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1. INTRODUCTION

A crucial component of a three-dimensional
variational (3DVar) scheme for the assimilation of
data for initializing a weather prediction model is
the assumed covariance model for the background
errors (e.g., Daley 1991). Traditionally, the covari-
ance model of an operational 3DVar scheme has
been rather simple in spatial structure, being hori-
zontally isotropic and homogeneous for each of the
separated scalar components into which the full dy-
namical fields are typically resolved. The balanced
(quasi-geostrophic) component, having larger en-
ergy in its modes and in the errors of these modes
(as measured by an ‘energy norm’) naturally has
the covariance with the dominant amplitudes; the
errors of the unbalanced divergent and rotational
components are normally considered to be of lesser
amplitude and significance. However, as we migrate
to progressively finer scales in our forecast models
and their accompanying assimilations, arguably it
becomes less excusable to ignore the evident strong
horizontal anisotropies and the vertically tilted me-
teorological structures, such as fronts, rainbands,
and quasi-linear features of organized convection
that are so dominant at the scales now resolved by
these mesoscale models. Directional dependencies
in the errors in the background are intuitively ex-
pected to mirror the manifest horizontal and verti-
cal ‘stretching’ of the mesoscale features themselves
to some degree, so the assumption that simple hor-
izontally isotropic and untilted covariances will suf-
fice seems less easy to justify.

Recently developed numerical tools, including
explicit models of quasi-Gaussian covariances of fi-
nite support (Gaspari and Cohn 1998, 1999), vari-
ous flavors of wavelet analysis (Fisher 2003, Auger
and Tangborn 2004, Deckmyn and Berre 2005),
synthetic diffusion (Weaver and Courtier 2001)
and the ‘Hexad’ filtering algorithm (Purser et al.
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2003b), now make it feasible to construct a back-
ground covariance operator that incorporates spa-
tial inhomogeneity and a controlled degree of gen-
eral anisotropy in a variational assimilation. To-
pographic alignments (coasts, valleys, mountain
ranges, and so on) suggest an obvious influence on
the anisotropy at low levels. Another reasonable in-
put for choosing parameters that control the back-
ground error covariance might be some measure of
the data quantity and quality at the previous as-
similation time. However, a particularly important
source of information about anisotropy in the free
atmosphere is the latent dynamical information car-
ried by the background field itself.

We consider a number of possible diagnostic
measures available from the background. In
principle, such a diagnostic can be extended to
the analysis itself in an iterative formulation of
the assimilation, which is clearly a desirable option
if convergence can be guaranteed. Desroziers
(1997) discusses some potential difficulties with
the convergence of such an iterative procedure if
care is not taken. In this preliminary study, we
do not attempt an iterative refinement. Neither
do we attempt to seek a dependency of the
amplitude of the covariance on diagnostics of the
background, although we recognize that this is
another potentially valuable control mechanism for
a fully adaptive covariance model.

The covariances we employ for this study have
a quasi-Gaussian form — essentially what would be
obtained as an appropriate amplitude-modulated
response function representing a general diffusion
operator acting over a finite duration, for example.
The diffusion analogy has been made explicit in
the work of Derber and Rosati (1989) and, for
more generally horizontally anisotropic covariances,
in Weaver and Courtier (2001). The spatial
recursive filters by which we synthesize our own
quasi-Gaussian covariances also act as accelerated
diffusion operators (Purser et al. 2003a) and, by
combining them with the sequential line-filtering
‘hexad’ algorithm (Purser et al. 2003b), any
arbitrary anisotropy, as prescribed by the centered
and normalized second-moment ‘aspect’ tensor of
spatial dispersion can be obtained, provided it is a
sufficiently smooth function of space.



2. NOTATION

We shall adopt the convention that, unless
declared otherwise, vectors are oriented as columns
and the gradient operator, defined:

V = (8/0x,8/dy,d/0z)"

acts upon either scalars or row-vectors. The
orientation of any Jacobian matrix 0%/0z, is that
implied by:

ox/0x = (V&")T

so that
dz = (0%/0z)d=.

The independent physical coordinates x are as-
sumed orthogonal and may be taken to be local
cartesians when, as we shall normally assume, the
scales of correlations are much smaller than the ra-
dius of the earth. The notation for other variables
is standard.

3. THE METHOD OF RIISHOJGAARD

Riishgjgaard (1998) suggests that a passively
advected field would constitute a valuable indica-
tion of the recent flow distortions that would, in
turn, have played a part in stretching the error co-
variances. In this sense, the selected scalar field
acts as a proxy for a Lagrangian coordinate — an
especially good analogy in the case of a tracer
field evolving almost entirely by passive advection.
Such ideal tracers do not exist in the atmosphere,
however, and we opportunistically rely on conve-
nient scalar quantities that only partially behave
like tracer variables.

We start with the current Gaussian horizontally
isotropic model in use at NCEP:

Co(Az) = exp (—%A::TSOIA2:> ) (1)

where Az is the local cartesian vector of separation
between particle pairs. The inverse aspect tensor is
the diagonal matrix:

Sy! =diag{L,* L, L,”} (2)

where Lp is the horizontal correlation length, L,
the vertical correlation length, and both may be
considered functions of latitude and altitude. (The
correlation’s aspect ratio, from which the tensor
derives its name, is the ratio of the square-roots of
these diagonal elements). The inverse aspect tensor
clearly acts like a metric, producing an effective
separation, As defined by:

As® = AxTS, Az (3)

such that the correlation,
LN
Co = exp —§As (4)

now becomes effectively homogeneous in the imag-
ined space whose distances are measured by the
metric definition (3).

For a chosen scalar function, ¢, assumed to
be evolving predominantly under the influence of
advection, the Riishgjgaard method would modify
the default correlation (1) according to:

_ 2

C(Az) ~ exp (—%AxTSO_lAm> X exp ( (2?/(21) ) ,
q

()

where L,, with the same units as g, represents
a correlation scale in the ‘direction’ of variations
of q. Thus, in Riishgjgaard’s method, the new
metric in which (4) holds is that obtained as
if the three spatial dimensions are mapped to
a 3-manifold imbedded in a larger space whose
orthogonal coordinates are those of z, augmented
with ¢ and where the new metric is therefore,

5 = diag{L;% L;% L% L% (6)

To a first-order approximation, the local ‘dis-
placement’ in the value of ¢ is related to its gradient
and to the real displacement:

Aq~Vqg- Az )

so we may write the modified correlation:
1
C(Azx) = exp <—§A$TSIA1:) ) (8)

where 1
S =8"+ (Vo) (Va)". 9)
q

Examples of suitable choices of ¢ might be hu-
midity (in units scaled appropriately with altitude),
potential temperature, 6, or, in order to repond
more directly to dynamics, the Ertel potential vor-
ticity (PV),

1
¢=-n Vo, (10)

where p is the density, 6 the potential temperature,
and
n=fk+Vxuy,

is the three-dimensional absolute vorticity. If ¢ is
characterized by sufficient variability, and L, is
large enough, the modification will have a general
tendency to reduce the typical correlation scales of
C relative to the default scale Ly and L,, so the



implementation of Riishgjgaard’s method is typi-
cally accompanied by a compensating adjustment
to larger values of these defaults.

The construction (9) is readily augmented to
admit the influence of more than one scalar, since
we may copy and add the form of the second term
on the right with as many additional variables as
one wishes to consider. However, in this case it
is algebraically neater and potentially more general
to gather the controlling scalars into a vector g =
(q1,---,49,) to whose n components one associates
the corresponding correlation ‘scales’, L; with ¢ =
1,...,n in the same respective units as the g¢;
themselves. Then, assuming these ¢; all act as
independent fields, a diagonal matrix is formed:

S, =diag{L?,...,L;*} (11)
and the generalization of (9) written as:
S =51+ (Va8 (Va')". (12)

A further generalization that this form suggests
when the ¢; are mot mutually independent is to
allow the matrix S;l to be nondiagonal (but still
symmetric and non-negative). While we have
segregated the terms on the right of (12) into
‘geometrical’ and ‘functional’ contributions (first
and second terms respectively), even this distinction
becomes somewhat artificial when the possible
choices for the components of ¢ can include some
that are themselves most naturally interpreted
in geometrical terms (as we show below). As
a consequence of the trivial Jacobian identity,
V(z!) = I, a further algebraic consolidation of the
formalism is achieved by absorbing the geometrical
components of z into an augmented vector ¢, and
making room on the diagonal of (augmented) S;l

for the elements of Sy'. Thus, the first term on
the right of (12) may be dropped from the general
formalism:

57" = (Vq")s; (Ve (13)

where it is understood that, in general, the vector g
includes the geometric, or coordinate components,
.

In this form, both geometrical and functional
variables have essentially the same status and it is
therefore not mandatory that all of the geometrical
components x of q actively participate in the metric
formula, as long as the remaining metric compo-
nents corresponding to q still suffice to ensure that
the embedded image of the real domain in ¢space
stays three-dimensional. A useful example of this
occurs when L7! vanishes but L;l, corresponding
to a potential temperature component, 6, of q, does
not. The correlation implied by this choice should

lead to an assimilation virtually equivalent to that
obtained using undeformed correlations in an isen-
tropic coordinate; but here the accomplishment re-
quires no formal transformation to an actual isen-
tropic coordinate grid.

We shall see below that, by an extension of
this judicious activation and deactivation of differ-
ent metric coefficients, in a suitably augmented g, a
variety of implied deformations of an otherwise ge-
ometrically simple correlation are conveniently in-
dicated. However, before we proceed to describe
these, we introduce convenient alternative param-
eters kK = L~! for each of the variables we might
use in the metric definitions, so that infinities are
avoided in the cases where some of the given vari-
able happen not to participate actively in the met-
ric (when the corresponding xs go to zero). Each
k has dimensions inverse to its respective variable
and may be thought of as a sort of ‘concentration’ of
correlation lengths per unit of the variable in ques-
tion.

4. ADAPTATION OF THE METHOD OF
DESROZIERS

A special class of prescriptions for adaptively
deforming the correlations occurs when the correla-
tion is envisaged to have a simple form in a variably-
displaced copy of the physical coordinates. The
generalized form of the Riishgjgaard method above
accommodates this class of methods by simply nul-
lifying the horizontal and vertical metric terms, say
kp and k,, that corresponds to the geometrical
variables z, and activating only the k terms asso-
ciated with the appropriate horizontal and verti-
cal transformed copies, X, of the original £. The
archetype of such methods is that of Desroziers
(1997), who proposed such a transformation to the
‘geostrophic momentum’ coordinates of the semi-
geostrophic (SG) theory of Hoskins and Bretherton
(1972), Hoskins (1975). This is a horizontal coor-
dinate transformation which tends to expand cy-
clonic regions, shrink anticyclonic ones and broaden
frontal zones. Since the background error covari-
ance is expected to respond qualitatively in much
the same way, Desroziers suggested the use of this
coordinate change, suitably adapted to spherical
geometry and modified within the tropics (where
geostrophic control becomes invalid), as a way to
enable spectral representations of background co-
variance to indirectly acquire some useful adaptiv-
ity to the environmental flow. (Spatial adaptivity
in a spectral representation is not directly practical
owing to the loss of diagonalization implied).

His implementation explicitly used a trans-
formed computational grid, requiring interpolations
between this grid and the regular Gaussian grid
used for spectral transformation. Since the natural



extension of the SG transformation employs poten-
tial temperature as the vertical transformed coordi-
nate, we shall adopt this more complete form here.
For locally Cartesian coordinates, the horizontal
part of the transformation will give geostrophic mo-
mentum coordinates X, and Y transversally dis-
placed with respect to the geostrophic wind (ug,v,)
according to:

1
Xy =z + vy, (14)
f
Y, ! (15)
=y — —uyg.
9 f g

As noted by Desroziers, the singular behavior of
the reciprocal-Coriolis parameter at the equator
needs to be regularized. The effective regularized
‘Coriolis time scale’ that we denote 7, and that
approximates, and substitutes for 1/f in the
transformation above is defined as a function of
latitude ¢, following Desroziers (1997), by

7o(¢) = [1 — exp(=¢*/2¢5)1 ",

where ¢g is 15°. For our purposes, it is acceptable
to replace the geostrophic wind components by the
true wind, so the approximation to geostrophic
momentum coordinates X, that we consider is:

Xy =2+ 140, (16)

Y, =y —14u, (17)

together with the substitution of 8 for z to complete
the set.

The optimal metric parameter, k4, that we
associate with displacements of X, = (X,,Y;) will
not, in general, be equal to the optimal xp used in
the default case of horizontally isotropic statistics.
Neither should we expect the best choice of kg to
be the same when the horizontal coordinates are X,
as when they are 2. Thus, each new combination
of the variables that are active in q requires a
fresh optimization of the corresponding parameters
K jointly.

5. KINEMATIC DEFORMATION METHOD

In this construction, the idealized assumption is
that the actual covariance is equivalent to the final
result of a kinematic deformation acting over a finite
duration, 7, upon a passively evolving covariance
that was horizontally isotropic and homogeneous
standard covariance at the beginning of this period.
Since we do not have the luxury of being able to
carry actual Lagrangian coordinates forward with
the model’s advection operator for this period, we
make the drastic first-order simplification of the
horizontal kinematics that attributes the location
of each advected particle at the beginning of the

period to the points Xy = (Xk,Yr) where, by
analogy to the prescription of the last subsection,

XkZ.Z'—Tku, (18)

Yk =Y — TV. (19)

For the vertical direction, we can again take 8 as
a proxy for a true Lagrangian coordinate, so that
the active components defining the metric in this
case are a ky (associated with Xj) and kg only.
Although, unlike the Desroziers method, the 7 in
this case can be taken to be a constant, there is no
reason why it must be, and it is quite possible that
best results with such a purely kinematic approach
might require this kinematic time scale 73, to be a
function of altitude, latitude, or both.

6. SOME PRACTICAL CONSIDERATIONS

Some of the methods we have described in
this section can, under extreme conditions of the
background field, yield embedded images of the
mapping of real space to the augmented gspace
that self-intersect, so that pairs of points actually
distant from one another seem unduly close or
even coincident in terms of the metric in g-space.
In practical terms, the implied aspect tensor then
becomes highly elongated or even singular. In such
extreme conditions it is desirable to limit the aspect
ratios of the shapes that might otherwise occur. We
do this by expressing the unmodified inverse aspect
tensor inferred by each tested diagnostic method in
units that make the typical horizontal and vertical
scale dimensions equitable, and we then artificially
restrict the allowable range of the eigenvalues of
this S~!. This is easily done if we diagonalize
this matrix through the similarity transformation
defined by its matrix of eigenvectors, trim the
eigenvalues to within their allotted bounds, and
reconstruct our new S~! via the corresponding
inverse similarity transformation. However, it
is clearly undesirable to have to carry out such
remedial procedures and far better to choose
a combination of the parameters x that tends
automatically to avoid the offensive occurrences.

7. DESCRIPTION OF PLANNED
EXPERIMENTS

The generalized framework of the Riishgjgaard
method provides us with opportunities to deviate
from the ‘pure Desroziers method’ or the ‘pure
kinematic method’ and consider various hybrids of
these methods together with at least some active
contributions from the geometrical coordinates z. It
is beyond the scope of this study to comprehensively
explore the vast parameter space of possibilities
available by taking different vertical and meridional
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Table 1. Summary of the combinations of metric
terms (marked with an ‘X”) actively involved in each
of the five families of experiments.

profiles in different combinations from even the
limited set of parameters k that we have suggested,
namely the set:

K= (Kn, Ky, Kq, K9, Kg, i) (20)

Instead we primarily examine only a few simple
combinations, summarized in Table 1, together
with a few choices of the numerical values of the
active k parameters, designed to explore regions
of the parameter space that would seem roughly
to surround the particular restricted parameter
selection that corresponds with NCEP’s present
horizontally isotropic and homogeneous operational
configuration.

These experments are being conducted using
the NCEP regional analysis system. Forecasts are
being examined out to three days for a selection
of cases throughout the year for the North Amer-
ican domain. The match of the forecasts of wind,
and temperature at various elevations, and the pre-
cipitation, to the corresponding time’s operational
analyses are being examined for each of the expe-
riental set-ups described in Table 1. A compari-
son of these experiments with the operational con-
figuration (i.e, experiment 1) will allow us to as-
sess the merits of the various strategies for inferring
anisotropy from the background. Preliminary re-
sults will be provided at the conference.

8. CONCLUSION

We have shown that an adaptation of the
method of Riishgjgarrd (1998) allows us to test a
variety of strategies for deducing the anisotropies
in the background error covariance from the back-
ground field itself. The general method implies an
assumption that, in a suitably transformed space
of possibly more than three dimensions, the im-
age of the mapping of physical space causes the
actual background error covariances to become
isotropic and homogeneous. Included in this gen-

eral approach are methods that make the covari-
ance look homogenous in isentropic coordinates,
or in geostrophic momentum coordinates, or in
kinematically-lagged coordinates, or combinations
of all these. The relative merits of these inputs can
therefore be put to the test in this form of the gen-
eralisation of Riishgjgaard’s method.
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