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1. INTRODUCTION

Variational data assimilation system aims at providing
an accurate estimation of the current state of the
atmosphere by means of minimizing a cost function
measuring the distance to the background and the
observations.

The background error covariance matrix B and
observational error covariance matrix R are specified
and play a very important role. However, the matrix B
and R are not very well known. Generally, background
errors can be constructed by using the so-called NMC
method or Ensemble Kalman Filter (Parrish and Derber,
1992; Houtekamer et al., 1998). Both of them suffer
from some deficiencies. One needs to tune these error
statistics to make them consistent with the comparison
to observations. Hollingsworth and Lénnberg (1986)
used information from innovations (departures
between observations and 6-h forecast). Expressed in
observation space, innovations covariances are the
sum of background and observation covariance matrix.
Assuming that observation error is not spatially
correlated, while background error is, it is then possible
to estimate the background error correlations and
variances, and observation error variances. To achieve
this, some assumptions must be made about the
background error correlations. Dee and da Silva (1998)
used the framework of maximum likelihood estimation
to determine various parameters, such as bias,
correlation length or variance in data assimilation.
Wahba et.al (1995) used randomized General Cross
Validation (GCV) method to tune the error statistics.

In the context of the variational formulation,
Talagrand (1999) investigated the statistical properties
of the cost function and its components to establish an
an optimality criterion that should be met if the error
statistics were perfectly specified. If they are not, one
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can use these diagnostics to tune the specified covariance
matrices by applying scaling factors to the background and
the observational error statistics respectively, so that the
total cost function meets the optimality criterion with respect
to the new error statistics (Desroziers and Ivanov, 2001;
Chapnik et al., 2004, 2005). The advantages of this method
are (1) scaling factors for the background and observation
error statistics are estimated simultaneously, (2) for
observations, the tuning coefficients can be divided into
subsets allowing for more freedom of the choice of
parameters to be estimated, (3) the tuning process is done
on-line.

In this study, the method proposed by Desroziers and
Ivanov (2001) is used to tune background and observa-
tional error statistics of the 3D-Var assimilation system of
the Canadian Meteorological Centre (Gauthier et al.,
1999a-b). Several experiments were carried out to investi-
gate the method and highlight some of its limitations.

2. THE METHOD OF DESROZIERS AND IVANOV
The variational data assimilation minimizes the following
cost function:
J(8X) =18x B8 +4 (Hox —d)" R (Hdx —d)
=1Tr(B'6x8x") +1 Tr(R™*(H&x —d)(Hdx —d)")
=J, (X)) +J,(8x)

where 8x=x—xb, x is the model state, x? is the
background state, H is the linearized observation operator
d=y°—Hx" is the innovation vector, and y° is the

observation vector.

The solution x2 that minimizes J gives
dx*=x*-x"=Kd
where K =BH" (HBH' +R)™ is the gain matrix.
One can derive the expectation of the innovation
covariances to be:
D=<dd" >=HBH" +R
where brackets stand for statistical expectancy. So for a

“well tuned” system, this equality should hold. Furthermore,
we have



B (8x°ox™" ) =B 'K (dd" )K"
=B 'K(HBH" +R)K"
=B"BH (HBH' +R)*(HBH" +R)K"

=H'K" = (KH)"
Thus,
E(J,(8x%)) = 1Tr(HK) =1Tr(HK)
Similarly, it can be shown that
E(3,(8x*)) =3 Tr(l,-(HK)") (1)

=3 (p-Tr(HK))

where p is the number of observations.

The expectation of the total cost function J satisfies:

E(I(6x*)) = E(J,(x*)) + E(J,(8x*)) =3
If this equality does not hold, this may mean the
specified error variances are over (<) or under (>)
estimated.

So one can define
S" =2J3°(8x*)/ Tr(KH)
and

§°=2J°(8x*)/Tr(l, —KH)

After multiplication with the covariance matrices B and
R respectively, new covariances are redefined as

B=S"B andR =S°R
so that

E(J°(6x?)) = E(Gox°TB ox%) = Tr(KH)
and

E(3°(3x*)) = EG8xTR '8x*) =Tr(l, ~KH)
Thus, one can define a new cost function:

J(Sx)— J(6X)+ J(Sx)

where % =5°(s ,s) and % =S°(s,s°) are the
scaling coefficients that can be obtained iteratively as
follows:

1. SetB®=B and RY =R.

2. Perform an analysis on the following cost function:
J(3x) = %SXT (B™M)™5x
+%(d —H&x)" (R™)™*(d —Héx)

=3 (8x)+J " (5x)

3. Compute

s, =230 (5x%) /(p—Tr(HK™))

n

5 =23 (3x%)/ Tr(HK™)

n

where
K™ =BM™H" (HB™H'

2

and S:

+RM)!

2
4. |If Srt: are not close to 1, we rescale the

previous covariance matrices as

(+1) _ bZ (n) ) _ " p)
B B"™, R =s, R

5. Repeat step 2

Numerical experiments show that the iterative process is
convergent, i.e.
hZ

02
s, > lands, —>lasn—>o0

Finally, we obtain:
B = ~s"BY =5"B

-8'R® =5"R

M _
s ‘B =3’ snl

R =g? R(”)—s s

and these are the scaling coefficients.

In the procedure, one needs to calculate Tr(HK™). This
can be done by a randomized estimation:

rand (Tr(HK)) = (R*“%g)T HKR“&

=(R )" (Hox; Hax?

(e srvzgy ~HOX (o)
A detailed description of the method can be found in
Desroziers and lvanov (2001).

In this paper, we will focus mostly on the estimation of the
observation error statistics for which different observation
types have uncorrelated observation error in which case,
eq.(1) still applies to individual sub-components of J,.
Since rescaling will be applied to each sub-component, the
subdivision should be made to group together elements
that can be reasonably assumed to have the same error
statistics. However, background error being highly correla-
ted; tuning subcomponents of the J,, term cannot be done in
a straightforward manner. We will then use a single tuning
coefficient for J,,.

Thus, instead of using a single tuning coefficient, one can

use multiple tuning coefficients and the total cost function
become:

J(Sx):%Jb(SXHZ —-J5(8x)
S

k sk
with
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Figure 3 same as Figure 2, but for radiosonde
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& ZJb(Xa)
Tr(HK)
To increase the size of the sample to have more robust
statistics, Sadiki and Fischer (2004) assumed these
statistics to be stationary, in which case the size of the
sample can be increased by considering several cases
(at different dates and times). Instead of using one
situation, they use m situations to calculate the tuning
coefficients:

y > 230 (xT)

Sk = m i
zi:lTr(Iplk—HkKk)

vke{l 2,---,v,}

st _ Zzlz‘lb, (Xia) ,
3 Tr(HKY)

where m refers to those distinct analysis times. For the
same reasons, we also assumed the error statistics to
be stationary, which makes it possible to perform the
statistical averaging over larger data sets.

3. ESTIMATION OF OBSERVATION ERROR STATISTICS
Several experiments were carried out based on the 3D-Var
data assimilation system of the Canadian Meteorological
Centre (Gauthier et al.,, 1999,a-b) over a period of
December 1, 2003, 12UTC, until December 31, 2003,
12UTC. Over that period, we retained one day every 5
days to insure statistical independency so that the data set
comprises the data from seven different cases.

The observation data of upper air radiosondes (UA),
aircraft report (Al), SATWind (SW) and radiance (TOVS)
with the channel from AMSU-A (CH3) to AMSU- A (CH10)
were used to tune the error statistics. Surface observation
data (SF) were also used, but its error statistics were not
tuned. For each observation family, a different scaling
coefficient was introduced and computed. For the
radiosondes, aircraft and SATWINDS, the error variance for
winds and temperature, where applicable, at each level
was scaled separately. For ATOVS, the error variance of
each channel was also tuned independently. However, the
background error being highly correlated, only one
coefficient was used to scale globally the background error
covariances.

Figure 1-3 show both the variances associated with the
tuned and operational total error statistics R + HBHT, and
the innovation D. The results show that, except for UA, the
tuned error statistics are more consistent with that of the
innovations D compared with those used in the operational
system.

Figure 4 shows the tuning coefficients for each variable. For
the upper air observations (UA), the tuning coefficients for
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Figure 4 Tuning coefficients of variables after 3 iterations



Stddev of the tuned R corresponding to the inflated HBH"

channels

) 1 2 3 a

—— JB050
—— JBO75
JB100
—— JBl25
JB150

channels

) 1 2 3 a

Figure 5: Tuned observation variances (top panel) obtained
for TOVS for different background variances (bottom panel)
artificially multiplied by factors ranging from 0.5 to 1.5. JB050
means multiplying the background error statistics by 0.5 and
so on; OPER is operational observation error variance
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Figure 6 same as Figure 5, but for aircraft data

temperature are less than 1 near the surface and grow
with height to become larger than 1. This means that
the error statistics of the operational system were
overestimated in the lower levels and underestimated
in the middle and upper levels. While the tuning
coefficients of wind components are more or less equal
to 1, this indicates that they were already well-tuned. In
the context of geostrophic balance, the error statistics
of the background term are mostly controlled by the
specified wind error statistics, which had to be
consistent with the innovation statistics used.

For aircraft report and SATWIND observations, the
tuning coefficients of wind components are smaller
than 1 for all levels below 200 hPa, which implies that
the error statistics were overestimated for those
observations.

For the TOVS observations, the errors of operational
for all channels were severely overestimated.
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Figure 7 same as Figure 5, but for radiosonde data

4. TUNING OBSERVATION ERROR

FROM THE BACKGROUND-ERROR
In the experiment presented above, it is far from obvious
that the resulting estimates correspond to reality since the
background error statistics are not optimal and were only
rescaled globally with a single scaling coefficient. As
discussed in Chapnik et al. (2004), under some
circumstances it is possible to estimate the observation
error statistics independently of the background-error
statistics.

INDEPENDENTLY

In order to see the impact of the background error on the
tuning process, we carried out a series of experiments in
which the background error was artificially inflated and hold
fixed while the observations error statistics were tuned. If
the argument of Chapnik et al. (2004) is true, the resulting
estimates should reveal the conditions under which it is
indeed possible to independently estimate the observation
error statistics.

Figures 5-7 show the results of tuning the observation error
statistics without tuning the background error statistics. The
upper figure shows the tuned observation error statistics
when the background error statistics are artificially changed
(those are shown in the bottom panel for reference). The
results show that for different scaling of the background
error statistics, the changes in the tuned observation error
statistics are small compared to the change induced in the
background error. For radiance, the results are rather
robust, which indicates that the scaling is not significantly
affected by the background error statistics used in the
assimilation.

5. VALIDATION EXPERIMENTS

To test the limitations of applicability of the method, we
adopted the method of Desroziers and Ivanov (2001) to
generate an idealized experiment. It consists of generating
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Figure 8 tuned coefficients of temperature for the generated x1of

observations and number of observations

synthetic observations by using the background state,
i.e., first taking

Xt = x? Buzc:b
to be the true value, where (P is an n-dimensional
random vector with Gaussian distribution and unit
variance 1 and adding a known error coherent with the
observation error statistics used in the assimilation.
Those synthetic observations are then

yo — H (Xt)+R1l2C°
where (° is a p-dimensional random vector with
Gaussian distribution and unit variance 1. The
generated observation vector y° has covariance matrix
R, and is consistent with the background state, the
background and observation errors statistics, i.e., the
statistical properties of the cost function are satisfied
by construction. Using these observations, we went
through the scaling process from which one should
expect the tuning coefficients to be approximately 1.

Figure 8 shows the results for temperature for the
generated observations (left) and the number of
observations (right) used to obtain this estimate. It is
seen that for TOVS data, the tuned coefficients are
very close to 1, which is expected; while for other types
of observations, there are some variations in the
vertical. For TOVS, the number of observations is
much higher than for the other types of observations.
This is in agreement with our results that the results are
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more reliable when there is a large number of data. This
shows that the number of observations is a key point in the
tuning process and the reliability of the estimate obtained.

To further investigate why the tuning results for TOVS
are much better than other observations, we analyzed the
correlation length of the background covariance matrix B
for radiosonde (UA) and radiance (TOVS), using the
innovations at every 12-h for UA and every 36-h for TOVS.
This was to show if the observation coverage was sufficient
to resolve the background error correlations. The region is
from 20N to 90N, the increment of bin is 100km to represent
the distance between the observations used.

Figure 9 shows the calculated background error correla-

tions for brightness temperature in each channel for the
radiance data (upper panel) and temperature at each level
for radiosonde data (lower panel). The corresponding
number of pairs of observations used is shown in the
corresponding panels in figure 10.
It shows that for AMSU-A channel 5-10, the correlations are
broader than others and the counts of the pairs of
observations in each bin are also much higher than for
others.

This confirm the conclusion of Chapnik et al. (2004) that
when the correlations in the background covariance matrix
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B are broad and well resolved by the observations,
tuning the error statistics of observation without tuning
that of the background error does not affect the
evaluation of the optimal observation error tuning
coefficients, as long as the number of observations is
large enough. This has given us confidence that the
estimate of observation errors obtained for the TOVS
data are reliable and can be trusted and introduced in
the assimilation.

6. SUMMARY AND CONCLUSION

We conclude that using the statistical properties of the
cost function to tune R can improve the estimate of
error statistics of observations. The tuning process for
TOVS is more robust than for other types of observa-
tions primarily because of the broader error correla-
tions lengths that can be resolved by the huge number
of observations. However, the estimation of the
background-error statistics with this method remains
problematic. In Buehner et al. (2005), an ensemble
approach is used to estimate the background-error
statistics. This method was shown to benefit from
having better observation error estimates that were
obtained as described in this paper.
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