. Figure 1 shows schematics of the im-
pact upon a Gaussian Doppler spectrum of vari-
ous effects of strong wind shear along the pulse vol-
ume, and instrumentally-induced effects. Several of
these effects upon the Doppler spectrum may be
present in the same radar image, and, in the case of
geophysically-induced effects, their magnitude may
vary with range and azimuth. The height and size of
the pulse volumes will increase with increasing dis-
tance from the radar.

This paper is organized as follows: In section 2, we
describe a simulation model which is used to analyse
actual radial winds. In Section 3, we present a de-
scription of the Met Office 3D-Var system for assim-
ilation of Doppler radial winds. In Section 4, we
discuss the main steps of preprocessing the Doppler
radial data that includes data quality control and
super-obbing the very high resolution raw data. We
describe the types of errors in radar radial winds and
how the radial wind errors may be represented math-
ematically in Section 5. The proposed methodology
is used to derive the variation of the errors with
range. Section 6 provides a discussion of assimila-
tion of radial winds in PPI format and observation
operator. In Section 7, we investigate the impact
of assimilation of radial velocities on the variational
analysis and on the forecasts. Conclusion and plans
are outlined in Section 8.

2. Comparison of simulated and actual radar
winds

Air movement varies over time and space. How-
ever, Doppler radar allows the measurement of only
one (radial) component of the velocity of the targets
at a specific range and azimuth. Since we only take
the data from a single radar in the present study
rather than simultaneous measurements with three
Doppler radars, we are forced to make a simplifying
assumption to the structure of the observed wind
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Figure 2. Geometry for scan of velocities on a Velocity
Azimuth Display (VAD) circle (top) and the variation of
the radial velocity deduced from horizontal and vertical
(precipitation fall velocity) components (bottom).

The simplest case is to consider a horizontally uni-
form wind field for both, horizontal and vertical (pre-
cipitation fall velocity) components. In such a case,
if we make measurements of the velocity along circles
centred at the radar by azimuthal scanning at a con-
stant elevation angle (PPI), we get, for a constant
distance from the radar, a sinusoidal dependency of
the measured radial velocity on the azimuthal an-
gle. Assuming that the horizontal wind velocity vh

and hydrometeor fall speed w are uniform over the
area being observed, then the mean Doppler velocity
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Figure 3. Artificial radial velocity with Gaussian noise
(top), and the data for radial velocity (shown as dots)
versus azimuth angle at 30km range (bottom). The
solid line is the variation without any error.

v̄r varied sinusoidally with maxima and minima oc-
curring when the beam azimuth passes the upwind
(θ = 0) and downwind (θ = π) directions, that is
when

vr1 = vh cosα + w sin α, when θ = 0,
vr2 = −vh cosα + w sin α, when θ = π.

(1)

Hence

vh =
vr1 − vr2

2 cos θ
, w =

vr1 + vr2

2 sin θ
. (2)

Then the horizontal divergence is given by the for-
mula

divvh =
1

πR cos θ

∫ 2π

0

vrdθ − 2w tan θ

R
, (3)

where R is the radius of the radar sampling circle
at height l. However, Eq. (3) is only valid for low
elevation angles.

0 2π 

Radial Velocity 

Azimuth Angle π 

− 14 

14 

0 

Figure 4. Observed Doppler radial winds on 1st July
2003 from Chilbolton radar (top), and the data display-
ing as radial velocity versus azimuth angle at a particle
range, at 30km (bottom).

Using the formula

vr = u sin θ cos α + v cos θ cos α + w sin α (4)

to derive the wind velocity, we compare a plot de-
rived from Fig. 3(top) with a perfect sine wave dis-
played in Figure 3(bottom). The impact of the sim-
ulated errors is to cause the differences between the
data (dots) and the no error sine curve (solid line)
shown. Figure 4(top) displays a real data case for
the PPI scan from the Chilbolton radar on 1st July
2003, and Figure 4(bottom) shows the radial velocity
versus azimuth angle from the observed data shown.
The deviation from a perfect sine wave shown in Fig-
ure 4(bottom) relates to a combination of the impact
of measurement and instrumental errors, and the ver-
tical variation of wind velocity with height caused
by both the boundary layer turbulence and synop-
tic scale motions. It is possible to use the simulator
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to investigate, in more detail, the impact of various
errors on the radial winds. This is the subject of
continuing study.

3. 3D-Var data assimilation

Data assimilation, into a mesoscale NWP model,
may use a variational approach to retrieve three di-
mensional cloud and wind fields from radar observa-
tions of radial velocity from single radar inside the
analysis domain. This variational analysis system
uses also satellite data and surface data observations.
The 3D-Var systems implement an incremental for-
mulation (for a review see, for example, [20]). Under
the assumption that the background and observa-
tion errors are Gaussian, random and independent
of each other, the optimal estimate xa = xb + δx in
the analysis space is given by the incremental cost
function

J [δx] =
1
2
δxT B−1δx +

1
2
[Hδx− y +Hxb]T E−1[Hδx− y +Hxb],(5)

where δx ≡ xa − xb is the state vector of the analy-
sis increments (the estimated variable is then given
by Hxb +Hδx), xb is the state variable of the back-
ground of x that includes the radial wind variable,
and y is the observed vector that includes the ob-
served radial winds in the observation space. H is
the nonlinear observation operator that relates the
model variables to the observation variable and a
transformation between the different grid meshes,
and H is the linear observation operator with ele-
ments hij = ∂Hi/∂xj . B is the background covari-
ance matrix and E is a diagonal matrix of the error
covariance in the observations, and in the observa-
tion operator (see [13]). Miller and Sun [17], and Xu
and Gong [25] assumed that the observation error
covariance matrix E is diagonal with constant di-
agonal elements given by the estimated observation
error, which was taken as 1 m/s for typical radar
observations. We provide later in this paper a dif-
ferent approach to the representation of the errors of
observed radial winds.

To avoid the computationally overwhelming prob-
lem of inverting the covariance matrix B in the min-
imization of the cost function (5), and to acceler-
ate the convergence of the minimization algorithm,
a pre-conditioning of the minimization problem is
needed (see [13]). This can be achieved by defin-
ing a variable U to be applied to the assimilation
increment δx (Uδx ≡ X ) such that it transforms the

forecast error ε in the model space into ε̃, a variable
of an identity covariance matrix (i.e., < ε̃, ε̃T >= I,
where < ., . > is an inner product). This change of
variable can be written as ε = U−1ε̃. Thus

B =< ε, ε >= U−1 < ε̃, ε̃T > U−T , or B−1 = UT U. (6)

This leads to a new representation of the incremental
cost function of the form

J [X ] =
1
2
X TX +

1
2
[HU−1X − y +Hxb]T E−1[HU−1X − y +Hxb].(7)

With this cost function, no inversion of B is needed.
The control variables X are horizontal and verti-
cal wind components, potential temperature, den-
sity, pressure and specific humidity. Here, we assume
that the matrix E includes the errors from the obser-
vations (original measurements), observation opera-
tor, and super-obbing procedure3. The 3D-Var analy-
sis is then performed using continuous cycling proce-
dure. The length of the assimilation window in each
analysis is determined according to the model reso-
lution. In each analysis cycle, the optimal analysis is
obtained by minimizing the cost function (7) using
iterative procedure.

The matrix U−1 in (7) may be realized as

U−1 = DF, (8)

where D is a diagonal matrix of standard deviation
of the background error specified by the error estima-
tion of numerical experiments, and F is the square
root of a matrix whose diagonal elements are equal
to one, and off-diagonal elements are the background
error correlation coefficients. In practical data as-
similation for NWP, the full matrix F is too large to
compute explicitly or store into computer memory.
Assumptions and approximations are made such that
the effect of F on the control variable X in Eq. (7)
is achieved through the use of equivalent spatial fil-
ter; see the work of Purser and McQuigg [19], Lorenc
[14], and Hayden and Purser [7], for further details.

In the next two sections we explain how to pre-
process data to make it suitable for the variational
assimilation system.

3Super-obbing procedure is a technique to combine (re-scale)
the radar observations, using statistical interpolation, at a
larger spatial scale which is compatible with the model; see
§4.2.
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4. Pre-processing of Doppler Radial Wind
data

4.1. Quality control
The major steps in processing the data before

the assimilation are interpolation of data from/to a
Cartesian grid, removing the noisy data, and filter-
ing. Data quality control (QC) is a technique, which
should be performed for each scan, to remove unde-
sired radar echoes, such as ground clutter and anom-
alously propagated clutter (AP clutter), sea clutter,
velocity folding, and noise using the threshold, that
any velocity data with values less than, say, 0.25
m/s and their corresponding reflectivity are removed.
Unfolded Doppler velocity, in Chilbolton radar, are
measured using both horizontally and vertically po-
larised pulses. This parameter is the component of
the target velocity towards the radar (positive veloc-
ities are towards the radar). Noise are removed on
the basis of the variance of the velocity at each pixel
with its neighbours, which can occasionally remove
good data with genuinely high variance.

The data QC should also be designed to correct
the errors in the observed radial winds,v(0)

r , caused
by velocity folding and velocity aliasing, using the
Nyquest velocity, vnyq , and model background ve-
locity, v(b) = (u(b), v(b), w(b)). The process may in-
volve:

1. Interpolating from model grid to observation
points, calculating the background radial ve-
locity v

(b)
r and then estimate the difference

v(d)
r = v(0)

r − v(b)
r ;

2. Taking the integer part n from v
(d)
r /(2vnyq) and

adjusting the observational radial velocity to

vr = v(0)
r − 2nvnyq;

3. If the absolute value of the adjusted radial ve-
locity vr is less than 0.5vnyq, then it is a ”good”
one estimate. Otherwise, we check by compar-
ing this value with the ”good” values at the
surrounding points and keeping (or rejecting)
this value if the difference is larger than (say)
3 m/s.

A final quality check is made to remove any re-
maining spurious data by computing the local stan-
dard deviation (SD) of each data point from its local
mean. Data with large SD being given small weight
or discarded; see [23].

4.2. Super-obbing radial wind data
Doppler radars produce raw radial wind data with

high temporal and spatial density. The horizontal
resolution of the data is around 300m (that is too
high to be used in the assimilation scheme) whereas
the typical resolution of an operational mesoscale
NWP model is of the order of several kilometers. To
reduce the representativeness error, and correspond
the observations to the horizontal model resolution,
one may use spatial averages of the raw data, called
super-observations. The desired resolution for the
super-observations can be generated by defining pa-
rameters (which can be freely chosen) for the range
spacing and the angle between the output azimuth
gates.

As we have mentioned previously, a direct assimi-
lation of PPI data with no vertical interpolation is re-
commended. Moreover assimilation using radar data
directly at observation locations avoids interpolation
from an irregular radar coordinate system to a reg-
ular Cartesian system, which can often be a source
of error especially in the presence of data voids (see
[20]). We have developed a software package, which
is based on spatial interpolation in polar space, for
processing of raw volume data of radial velocity in
PPI format to super-obb the data to the required
resolutions for the 3D-Var system in the Met Office.
Figure 5 provides an example of super-observations
generated through averaging the raw data at 4km
resolutions along the radar beam, and 1 degree az-
imuth resolution.

Since the super-obbing procedure is based on sta-
tistical interpolation, the expected error of the super-
obbing procedure is regarded as the observation er-
ror of the super-observations. It is desirable that
the error of super-observations is uncorrelated with
the background error. Representativeness error for
the superobbing procedure error are accounted for
by using the local standard deviation, which obvi-
ously increases with the range; see Figure 6.

5. A representation of errors for observation
radial winds

In order to optimally assimilate Doppler radar ra-
dial velocity observations into NWP model, it is
necessary to know their error covariances. We as-
sume that the observational errors are uncorrelated
in space and time. Under this assumption, the ob-
servation error covariance matrix Σ (≡ E) in the
cost function (7) can be reduced to a diagonal ma-
trix. Then the matrix E, in Eq. (7), is regarded
as a weighting coefficient that reflects the relative
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Figure 5. An example of the Doppler radar radial raw
data (top) and the super-obbed Doppler radial winds
(bottom) at 4km resolution along the radar beam and
1 degree azimuth angle resolution.

precision of the data (measurement uncertainty and
representativeness error). The matrix Σ can be ex-
pressed as:

Σ = diag[σ2(ε)], (9)

where σ2(ε) is the error variance of the radial veloc-
ity vr. The most common error in radar radial winds
are (i) the noise in the radial velocity induced by the
velocity gradient across the pulse volume with vari-
ance σ̆2(εv), and (ii) the instrumental error due to
hardware degradation of variance σ̂2(εi). Miller and
Sun [17] state that these measurement errors need to
be specified so that radar observations can be prop-
erly assimilated for NWP. However, they note that
the mean radial velocity and spectral width estima-
tors are proportional to the radar wavelength and
the time spectral width [4], and therefore are rather
impractical as estimates of the measurement errors.
They therefore note a need for error estimators of
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Figure 6. Local super-observation error standard devi-
ation at 4km resolution.

radial velocity that can be obtained from the mea-
surements themselves.

5.1. Error due to the velocity gradient within
and across the pulse volume

The local sampling of the radial velocity is em-
ployed to approximate the error variance σ̃2

vr
, since

noisy data are usually associated with high values of
radial velocity variance.

Errors in the original measurements of the radial
velocity within each radar pulse volume depend on
the strength of the returned signal and the spread
(or width) of the Doppler velocity spectrum that de-
pends on the velocity gradients. Since the radar scat-
terers in the pulse volume move randomly, we assume
that the errors of the velocity gradient of the radar
backscatterers are given by a normal (Gaussian) dis-
tribution, where,

pdf(εv) =
∫ ∞

−∞

1√
2πσ̃

e−εv/2σ̃2
dεv. (10)

The error variance σ̃2 is modified by the velocity gra-
dient (which varies with time) along the pulse vol-
ume. The variations of this velocity difference along
the pulse volume cause the kinetic energy (KE) of the
moving scatterers to change. We will assume here for
simplicity that this velocity difference is taken in the
radial direction only. Here,

the rate of change in the KE = F∆vr, (11)

where F is an arbitrary force applied to the scatterers
and ∆vr is the velocity difference along the pulse
volume. Thus the increase in the kinetic energy in
time interval dt, during which the scatterer moves a
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distance dr, is

d(KE) = dW, (12)

where dW is the work done by the force F in the in-
finitesimal displacement dr taken as the pulse length
and over time dt.

Rogers and Trips [21] show that the change in the
kinetic energy per unit mass can be expressed as

d(KE) = σ2(vr), (13)

where σ2(vr) is the variance of the mean Doppler
velocity, which can be expressed by (see [4])

σ2(vr) =
λ

8
√

πMT
ϕ, (14)

where λ is the radar wavelength, ϕ is the true spec-
tral width, M is the number of equally spaced pulses,
and T is the time between pulses. (The maximum
unambiguous (Nyquist) velocity is vnyq = λ/4T .)

Nastom [18] investigated the factors impacting on
the spectral width of Doppler radar measurements.
For very small bandwidths it was found that the vari-
ance was dominated by the effects of wind speed
changes along the radar beam. The expression for
the variance was derived as a function of the beam
elevation and the vertical wind shear. We therefore
chose here to express the error variance σ̆2(εv) of
radial winds more simply in terms of the gradient
variance along the pulse volume in a radial direction
as follows

σ̆2(εv) =
(
1− e−|∆vr/vr|

)
σ2(vr), (15)

where ∆vr is the gradient of the radial velocity, mea-
sured as a centred difference across the pulse volume.
The error in radar radial winds due to the velocity
gradient along the pulse volume varies with the range
R. Figure 7 (top) displays the local radial velocity
errors (m sec−1) calculated using (15) for the case
of 1st July 2003, shown in Figure 4(top). Figure
7(bottom) shows a proposed s-function for the ob-
servation errors as a function of the range, which is
acceptable to represent the errors of the radial ve-
locity. Note that as the range increases the error
increases. This is to be expected as the radar beam
gets wider and the pulse volume greater the kinetic
energy variation of the scatters in the pulse volume
increases, with increasing range.

5.2. Error due to hardware degradation
Although the instrumental error can have a sig-

nificant impact on the retrieval, in practice it is dif-
ficult to determine how this error varies with time.
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Figure 7. Local errors (m/sec) of the observation radial
velocity for the 1st July 2003 case (top), and the pro-
posed s-function for the observation errors as a function
of the range (bottom). The errors are measured over
all azimuths for each range. We can see the variability
of the error increases as the range increases.

In this case we assume that the instrumental error
does not vary temporally, and take the instrumental
error variance as σ̂2(εi) assuming there is no hard-
ware degradation with time. Therefore the total er-
ror variance of the radial winds is given by

σ2(ε) = σ̆2(εv) + σ̂2(εi)

=
(
1− e−|∆vr/vr|

)
σ2(vr) + σ̂2(εi) (16)

at each (r, θ). In the 3−GHz Chilbolton radar, the
measurement accuracy for Doppler radial velocity is
about 0.15−−0.5 m/s.

The instrumental error may not be a function of
(r, θ), but is a function of time. In this case, we as-
sume that this error is represented by a ”skewed”
distribution such as a Chi-Squared distribution with
probability density function (for ν degrees of free-



Impact of assimilation of Doppler radial velocity 9

dom) given by

pdfν(εi) =
ε(ν−2)/2e−εi/2

2ν/2Γ(ν/2)
, for εi ∈ [0,∞). (17)

Here Γ(y) is the gamma function, and εi is considered
as the instrumental error.

Thus the error variance of the degradation is de-
fined by

σ̂2(εi) =
∫

pdfν(εi)(εi − ε̄i)2dεi, (18)

where ε̄i is the mean value of the instrumental error.

6. Direct assimilation and observation opera-
tor of PPI data

Due to the poor vertical resolution of radar data,
a vertical interpolation of radar data from constant
elevation levels to model Cartesian levels can result
in large errors. For this reason a direct assimila-
tion of PPI data with no vertical interpolation was
recommended in [22,23]. However, radar data has
better horizontal resolution than that of the model
(the poorest polar radar data is approximately 0.5
km at the farthest range distance). An observa-
tion operator must be formulated to map the model
variables from model grid into the observation loca-
tions such that the distance between the observations
and model solution is estimated in the cost function.
Thus, we take advantage of the vertical resolution
of the model being much better than those of radar
data. The observation operation, He, for mapping
(and averaging) the data from the model vertical lev-
els to the elevation angle levels is formulated as

vr,e = He(vr) =
∑

Gvr∆z∑
G∆z

, (19)

where vr,e is the radial velocity on an elevation an-
gle level, vr is the model radial velocity, and ∆z
is the model vertical grid spacing. The function
G = e−α2/2β2

represents the power gain of the radar
beam, β (in radians) is the beam half-width and α is
the distance from the centre of radar beam (in radi-
ans). The summation is over the model grid points
that lie in a radar beam.

We next discuss the observation operator to con-
vert the Cartesian model components to the radial
components.

6.1. Observation operator
There are two types of observation operators. One

is used to interpolate and transfer the radar data
from observation locations to the model grids. The

second is used to map the model data into the ob-
servation locations. In the case of a direct assimila-
tion of radar radial wind at constant elevation angles,
which is not a model variable, the observation opera-
tor involves: (i) a bilinear interpolation of the NWP
model horizontal and vertical wind components u, v
and w to the observation location; (ii) a projection
of the interpolated NWP model horizontal wind, at
the point of measurement, towards the radar beam
using the formula

vh = u sin θ + v cos θ, (20)

where θ is the azimuth angle (clockwise from due
North).

The elevation angle should include a correction
which takes account of earth surface curvature and
radar beam refraction (see [12]); Then the third step
(iii) involves the projection of vh in the slantwise
direction of the radar beam as

vr = vh cos(α + φ) + w sin(α + φ), (21)

φ = tan−1

(
r cosα

r sin α + d + h

)
, (22)

where α is the elevation angle of the radar beam.
The formula for φ represents approximately the cur-
vature of the Earth. In the term φ, r is the range 0f
observation, d is the effective radius of the Earth and
h is the height of the radar above the sea level. The
effective earth radius is 1.3 times the actual earth
radius, this compensates for radar beam refraction.
Note that the factor of 1.3 is valid only in the case
of a standard atmosphere profile. The factor actu-
ally varies according to atmospheric conditions and
should ideally be calculated from the variation of re-
fractive index with height (see [12]). The effect of
this correction term on results is very small.

7. Impact of assimilation of Doppler radial
winds

In this section we investigate the impact of assim-
ilation of radial velocity on the variational analysis
and on the model forecasts. An experiment with
3D-Var has been performed at 12km and 4km res-
olution, using the Chilbolton radial winds PPI scan
data for the 12z 1st July 2003 case. The raw data
was averaged to about 4km resolution and estimated
observational errors assigned. The size of the RMS
errors assigned was a function of observation range
and the error magnitude was of order 2− 6m/s, val-
ues which are similar to the errors in the radar winds
discussed in the reviewer carried out in the EU COST
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75 project [2]. There is a fair degree of arbitrariness
in the error magnitude, as the theoretical model (see
Figure 7) only predicts the shape of the error distrib-
ution. It was found that errors of this magnitude did
not cause excessive degradation in the fit of the Var
analysis to the other observation types assimilated
along with radial winds.

In each Var experiment analyse were generated us-
ing surface, aircraft and sonde observations (and also
satwinds in the 4km experiments), both with and
without radial winds observations. Combination of
radial winds (and their errors) and other input data
can interact to produce non-linear results. However,
in the case studied the initial experiments indicated
that the radial winds do seem to produce a significant
impact on the analysis. Figure 8 (with 12km resolu-
tion), and Figure 9 (with 4km resolution) show the
impact of the Chilbolton radial winds on the NWP
analysis. The top panel shows wind speed analysis
without radial winds (computed from the analysed u
and v increment fields) at level 5 (700-800m height
which is about half the height of the radar beam at its
maximum range of 90km) for the case of 12 : 00 UTC
on 1st July 2003. The middle panel is the analysis
when radar radial data have been added to the other
source of observations, and the bottom panel is dif-
ference between the two analysis, to show the contri-
bution of the radial winds observations to the analy-
sis. Note that the impact of using radial winds is con-
fined to the vicinity of the coverage of the Chilbolton
radar located in central southern England.

Our experiments indicate that it is possible to as-
similate the super-obbed Doppler radar radial obser-
vations in PPI format into mesoscale NWP model,
where the model counterpart is calculated by the ob-
servation operator discussed in §§6.1. However, the
results depend very strongly on the observation er-
rors that may vary with the range.

Atmospheric model forecasts for the speeds at T+3
(≡ 15UTC), and T + 6 (≡ 18UTC), level 5 from
12UTC on 1st July 2003 are displayed in Figure 10.
Radial winds appears to have significant impact in
both the variational analysis providing the model ini-
tialization, and then on the model forecasts. Indeed,
the impact at T +6 is larger over South East England
than at T + 3. This consistent with the subsequent
development of the line convection which occurred
over South England on this day.

8. Conclusions

The mesoscale 3D-Var system has been developed
in the Met Office to include the capability of assim-
ilation of Doppler radial velocities. This paper have
concerned particularly with the statistical errors of
the radial wind data, the pre-processing of the data
before assimilation that includes manual data qual-
ity control, and super-obbing the very high resolu-
tion raw data to match the model resolutions. The
observation operator for the Doppler radial veloc-
ity has also been developed and incorporated in the
VAR system. Examples of radial winds derived from
the Chilbolton radar and a simulation model have
been considered. The impact of the Doppler radial
winds and their errors on the variational assimila-
tion system and on the model forecasts have been
investigated.

The Met Office 3D-Var system has been run with
(and without) Doppler radial velocities (in PPI for-
mat) with 12km, and 4km model resolution. The
Met Office Unified Model has also been run with the
obtained initializations having a time window of 3
hrs. A mathematical representation of observation
errors for radial winds has been used, and the form
of representation has been tested. The S−curve rep-
resentation seems to be appropriate, and consistent
with the observations for the particular case studied.
The numerical experiments led to a significant im-
pact on the variational analysis and on the forecasts.

A considerable amount of effort is still required to
further improve the system and to extend the ex-
periments to assimilate 1-5km resolution gridded ra-
dial velocity and reflectivity data, using 4D-Var tech-
nique to produces initial/boundary conditions for 1-
4km resolution forecasts.

Acknowledgements
This work represented in this paper is sponsored

by the National Environmental Research Council
(NERC) through the Universities Weather Research
Network (UWERN), a part of the NERC Centres for
Atmospheric Science (NCAS). The authors thank Dr
Sean Swarbrick (Met Office) for his contribution in
some parts of the paper and his valuable comments.

REFERENCES
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Figure 8. Impact of the radar radial winds on the 3D-
Var analysis with 12km model resolution for the wind
speed at level 5, for 12UTC 1st July 2003. From top
to bottom: the PFAnalysis without radial winds, with
radial winds, and the difference.

Figure 9. Impact of the radar radial winds on the 3D-
Var analysis with 4km model resolution at level 5, for
12UTC 1st July 2003. From top to bottom: the PF-
Analysis without radial winds, with radial winds, and
the difference.
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Figure 10. Atmospheric wind speeds at T + 3 (right)
& (T +6) (left), level 5 from 12UTC on 1st July 2003.
From top to bottom: the forecast without radial winds,
with radial winds, and the difference.


