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1. INTRODUCTION 
Variational data assimilation system aims at providing 
an accurate estimation of the current state of the 
atmosphere by means of minimizing a cost function 
measuring the distance to the background and the 
observations.  

The background error covariance matrix B and 
observational error covariance matrix R are specified 
and play a very important role. However, the matrix B 
and R are not very well known. Generally, background 
errors can be constructed by using the so-called NMC 
method or Ensemble Kalman Filter (Parrish and Derber, 
1992; Houtekamer et al., 1998). Both of them suffer 
from some deficiencies. One needs to tune these error 
statistics to make them consistent with the comparison 
to observations. Hollingsworth and Lönnberg (1986) 
used information from innovations (departures 
between observations and 6-h forecast). Expressed in 
observation space, innovations covariances are the 
sum of background and observation covariance matrix. 
Assuming that observation error is not spatially 
correlated, while background error is, it is then possible 
to estimate the background error correlations and 
variances, and observation error variances. To achieve 
this, some assumptions must be made about the 
background error correlations. Dee and da Silva (1998) 
used the framework of maximum likelihood estimation 
to determine various parameters, such as bias, 
correlation length or variance in data assimilation. 
Wahba et.al (1995) used randomized General Cross 
Validation (GCV) method to tune the error statistics.  

In the context of the variational formulation, 
Talagrand (1999) investigated the statistical properties 
of the cost function and its components to establish an 
an optimality criterion that should be met if the error 
statistics were perfectly specified. If they are not, one 

                                                        
*Corresponding author address: Dr. Zhuo Liu, Department of 
Earth and Atmospheric Sciences, Université du Québec à 
Montréal (UQAM), P.O. Box 8888, Montréal, Québec, CANADA 

H3C 3P8 

can use these diagnostics to tune the specified covariance 
matrices by applying scaling factors to the background and 
the observational error statistics respectively, so that the 
total cost function meets the optimality criterion with respect 
to the new error statistics (Desroziers and Ivanov, 2001; 
Chapnik et al., 2004, 2005). The advantages of this method 
are (1) scaling factors for the background and observation 
error statistics are estimated simultaneously, (2) for 
observations, the tuning coefficients can be divided into 
subsets allowing for more freedom of the choice of 
parameters to be estimated, (3) the tuning process is done 
on-line.  

In this study, the method proposed by Desroziers and 
Ivanov (2001) is used to tune background and observa-
tional error statistics of the 3D-Var assimilation system of 
the Canadian Meteorological Centre (Gauthier et al., 
1999a-b). Several experiments were carried out to investi-
gate the method and highlight some of its limitations. 

2. THE METHOD OF DESROZIERS AND IVANOV 
The variational data assimilation minimizes the following 
cost function: 
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where bδ = −x x x , x is the model state, xb is the 
background state, H is the linearized observation operator 

o b= −d y Hx is the innovation vector, and yo is the 

observation vector.  

  The solution xa that minimizes J gives 
a a bδ = − =x x x Kd  

where 1( )T T −=K BH HBH +R  is the gain matrix. 

One can derive the expectation of the innovation 
covariances to be: 

T T=< >= +D dd HBH R  
where brackets stand for statistical expectancy. So for a 
“well tuned” system, this equality should hold. Furthermore, 
we have 
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where p is the number of observations. 

The expectation of the total cost function J satisfies: 

1
2( ( )) ( ( )) ( ( ))a a a

b oE J E J E J pδ = δ + δ =x x x  
If this equality does not hold, this may mean the 
specified error variances are over (<) or under (>) 
estimated. 

So one can define  
2 ( ) / Tr( )b b aS J= δx KH  

and 

2 ( ) / Tr( )o o a
pS J= δ −x I KH  

After multiplication with the covariance matrices B and 
R respectively, new covariances are redefined as 

 and b oS S= =B B R R  
so that 

11
2( ( )) ( ) Tr( )b a aT aE J E

−
δ = δ δ =x x B x KH  

and 

11
2( ( )) ( ) Tr( )o a aT a

pE J E
−

δ = δ δ = −x x R x I KH  
Thus, one can define a new cost function: 
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scaling coefficients that can be obtained iteratively as 
follows:  

1. Set (1) =B B  and (1) =R R . 

2. Perform an analysis on the following cost function: 
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3. Compute 
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previous covariance matrices as 
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5. Repeat step 2 

Numerical experiments show that the iterative process is 
convergent, i.e. 
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Finally, we obtain: 
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and these are the scaling coefficients. 

In the procedure, one needs to calculate Tr(HK(n)). This 
can be done by a randomized estimation: 
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A detailed description of the method can be found in 
Desroziers and Ivanov (2001). 

In this paper, we will focus mostly on the estimation of the 
observation error statistics for which different observation 
types have uncorrelated observation error in which case, 
eq.(1) still applies to individual sub-components of Jo. 
Since rescaling will be applied to each sub-component, the 
subdivision should be made to group together elements 
that can be reasonably assumed to have the same error 
statistics. However, background error being highly correla-
ted; tuning subcomponents of the Jb term cannot be done in 
a straightforward manner. We will then use a single tuning 
coefficient for Jb. 

Thus, instead of using a single tuning coefficient, one can 
use multiple tuning coefficients and the total cost function 
become: 
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To increase the size of the sample to have more robust 
statistics, Sadiki and Fischer (2004) assumed these 
statistics to be stationary, in which case the size of the 
sample can be increased by considering several cases 
(at different dates and times). Instead of using one 
situation, they use m situations to calculate the tuning 
coefficients: 
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where m  refers to those distinct analysis times. For the 
same reasons, we also assumed the error statistics to 
be stationary, which makes it possible to perform the 
statistical averaging over larger data sets. 

3. ESTIMATION OF OBSERVATION ERROR STATISTICS 
Several experiments were carried out based on the 3D-Var 
data assimilation system of the Canadian Meteorological 
Centre (Gauthier et al., 1999,a-b) over a period of 
December 1, 2003, 12UTC, until December 31, 2003, 
12UTC.  Over that period, we retained one day every 5 
days to insure statistical independency so that the data set 
comprises the data from seven different cases.  

The observation data of upper air radiosondes (UA), 
aircraft report (AI), SATWind (SW) and radiance (TOVS) 
with the channel from AMSU-A (CH3) to AMSU- A (CH10) 
were used to tune the error statistics. Surface observation 
data (SF) were also used, but its error statistics were not 
tuned. For each observation family, a different scaling 
coefficient was introduced and computed. For the 
radiosondes, aircraft and SATWINDS, the error variance for 
winds and temperature, where applicable, at each level 
was scaled separately. For ATOVS, the error variance of 
each channel was also tuned independently. However, the 
background error being highly correlated, only one 
coefficient was used to scale globally the background error 
covariances. 

Figure 1-3 show both the variances associated with the 
tuned and operational total error statistics R + HBHT, and 
the innovation D. The results show that, except for UA, the 
tuned error statistics are more consistent with that of the 
innovations D compared with those used in the operational 
system.  

Figure 4 shows the tuning coefficients for each variable. For 
the upper air observations (UA), the tuning coefficients for 
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Figure 4 Tuning coefficients of variables after 3 iterations 

Figure 2 same as Figure 1, but for temperature and aircraft 
report 
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Figure 3 same as Figure 2, but for radiosonde 

Figure 1 Stddev of innovation D and HBH
T
+R of 

Brightness Temperature at 12UTC(TOVS) 
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temperature are less than 1 near the surface and grow 
with height to become larger than 1. This means that 
the error statistics of the operational system were 
overestimated in the lower levels and underestimated 
in the middle and upper levels. While the tuning 
coefficients of wind components are more or less equal 
to 1, this indicates that they were already well-tuned. In 
the context of geostrophic balance, the error statistics 
of the background term are mostly controlled by the 
specified wind error statistics, which had to be 
consistent with the innovation statistics used. 

For aircraft report and SATWIND observations, the 
tuning coefficients of wind components are smaller 
than 1 for all levels below 200 hPa, which implies that 
the error statistics were overestimated for those 
observations.  

For the TOVS observations, the errors of operational 
for all channels were severely overestimated. 

4. TUNING OBSERVATION ERROR INDEPENDENTLY 
FROM THE BACKGROUND-ERROR 

In the experiment presented above, it is far from obvious 
that the resulting estimates correspond to reality since the 
background error statistics are not optimal and were only 
rescaled globally with a single scaling coefficient. As 
discussed in Chapnik et al. (2004), under some 
circumstances it is possible to estimate the observation 
error statistics independently of the background-error 
statistics.  

In order to see the impact of the background error on the 
tuning process, we carried out a series of experiments in 
which the background error was artificially inflated and hold 
fixed while the observations error statistics were tuned. If 
the argument of Chapnik et al. (2004) is true, the resulting 
estimates should reveal the conditions under which it is 
indeed possible to independently estimate the observation 
error statistics.  

Figures 5-7 show the results of tuning the observation error 
statistics without tuning the background error statistics. The 
upper figure shows the tuned observation error statistics 
when the background error statistics are artificially changed 
(those are shown in the bottom panel for reference). The 
results show that for different scaling of the background 
error statistics, the changes in the tuned observation error 
statistics are small compared to the change induced in the 
background error. For radiance, the results are rather 
robust, which indicates that the scaling is not significantly 
affected by the background error statistics used in the 
assimilation.   

5. VALIDATION EXPERIMENTS 
To test the limitations of applicability of the method, we 
adopted the method of Desroziers and Ivanov (2001) to 
generate an idealized experiment. It consists of generating 

Figure 7 same as Figure 5, but for radiosonde data 
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Figure 6 same as Figure 5, but for aircraft data 
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Figure 5: Tuned observation variances (top panel) obtained 
for TOVS for different background variances (bottom panel) 
artificially multiplied by factors ranging from 0.5 to 1.5. JB050 
means multiplying the background error statistics by 0.5 and 
so on; OPER is operational observation error variance 



synthetic observations by using the background state, 
i.e., first taking 

1/ 2t b bx x B ζ= −  
to be the true value, where ζb is an n-dimensional 
random vector with Gaussian distribution and unit 
variance 1 and adding a known error coherent with the 
observation error statistics used in the assimilation. 
Those synthetic observations are then 

1/ 2( )o t oH= + ζy x R  

where ζo is a p-dimensional random vector with 
Gaussian distribution and unit variance 1. The 
generated observation vector yo has covariance matrix 
R, and is consistent with the background state, the 
background and observation errors statistics, i.e., the 
statistical properties of the cost function are satisfied 
by construction. Using these observations, we went 
through the scaling process from which one should 
expect the tuning coefficients to be approximately 1. 

Figure 8 shows the results for temperature for the 
generated observations (left) and the number of 
observations (right) used to obtain this estimate. It is 
seen that for TOVS data, the tuned coefficients are 
very close to 1, which is expected; while for other types 
of observations, there are some variations in the 
vertical. For TOVS, the number of observations is 
much higher than for the other types of observations. 
This is in agreement with our results that the results are 

more reliable when there is a large number of data. This 
shows that the number of observations is a key point in the 
tuning process and the reliability of the estimate obtained. 

To further investigate why the tuning results for TOVS 
are much better than other observations, we analyzed the 
correlation length of the background covariance matrix B 
for radiosonde (UA) and radiance (TOVS), using the 
innovations at every 12-h for UA and every 36-h for TOVS. 
This was to show if the observation coverage was sufficient 
to resolve the background error correlations. The region is 
from 20N to 90N, the increment of bin is 100km to represent 
the distance between the observations used.  

Figure 9 shows the calculated background error correla-
tions for brightness temperature in each channel for the 
radiance data (upper panel) and temperature at each level 
for radiosonde data (lower panel). The corresponding 
number of pairs of observations used is shown in the 
corresponding panels in figure 10.   
It shows that for AMSU-A channel 5-10, the correlations are 
broader than others and the counts of the pairs of 
observations in each bin are also much higher than for 
others. 

This confirm the conclusion of Chapnik et al. (2004) that 
when the correlations in the background covariance matrix 
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Figure 8 tuned coefficients of temperature for the generated 
observations and number of observations 
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Figure 9 Correlation length of HBHT  Upper: Brightness 
temperature (TOVS);  Lower: temperature (UA) 
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B are broad and well resolved by the observations, 
tuning the error statistics of observation without tuning 
that of the background error does not affect the 
evaluation of the optimal observation error tuning 
coefficients, as long as the number of observations is 
large enough. This has given us confidence that the 
estimate of observation errors obtained for the TOVS 
data are reliable and can be trusted and introduced in 
the assimilation. 

6. SUMMARY AND CONCLUSION 
We conclude that using the statistical properties of the 
cost function to tune R can improve the estimate of 
error statistics of observations. The tuning process for 
TOVS is more robust than for other types of observa-
tions primarily because of the broader error correla-
tions lengths that can be resolved by the huge number 
of observations. However, the estimation of the 
background-error statistics with this method remains 
problematic. In Buehner et al. (2005), an ensemble 
approach is used to estimate the background-error 
statistics. This method was shown to benefit from 
having better observation error estimates that were 
obtained as described in this paper. 
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