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1. INTRODUCTION 
 

Significant model errors can develop for relatively short-
range predictions (0-48h forecasts), such as January 2000 
“surprise” East Coast snowstorm (Zhang et al. 2002) and the 
major numerical forecast errors over the Northeast Pacific 
(McMurdie and Mass 2004). These errors in numerical 
weather prediction (NWP) result from uncertainty in initial 
conditions (ICs) and imperfect physical (PHYS) 
parameterizations. As a result, several recent studies have 
explored the benefits and shortcomings of short-range 
ensemble forecast (SREF) modeling systems.  Developers of 
these SREF systems have quantified the impact of initial 
condition uncertainty, model dynamics diversity, and model 
physics variability on short-term forecasts.  

Most SREF studies have focused over the Pacific 
Northwest or the central U.S., while there have been few 
long-term SREF verification studies over the Northeast U.S. 
Stensrud and Yussouf (2003) and Yussouf et al. (2004) 
focused on summer temperature prediction over the 
Northeast, but other low-level parameters also need to be 
evaluated in the Northeast, such as 10-meter wind and 
precipitation. The Northeast U.S. weather also poses different 
challenges than other regions where SREF systems have been 
verified. The Great Lakes, Appalachian Mountains, urban 
centers, irregular coastline, Gulf Stream and Labrador 
currents all add mesoscale complexity and result in model 
errors that vary significantly from season to season (Colle et 
al. 2003a, 2003b). Thus, a SREF system over this region 
requires evaluation for both the warm and cool seasons in 
order to qualify the relative importance of IC and PHYS 
uncertainty. 

This paper summarizes the verification of a SREF 
ensemble forecast system that was developed at Stony Brook 
University (SBU) over the Northeast U.S. in collaboration 
with several of NOAA's National Weather Service (NWS) 
forecast offices as part of a COMET (Collaborative Program 
for Operational Meteorology, Education, and Training) 
collaborative project. The 18-member SREF system utilizes 
both IC and physics (PHYS) uncertainty in the MM5 at 12-
km grid spacing. At the time of this research, this was the 
highest resolution SREF ensemble over the Northeast. 

 
2. ENSEMBLE AND VERIFICATION SETUP 
 

A mesoscale SREF system was constructed using 18 
members of the MM5 (version 3.6). The MM5 was integrated 
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Figure 1. Location of the 12-km MM5 domain, which is nested within 
a larger 36-km domain.. The surface and C-MAN (SA) and 
cooperative observation (COOP) sites used for the verification  are 
plotted in using black and white circles, respectively.  The 2-meter 
temperature, 10-meter wind speed and direction, and sea-level 
pressure verification statistics use the SA sites, whereas the 24-hour 
precipitation verification includes both SA and COOP sites. 
  
over an outer 36-km domain that extended from the Rocky 
Mountains to the western Atlantic Ocean and a 12-km (one-
way) nested grid that covered much of Northeast U.S. (Fig. 
1). Thirty-three sigma levels were used in the vertical, with a 
maximum resolution in the boundary layer.  The terrain for 
the 36-/12-km grids was analyzed using a 5' and 30” terrain 
dataset, while a 30” land use dataset from NCAR was used to 
initialize 25 land surface categories. 

Twelve PHYS members were initialized using the 12-km 
Eta interpolated to the NCEP-221 grid (32-km grid spacing, 
25-mb interval vertical levels).  These analyses were 
interpolated bilinearly to the MM5, while boundary 
conditions were obtained by linearly interpolating the 3-h Eta-
104 model forecasts (90-km grid spacing, 25-mb vertical 
levels). The 12 PHYS members were chosen using a 
combination of three MM5 PBL schemes: Blackadar, Miller-
Yamada-Janjic (Eta-PBL), and MRF, as well as four MM5 
CPs: Betts-Miller (BM), Grell (GR), Kain-Fritsch (KF), and 
Kain-Fritsch-2 (KF2).  

Five IC members were initialized at 0000 UTC using the 
3-h forecast from the NCEP SREF Eta bred members at 2100 
UTC.  Boundary conditions for these members were obtained 
by linearly interpolating the bred Eta-104 model forecast grids 



to the MM5 grid at 3-h intervals.  A sixth IC member was 
initialized using the NCEP Global Forecast System (GFS) 
model initialized at 0000 UTC at one-degree resolution, with 
boundary conditions from the GFS at 6-h intervals.  The 
physics and IC ensembles were not mixed (different IC use 
different physics) in order to better understand the different 
physics impact on the simulations. 

The ensemble system was run once daily at 0000 UTC, 
and the ensemble mean and spread data was transferred in 
real-time to the Advanced Weather Interactive Processing 
System (AWIPS) at several regional NWS offices and the 
Northeast River Forecast Center. Real-time data archived 
during the warm season of 01 May - 31 September 2003 
(warm season) and during the cool season of 01 October 2003 
– 31 March 2004 (cool season) was examined for this study.  

Verification results were compiled over the warm and 
cool seasons using the MM5 and Eta verification system that 
has been operational at SBU since 1999 (Colle et al. 2003a, 
2003b). This paper primarly focuses on the surface 
verification of temperature, wind, and precipitation for each 
member in order to illustrate the challenges one faces in 
constructing an ensemble over this region. For each surface 
parameter standard measures of forecast skill were calculated 
for each ensemble member and ensemble-mean forecast, such 
as mean error (ME) and mean absolute error (MAE). These 
errors were averaged over the 12-km model domain. 
Verification rank histograms were constructed for lower-level 
metrics to examine the dispersion qualities of the ensemble. 

 

 
 

Figure 2. Diurnal mean errors (MEs) every 1-h for (a) 2-meter 
temperature, (b) sea-level pressure, (c) 10-meter wind speed, and (d) 
10-meter wind direction for the warm season 0000 UTC forecasts for 
all members and 3 ensemble means (PHYS, ICs, ALL) averaged for 
the 12-km domain. 
 

3. VERIFICATION RESULTS 
 

Figure 2 shows the 12-km domain-averaged MEs and 
MAEs for the warm season for all 18 members and the three 
ensemble-means (PHYS, IC, and ALL). All members have a 
warm (0.5-1.0 oC) 2-m temperature bias at night (Fig. 2a), 
while the MYJ-PBL (Eta) members develop a 1-2 oC cool 
bias during the day. The MYJ-PBL cool bias partially offsets 
the warm biases prevalent in the BLK and MRF PBL 
members, producing an overall lower bias during the day for 
both the PHYS and ALL means as compared to the IC mean. 
As a result, the PHYS mean has a greater 2-m temperature 
skill than the IC mean across all forecast lead times (not 
shown), while the full (ALL) ensemble is more skillful than 
the PHYS during the day.  

The strong diurnal biases are likely due to imperfect 
land-surface and boundary layer physics. For example, the 
MYJ-PBL cool bias during the day is also associated with a 
large (20-30%) moist bias at the surface (Jones 2004). Also, 
too much mixing at night favors a near surface warm bias as 
well as the nocturnal high wind speed bias (0.5–1.75 m s-1) 
and positive (clockwise or too geostrophic) wind direction 
bias (5-10o) in all members (Figs. 2c,d), with the MYJ PBL 
having a smaller bias than the other PBL members. For 10-m 
wind speed (not shown), the ensemble means are among the 
best performing members only during the day, since some of 
the large errors in the MRF and BLK PBLs at night result in 
the MYJ-PBL outperforming the ensemble means on average. 
The sea-level pressures tend to have a weak (~0.5 mb) 
negative bias during the day for most members (Fig. 2b). For 
sea-level pressure and wind direction (Figs. 2b,d), the errors 
gradually increase through the 0-48 h period, with the Eta-
bred members having the largest error for most time periods. 
In fact, some of the Eta-bred sea-level pressure errors during 
the first 12 h are as large as the ensemble ALL mean at hour 
48. 

Using the MYJ-PBL with different CPs results in 
relatively large spread among members during the day. This 
variation in low-level temperature among the MYJ-PBL 
members is related to those days that have large amounts of 
precipitation over the Northeast U.S (not shown). It was 
found that the amount of low-level clouds produced by a 
given explicit precipitation and convective scheme 
combination reduces the incoming solar radiation and results 
in a particular surface cool bias. 

During the cool season (not shown), the MEs of 2-m 
temperature for the PHYS members are clustered together 
more than the warm season, with members grouping 
according to PBL scheme.  Cool biases are more prevalent 
during the day than in the warm season (not shown), and a 
moist bias exists for all members during the day.  

The diurnal pattern of temperature MAEs for the cool 
season (Fig. 3a) is similar to the warm season (not shown); 
however, as compared to the warm season, the cool-season 
PHYS and ALL means have a smaller skill advantage over 
the individual members. The sea-level pressure MAEs have 
the largest spread of all the parameters, with the Eta-bred 
members having 20-50% larger errors than the other members 
(Fig. 3b), while the GFS member is the most skillful member. 
Clearly, all members are not equally skillful in sea-level 
pressure, and because of the large Eta-bred errors, the 
ensemble means do not improve upon the GFS. The 10-m 



wind speed MAEs are clustered according to the above noted 
bias errors (Fig. 3c), with the MYJ-PBL being the more 
skillful than even the ensemble means. The Eta-bred members 
are also the worst set of members for 10-m wind direction on 
average (Fig. 3d), with the PHYS and ALL mean being the 
best member on average for this parameter.  

 

 
 

Figure 3. Diurnal mean absolute errors (MAEs) every 1-h for (a) 2-
meter temperature, (b) sea-level pressure, (c) 10-meter wind speed, 
and (d) 10-meter wind direction for the warm season 0000 UTC 
forecasts for all members and 3 ensemble means averaged for the 12-
km domain. 

 
Because of the model wind speed and temperature 

biases, all parameters show an overpopulation of the extreme 
ranks of the histograms (i.e., the histograms are U-shaped or 
L-shaped) during the night (0-12 h and 25-36 h) and day (13-
24 h and 37-48 h) periods (not shown). The pronounced L-
shape histogram during the night indicates a positive bias, and 
this feature is most prevalent in the 2-m temperature and 10-m 
wind speed distributions. A 14-day bias calibration improves 
the dispersion of the ensemble forecast by reducing the 
frequency of misses due to an ensemble-wide bias (not 
shown).  However, even after calibration, the ensemble 
remains under-dispersed.  This highlights the need to improve 
the overall dispersion of the raw ensemble as well as to 
develop better bias calibration techniques.  

The ability of the 18-member ensemble to predict the 
skill of the mean of all 18-member (ALL) ensemble forecasts 
for the warm and cool seasons was evaluated.  Each point in 
the scatterplot on Fig. 4 represents the 12-km domain-
averaged ALL ensemble variance versus ALL mean MAE 
averaged for a given diurnal period for both the raw ensemble 
and using the 14-day bias calibration. For the warm season 2-
m temperature, sea-level pressure, and surface wind speed 

(Figs. 4a-f), the MAEs differ greatly compared to its variance, 
producing a “column” pattern in the scatterplot. In other 
words, as a result of the model biases, a wide range of errors 
is associated with little variance between members. This 
results in spread-error correlations that are relatively poor, 
with correlation coefficients between 0.20-0.40 (Figs. 4i,j). 
The 2-m temperature error-variance patterns vary less for the 
cool season forecast periods than the warm season (not 
shown), resulting in a more pronounced column pattern than 
the cool season and correlation coefficients only ranging from 
0.07 to 0.09. Unfortunately, the correlation results do not 
change substantially after the calibration is applied. 

 
 
Figure 4. Scatterplots of domain-average variance (abscissa) versus 
domain-average MAE (ordinate) for before (gray circles) and after 
(black x’s) a 14-day bias calibration is applied.  Scatterplots for night 
and day averaged during the warm season are (a,b) 2-meter 
temperature, (c,d) sea-level pressure, (e,f) 10-meter wind speed, and 
(g,h) 10-meter wind direction forecasts for the 18-member ensemble 
mean.  The MAE-variance correlation coefficients (i,j) are shown for 
(white) before and after (black) the bias calibration is applied.  
Plotted lines in panels (a) to (h) represent the least-squares linear fit 
of (gray) raw and (black) bias-calibrated scatterplots. 
 

Figures 4g,h show the 10-m wind direction error-
variance patterns for the warm season during the night and 
day, respectively.  In general, the errors tend to increase with 
increasing variance, producing a “fan” pattern, with 
correlation coefficients much higher (0.68 to 0.70) than other 
variables. The cool season 10-m wind direction forecasts tend 
to have less variance than the warm season (not shown), with 



correlation coefficients ranging from 0.60 to 0.64.  The 10-m 
wind direction correlations are changed only slightly during 
the day by applying bias calibration, while there is a large 
(50%) reduction at night. Overall, surface wind direction 
forecast skill is more predictable in the warm season than in 
the cool season over the Northeast U.S.  

 

 
Figure 5. Warm season (a) bias and (b) ET scores for individual 
ensemble members and ensemble means versus 24-hour QPF event 
threshold. 
 

The 24-h (12-36h) quantitative precipitation forecasts 
(QPF) were verified during the warm and cool seasons for the 
12-km domain. Conventional bias and equitable threat scores 
were calculated for each member and ensemble means. Figure 
18a shows the precipitation bias (mean error) based on the 
contingency table for the IC, PHYS, and ALL ensemble 
means as well as select groupings based on convective 
parameterization. Although there was some variation of 
precipitation based on the PBL used (not shown), it was found 
that the CP scheme had the larger impact. Those 24-h 
precipitation thresholds greater than 2.54 cm are not shown 
since the number of events were relatively small. All 
individual members except the Kain-Fritsch CP have 
increasing bias with increasing threshold amount. 
Interestingly, the Kain-Fritsch CP member has a bias of 0.87 
for the 2.54 cm threshold, while the Kain-Fritsch2 is near 
1.30. This change in Kain-Fritsch performance from under-
prediction to over-prediction at higher event thresholds may 
be the result of implementing a minimum moisture 

entrainment rate and other modifications into the updated 
scheme. The warm season bias scores for the ensemble means 
illustrate one of the disadvantages of using an averaged value 
for warm-season precipitation.  Namely, the intrinsic 
smoothing created by averaging individual members forecasts 
leads to over-prediction of low- and mid-thresholds, and 
under-prediction of high-thresholds. 

The PHYS CP members have better (higher) equitable 
threat scores (ETSs) than the IC members for all thresholds 
(Fig. 18b).  The GFS performs slightly better than the IC 
mean for all thresholds over 0.762 cm (0.3 inches). Due to the 
relatively low ETSs of the IC members, the PHYS mean 
outperforms the IC mean, and the ALL mean is generally 
comparable to the PHYS mean at all thresholds. 
 During the cool season (not shown) all members 
and means have cool season ETSs that are 0.15 to 0.2 larger 
than the warm season. As in the warm season, the cool season 
PHYS members have greater skill than the IC members on 
average, but the percentage benefit for the PHYS is smaller 
than the warm season. 

  

 
Figure 6. Reliability diagrams for three 24-hour precipitation 
thresholds: (a) 0.1” (0.254mm) and (b) 0.7” (17.78mm) during the 
warm season. The dotted straight line represents a perfect forecast, 
while the straight dashed line denotes no skill. The ALL, IC and 
PHYS ensembles are represented by the solid, dashed, and dash-
dotted black lines, respectively.  Inset histograms show the number of 
occurrences (ordinate) of each forecast probability (abcissa). 

 
In order to examine the accuracy and reliability of the 

ensemble's QPF probability distribution during the warm 
season, the Brier score (BS) was broken down into the three 
components outlined in Appendix.  These components are 
presented in reliability diagrams of forecast probabilities 
versus observed relative frequencies (Fig. 6).  In these 
diagrams, perfect reliability (REL) is represented by the 1:1 
dotted line.  The ability of the ensemble to discriminate 
between events, RES, is measured by the slope of the plotted 
solid line, with less RES producing a more horizontal line.  



The dashed line represents the line of “no skill,” where 
REL=RES, and BSS=0. 

For the 0.25 cm (0.1 inch) threshold during the warm 
season (Fig. 6a), lower probabilities tend to be under-forecast 
(solid lines lie above dotted line) and higher probabilities tend 
to be over-forecast (solid lines below dotted line) for PHYS, 
IC, and ALL.  Thus, the ensemble tends to over-predict the 
24-hour precipitation probabilities.  For larger thresholds, 
such as 1.78 cm (0.7 inches) in Fig. 6b, the IC ensemble 
shows no skill at all probabilities, whereas the PHYS and 
ALL ensembles retain skill and reliability at high probabilities 
(> 75%) at all thresholds. 

For the BS components during the cool season (not 
shown), all ensemble suites tend to be over-confident in 24-
hour precipitation probabilities, except at very low (< 25%) 
probabilities.  The IC ensemble forecast probabilities have 
greater reliability at all thresholds than the PHYS or ALL 
ensembles for probabilities over 50%. Each of the ensemble 
grouping’s reliability approaches the “no-skill” line at even 
the 0.254 cm (0.1 inch) event threshold for low-to-mid 
forecast probabilities (20-50%), and remain unskillful for all 
event thresholds.  Higher probabilities (75-100%) retain skill 
and reliability for all thresholds, with the IC ensemble 
probabilities showing greatest reliability for the higher 
probabilities. These results illustrate that an ensemble 
weighted more with IC members can prove beneficial for cool 
season precipitation forecasting over the Northeast U.S. 

 
4. SUMMARY 

A short-range ensemble forecast (SREF) system was 
constructed over the Northeast United States down to 12-km 
grid spacing using 18 members from the Penn State 
University – National Center for Atmospheric Research 
(PSU-NCAR) Mesoscale Model Version 5 (MM5). The 
ensemble consisted of 12 members with varying planetary 
boundary layer (PBL) schemes and convective 
parameterizations (CPs) as well as seven different initial 
conditions [five NOAA's National Center for Environmental 
Prediction (NCEP) Eta-bred members at 2100 UTC and the 
0000 UTC NCEP Global Forecast System and Eta runs]. The 
MM5 SREF system was verified over the warm (May-
September 2003) and cool (October 2003-March 2004) 
seasons for several surface parameters. 

All ensemble members have an appreciable diurnal 
temperature and wind speed bias that varies by PBL type. 
During the warm season the magnitude of the cool surface 
bias for the Mellor-Yamada-Janjic (MYJ) PBL during the day 
depends on the CP scheme utilized. The MYJ-PBL cool 
biases during the day partially cancel the warm biases from 
other PBL members, resulting in ensemble mean having the 
most skill on average. Because of clustering of PBL 
parameterizations during the cool season, the IC members are 
more useful than the physics members, but none of the 
members outperform the GFS-MM5 for sea-level pressure. 
The ensemble outperforms the NCEP Eta model on average 
and it has similar skill as the deterministic MM5 initialized 
12-hours later.  

Spread-error correlations are lowest (0.09 to 0.4) for 
temperature and wind speed given the large biases and 
clustering prevalent among ensemble members. A 14-day bias 
calibration improves the ensemble under-dispersion of 
temperature and winds, but an appreciable bias still exists. 

Correlations are largest for 10-meter wind direction (0.6 to 
0.7), indicating that ensemble variance can be used as an 
approximation for ensemble uncertainty for this parameter 
over the Northeast U.S. Although the reliability of ensemble 
probability of precipitation is only moderate for most 
accumulation thresholds, probabilistic precipitation is more 
skillful than sample climatology.  For the 24-hour 
precipitation forecasts, the physics ensemble has the greatest 
skill and reliability during the warm season, while the initial 
condition ensemble provides the largest benefit during the 
cool season.  
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