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1. INTRODUCTION

We shall describe a systematic method to
efficiently generate a spatially adaptive anisotropic
covariance operator on a computational lattice
for data assimilation in three dimensions. The
computed self-adjoint covariance operator is formed
as the product of a (not necessarily symmetric)
“square-root” factor and its adjoint. This square-
root factor is generally taken to be a small sum
of operators, each of which resembles the quasi-
Gaussian convolution obtained as the outcome of
a general diffusive process acting for a finite time.
A superposition of this kind can produce desirable
features, such as relatively fat tails to the final
covariance at large separations, or negative side-
lobes, which a single Gaussian term alone could not
reproduce.

The key to achieving efficiency is to form
each of the quasi-Gaussian terms by combining the
“Hexad” geometrical decomposition principle (de-
scribed in Purser et al. 2003b) with the method
of spatial recursive filtering (Purser 2003a) along
the line segments that the hexad algorithm indi-
cates and with the degree of smoothing that the
hexad method also specifies. The spatial dispersion
of each quasi-Gaussian contribution is quantified
by the “aspect” tensor, defined as twice the prod-
uct of the tensorial diffusivity and the “time” over
which such diffusion must act to produce that con-
tribution; under homogeneous conditions, it is also
the centered second moment of that quasi-Gaussian.
The hexad principle exploits the additive property
of the general 3D diffusion operator that enables
any such operator to be linearly decomposed locally
into a unique hexad of (i.e., six) rank-one contri-
butions of one-dimensional diffusion along possibly
oblique generalized lines of the lattice, where the
configuration of these lines’ directions are collec-
tively bound by certain simple geometrical rules of
validity. In the abstract linear space of the six as-
pect components, the procedure by which the given
aspect tensor is resolved into such linear compo-
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nents can be interpreted geometrically as a linear
projection. However, for the chosen hexad of six
generalized grid lines to be valid for this aspect ten-
sor, the projection must result in all six of the re-
solved components being non-negative, since each
one determines a linear degree of smoothing along
the respective line (and in this context, a negative
degree of Gaussian smoothing is not meaningful).
The rules of validity for a hexad of grid lines guar-
antee that only one hexad validly resolves a given
generic aspect tensor, and the basic hexad algo-
rithm, as briefly outlined in Purser et al. (2003b),
defines a reliable and efficient method by which this
hexad is determined. We may think of the hexad
method as a way of organizing line-diffusion op-
erations that, collectively, combine to produce the
outcome of a three-dimensional diffusion associated
with a generalized (tensorial) diffusivity. The dif-
fusion method has been directly applied in analysis
by Derber and Rosati (1989) and, with tensorial dif-
fusity, by Weaver and Courtier (2001). The hexad
method, in combination with the recursive filters,
simply makes this style of covariance synthesis com-
putationally efficient.

For inhomogeneous covariance models the
hexad of lines will, in general, not be the same at all
points of the computational lattice but will change
in response to the smoothly changing aspect ten-
sor. In the basic form of the hexad method, the
change from one hexad to a neighboring one in-
volves the resolved component along one of the six
lines (the one not shared by the neighboring hexad)
going continuously to zero at the transition. Un-
fortunately, experience has shown that this descent
to zero in the line-smoothing coefficient tends to be
rather abrupt, leading to unsightly numerical “dis-
locations” at the inter-hexad transition interfaces.
This presentation will therefore discuss a recent re-
finement, the “blended hexad” method, which over-
comes this defect at the modest expense of requir-
ing, at each lattice point, a larger set (normally 13)
of lines to participate in the local line-smoothing
operations.

2. HEXAD AND BLENDED HEXAD
METHODS

In a topologically simple computational lattice,
meaning one whose points are all integer-coefficient



3-vectors associated with the three standard basis
vectors generating the lattice, we also can define
any generalized grid line’s orientation as an integer
nonvanishing 3-vector, g, and note that the same
line is also defined by the oppositely directed
generator, —g. However, we shall restrict the
definition of a “generator” to vectors whose three
integer components do not share a common factor
greater than unity. Expressed in standard grid
units, the degenerate aspect tensor that results from
a unit degree of diffusive smoothing along such a
line is just gg”. If we have six generators, g;, with
i € {1,...,6}, such that the six tensors g;g/ are
linearly independent, then any symmetric tensor A
can be uniquely resolved into the “basis” that this
set of six special tensors provides:

3
A= Zwi(yiyf)- (1)

Suppose that all six of these w; are positive. If
we apply a sequence of diffusive operations through-
out the grid where, in step 1, we smooth along lines
generated by g; by an amount whose second mo-
ment (in these g, grid units) is wy, and so on for all
the other five orientations with their correspond-
ing smoothing weights, then, by the linearity of
second moments under sequential smoothing oper-
ations, we shall end up with a composite smoothing
operation whose second moment tensor is just the
tensor, A, that was resolved into convenient line-
associated components by (1).

But at this point, we have no criteria by which
we can choose the g; that lead always to the happy
circumstance that all the associated w; are positive
(or at least, non-negative). However, let us consider
the set G of all the tensors of the form gg”', where
each g is a valid generator in the sense defined
above. It is easy to show that each gg” lies on the
convex hull of G. A careful analysis reveals that the
boundary of the convex hull of G is a polyhedral
shell whose “facets” are each a five-dimensional
polytope having exactly six of the g as its vertices.
In other words, each facet is a “6-simplex”. The
interior of each facet is an aspect tensor describable
as a convex mixture (weights summing to unity)
of the degenerate aspect tensors forming the six
vertices, but any valid aspect tensor whatsoever is a
positive multiple of such a convex mixture (since the
convex polyhedral shell in question spans the entire
“cone” of valid aspect tensors). By an appropriate
linear transformation of the original lattice into
itself, any facet of the boundary of the convex hull of
G can be mapped into any other, so the analysis of
the configuration of any one “hexad”, g;, associated
with an arbitrary facet will suffice to describe all
of the valid hexads in this natural convention for
carrying out aspect tensor decompositions.

It emerges that every hexad of generators de-
fined this way, and their negatives, can be identi-
fied with the 12 vertices of an affinely transformed
“cuboctahedron” of the integer grid and is such
that, by choosing the labels and orientations of
these generators according to the freedom that the
symmetry of the situation allows us, we can take
the first three generators to form a matrix with unit
determinant, i.e:

det{g;9,; 95} = +1, (2)

while the three remaining generators obey the 3-
cyclic relations:

91 =93 — 9o, (3a)
95 =91 — 93 (3b)
9% =9 — 9:- (3¢)

This puts the first three generators at the corners of
a triangular facet of the cuboctahedron and puts g,
and g, at opposite corners of a quadrilateral facet,
with pairings likewise for g, and g5 and for g; and
gs- [Note, this convention differs from that used in
the description of Purser et al. (2003b), because
the present convention has been found to be more
convenient in practice.]

Finding the correct hexad of generators for
a given aspect tensor A involves an iterative
process which, formally, resembles the classical
“Simplex” algorithm (e.g., Dantzig, 1963). At
an intermediate point in the iterations we have a
trial hexad onto which the tensor A is resolved to
give the corresponding trial weights w;. However,
some of these weights might be negative, implying
that the iteration is not yet complete. One
offending negative-weight direction is discarded.
The cuboctahedron possesses an opposing pair
of quadrilateral facets that do not contain this
offending direction’s generator (or its negative); the
replacement generator is found by multiplying by
two the centroid of this particular quadrilateral.
It is easily shown that the resulting set of six
generators (five old, one new) and their negatives do
indeed define the corners of a new grid-embedded
cuboctahedron, and it is not difficult to find a
suitable labelling of this new set that satisfies the
conventions set out in (2) and (3). Of course, the
aspect-tensor-space 6-simplexes associated with the
unit-weight images of this old and new hexad are
just adjacent facets of the convex polyhedral shell
we described above. The iterations proceed until all
weights w; are non-negative, whereupon the correct
hexad is found at last.

The blended hexad method differs from the
decomposition described above by incorporating
an implicit smoothing of the weights w; that is
carried out in the linear space of aspect tensors



in the following way. Instead of resolving each
aspect tensor as the single point in aspect space
projected onto the six basis tensors associated with
the unique hexad that contains the aspect tensor
point in question, we replace the single point in
aspect space as if by a symmetrical “cloud” centered
on the original point, but now considered to carry
the “weight” of the original point distribution in
a symmetrically smeared-out way. Technically, we
define a smoothing kernel in aspect space which,
in a well-defined sense, is approximately “radially
symmetric” about the original point. The existence
of a natural intrinsic metric, defined:
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between any pair of aspect tensors makes the con-
cept of “radially symmetric” meaningful in this six-
dimensional space for kernels of infinitesimal radius
(although at finite radii, the intrinsic curvature of
the space implied by the Riemannian metric (4)
would invalidate the concept in the strict sense).
The kernel is defined to have its support wholly
within a ball of sufficiently small radius that the
distribution of the implied cloud of points intersects
only a limited number of neighboring hexads. For
a kernel of a given finite radius, however small, it
is always possible to find locations of aspect space
where this kernel will overlap 16 hexads, that be-
ing the maximum number of hexads that meet at
the generic (i.e., nonsingular) aspect tensor points.
At such worst-case overlaps the total pool of gen-
erators g involved can be shown to number exactly
13. Therefore, it is theoretically possible to resolve
each point of the smoothing kernel’s “cloud”, with
its proper weight, into a hexad taken from this pool
of 13 and, by superposition, integrate over the cloud
to blend all the contributing hexads into an equiva-
lent 13-line smoothing configuration that is guaran-
teed to reproduce the intended smoother, but with
weights w; that fade more smoothly to zero than in
the basic hexad method.

Remarkably, the geometry of the hexads in
relation to one another admits sufficient symmetry
to make it quite feasible, for appropriate choices
of the smoothing kernel radial profiles (essentially
they must be generalized “Beta functions”), to
carry out the implied integrations for a tabulated
array of points in aspect space that cover a
representative hexad’s image in this space. The
ability to exploit the symmetry by which one hexad
is transformed into any other through a lattice
isometry means that, given any aspect tensor,
one may “look up” in the prepared table the set
of 13 active grid generators together with their
associated smoothing weights and, by sequential
applications of the line-diffusion operators applied
in these 13 orientations, synthesize the smoothing

effect producing the desired tensorial dispersion.
The blended hexad method can be made virtually
free of the undesirable numerical artifacts that mar
the basic hexad method applied to inhomogeneous
smoothing problems.

3. AN APPLICATION OF GALOIS FIELDS

Whether we choose to resolve the gridded field
of aspect tensors using the basic hexad method (six
directions at each point) or the blended version
(13 directions at each point), it is important
that the line smoothing operations at different
locations are coordinated so that there is not a
misguided attempt to filter concurrently two lines
that intersect. This is obviously especially relevant
in a parallel processing computing environment,
since we want to be able to distribute the computing
load equitably and apply several line-smoothing
filters simultaneously.

Fortunately, a connection between formal geo-
metrical characterizations of the hexad manipula-
tions and some aspects of the mathematical the-
ory of “Galois Fields” (for example, Dickson, 1958;
Hirschfeld 1998) has been recently identified to pro-
vide a rigorous basis for a kind of “color coding” of
all possible orientations of oblique lines in the com-
putational lattice. By performing smoothing oper-
ations simultaneously only when they all belong to
the same color assignment, we can guarantee that
no conflicts can arise.

In the basic hexad method, a seven-color
assignment associated with the Galois field “GF(8)”
ensures that no valid hexad contains the same color
of line twice. In the blended hexad, a coding of 13
colors associated with the Galois field “GF(27)” will
suffice to ensure that no lines of the sequence of 13
operations specified by the blended hexad algorithm
can contain the same color twice.

A “Field” in the mathematical sense is a set
of quantities obeying certain algebraic rules that
include generalizations of the concepts of addition
and multiplication. In the Galois fields, the set
of quantities is finite and of a number of the
form p™ where p is a prime and n any positive
integer. For our purposes, it is mainly the additive
structure of the Galois fields that is of relevance,
since there is a natural mapping from the points
of an n-dimensional lattice to the elements of each
GF(p™) obtained by arranging repeated copies of
the elements of the GF in n-dimensional hypercubes
of linear dimension p so that vector summation on
the lattice, modulo-p in each of the n dimensions,
reproduces the additive structure of the Galois field.
For GF(8), this means that 2*2*2 cubes of the
eight field elements are repeated indefinitely in all
three cartesian directions of the lattice with the
additive identity of the GF(8) being at the lattice



origin. From this origin, all the grid points that are
“visible”, which is equivalent to all the valid grid
generators, is then possessed of an image (“color”)
in GF(8) that is not the origin. This establishes
a coloring from a palette of seven. A similar
construction with the elements of GF(3®) makes the
26 elements that are not the additive identity of this
field visible from the lattice origin, but in such a
way that the mutually opposing generators thereby
identified with two field elements will always link
the same 13 pairs, that we can therefore identify
with those generators’ “colors” in this scheme.

The special value in these identifications stems
from the fact that any valid hexad whatsoever
always has its six opposing pairs of vertices of six
different colors (in both the GF(8) and GF(27)
schemes) and, more remarkably, the 13 lines of
the blended hexad set corresponding to any aspect
tensor are always associated, through the GF(27)
color identification, with each one of the 13 colors
of this palette.

4. GENERALIZATIONS

It is clear that the application of the ideas
of convexity employed in section 2 will carry over
into the generic n dimensional lattice case. In
two dimensions, the “Triad” algorithm is a simple
restriction of the Hexad method and involves a cone
of three-dimensional aspect points that are always
resolvable into three line-smoothing operations. In
four dimensions the convex shell formed as the
boundary of the convex hull of the set analogous
to the G of section 2 is tiled not with a single
repeated simplex shape, but a mixture of two
different polytopes. One is a simplex, and therefore
possesses 10 vertices, but the other is a 12-pointed
object (whose associated polytope in the four-
dimensional lattice is an affinely transformed “24-
cell”, a particularly symmetrical regular polytope
with some remarkable properties).  Thus, in
four dimensions, we do not strictly obtain a
simple “Decad” algorithm for an aspect tensor
that belongs to the 12-pointed configuration. The

difficulty is partly solved by carving the 12-pointed
regions symmetrically into “pie-slices”, which does
lead to a decomposition into 10-simplexes, as
required. However, the artificially-added points
(“pie-centers”) in this decomposition, and the
dictates of symmetry, imply that even the basic
(unblended) algorithm will generally involve 12
smoothing directions, not merely 10, in order to
synthesize the general anisotropic Gaussian in any
regular four-dimensional lattice.

The algorithm for this decomposition has also
been written and tested and could find future
applications in synthesizing the covariances of
the model error terms in a weak-constraint four-
dimensional variational assimilation scheme.
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