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1. INTRODUCTION 
 

Some of the most demanding goals of 
Numerical Weather Prediction (NWP) and new 
observing missions are (i) to determine analysis 
and forecast uncertainties, and (ii) to estimate 
information content of new observations. 
Achieving these goals within a unified 
methodology is desirable since these two goals 
are not independent: information content of new 
observations is dependent on the prior 
knowledge about the atmospheric state, which is 
often defined in terms of analysis and forecast 
uncertainties.  

Ensemble based data assimilation 
approaches (Evensen 1994; Houtekamer and 
Mitchell 1998; Hamill and Snyder 2000; 
Keppenne 2000; Mitchell and Houtekamer 2000; 
Anderson 2001; Bishop et al. 2001; van 
Leeuwen 2001; Reichle et al. 2002a,b; Whitaker 
and Hamill 2002; Tippett et al. 2003; Zhang et 
al. 2004; Ott et al. 2005; Szunyogh et al. 2005; 
Zupanski 2005; Zupanski and Zupanski 2005) 
have a capability to update forecast error 
covariance, thus having a potential for 
appropriately addressing the first goal. 
Information theory (e.g., Shannon and Weaver 
1949; Rodgers 2000) provides a theoretical 
framework for addressing the second goal. In 
this study we examine a unified approach 
employing both ensemble data assimilation and 
information theory.   
 
2. METHODOLOGY 
 

An ensemble-based method entitled 
Maximum Likelihood Ensemble Filter (MLEF, 

Zupanski 2005; Zupanski and Zupanski 2005) is 
used in this study as a data assimilation 
component of this general approach. Information 
measures defined in terms of Degrees of 
Freedom (DOF) for signal and entropy reduction 
(e.g., Rodgers 2000) are the components 
representing information theory within this 
general approach. This methodology is shortly 
described here.  

The MLEF seeks a maximum likelihood 
state solution employing an iterative 
minimization of a cost function. The solution for 
an augmented state vector x (including initial 
conditions, model error, and empirical 
parameters), of dimension Nstate, is obtained by 
minimizing a cost function J defined as 
 
J(x) =  
1

2
[x ! xb ]

T
Pf

!1
[x ! xb ]+

1

2
[y ! H (x)]

T
R

!1
[y ! H (x)] , (1) 

 
where y is an observation vector of dimension 
equal to the number of observations (Nobs) and 
H is a nonlinear observation operator. Subscript 
b denotes a background (i.e., prior) estimate of 
x, and superscript T denotes a transpose.  The 
Nobs ×Nobs matrix R  is a prescribed observation 
error covariance. The matrix Pf of dimension 

Nstate×Nens is the forecast error covariance (Nens 
being the ensemble size). 

Uncertainties of the optimal estimate of 
the state x are also calculated by the MLEF. The 
uncertainties are defined as square roots of the 

analysis error covariance ( P
a

1

2 ) and the forecast 

error covariance ( Pf
1

2 ), both defined in terms of 

ensemble perturbations. The square root of the 
analysis error covariance is obtained as  
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where I

ens
is a diagonal identity matrix of 

dimension Nens× Nens, and i

a
p  are column 

vectors representing analysis perturbations in 
ensemble subspace. Matrix C of dimension 
Nens×Nens is defined as  
 
 C = Z

T
Z    ; z i = R!

1
2H (x + p f

i
) ! R

!
1
2H (x) , (3) 

    
where vectors zi are columns of the matrix Z of 
dimension Nobs×Nens. Note that, when calculating 
zi, a nonlinear operator H is applied to perturbed 
and unperturbed states x. Vectors i

fp  are the 
columns of the square root of the forecast error 
covariance matrix obtained via ensemble 
forecasting employing a nonlinear dynamical 
model M (e.g., an NWP model)  
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where xa is the optimal solution for the model 
state (analysis).  

Equations (1)-(3), referred to as analysis 
equations, are solved iteratively in each data 
assimilation cycle, while equation (4), referred to 
as a forecast equation, is used to advance the 
columns of the forecast error covariance matrix 

Pf

1

2  from one cycle to another.  
Measures of information content of 

observations referred to as DOF for signal and 
entropy reduction, denoted ds and h, 
respectively, are often used in information theory 
(e.g., Rodgers 2000). In data assimilation 
applications, ds and h are commonly defined in 
terms of analysis and forecast error covariances, 
P
a

and Pf , (e.g., Wahba 1985; Purser and 
Huang 1993; Wahba et al. 1995; Rodgers 2000; 
Rabier et al. 2002; Fisher 2003; Johnson 2003; 
Engelen and Stephens 2004). These information 
measures can also be calculated employing the 
eigenvalues 2

i
! of thr matrix C, defined in (3), 

that we also refer to as the information matrix in 
ensemble subspace. Thus, the following 
formulas for DOF for signal ds and entropy 
reduction h can be used: 
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which are essentially the same formulas as in 
Rodgers (2000). The difference is that the 
eignevalues of the information matrix defined in 
ensemble subspace (C) are used in our 
formulation, while in the formulation of Rodgers 
(2000), the eigenvalues of the information 
matrix, defined either in the model space or in 
the observation space, are used. The advantage 
of the information matrix defined in ensemble 
subspace is that it is commonly a small matrix 
(of dimensions Nens× Nens), so it is possible to 
evaluate the full eigenvalue spectrum of it, even 
when using complex NWP models and 
numerous observations. A potential 
disadvantage is that a small ensemble size 
might be insufficient to accurately determine the 
information measures. The experimental results 
examining the impact of ensemble size on the 
information measures will be presented and 
discussed in this paper.  
 
3. EXPERIMENTAL RESULTS 
 
3.1 Experiments with GEOS-5 single column 
model  

 
Experiments examining the impact of 

ensemble size on the information content 
measures are performed using a single column 
version of the Goddard Earth Observing System  
(GEOS-5) Atmospheric General Circulation 
Model (AGCM).  In Fig.1, experimental results 
obtained using simulated observations of 
temperature and humidity are shown. The 
location chosen for the experiments is a Tropical 
Western Pacific site (130E, 15N). Experimental 
results over a 10-day period from May 7 to May 
17, 1998 are shown in Fig. 1. Information 
measures ds, calculated in data assimilation 
experiments employing 10, 20, and 40 ensemble 
members, are plotted as functions of analysis 
cycles. It can be seen that values of ds are 
smaller in the experiments with smaller number 
of ensembles. However, the relative changes in 
the information content from one cycle to 
another (i.e., trends of increase or decrease) are 
similar in all experiments. These results indicate 
that even insufficient ensemble sizes (10 and 20 
in this case) could still provide useful 
comparisons of the information content 
measures, providing the comparisons are done 
only within the experiments with the same 
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number of ensemble members. More detailed 
information content analysis employing GEOS-5 
single column model can be found in Zupanski 
et al. 2005). 

 
Fig 1. Values of ds plotted as functions of analysis cycles, 
calculated in the experiments with 10 (ds_10_ens), 20 
(ds_20_ens), and 40 (ds_40_ens) ensemble members. 
Simulated observations of temperature and humidity (total of 
80 observations) are assimilated in each data assimilation 
cycle. Note that the values are generally larger for larger 
ensemble sizes. The essential trends (changes from one 
cycle to another) are similar in all experiments.  
 
3.2 Experiments with RAMS model 
 

The information content analysis is also 
performed employing a more complex 
atmospheric model, the Colorado State 
University Regional Atmospheric Modeling 
System (RAMS, Pielke et al., 1992; Cotton et al., 
2003). This is a non-hydrostatic model that 
integrates predictive equations for wind 
components, Exner function, ice-liquid water 
potential temperature, and total water mixing 
ratio on a vertically stretched Arakawa C-grid. 
This research is performed with the aim to 
develop a methodology for information content 
analysis of future GOES-R observations.  

We have performed two different types 
of information content analysis: (i) conditional 
information content analysis, and (ii) 
unconditional information content analysis. 
Conditional information content analysis 
estimates information content of new 
observations taking into account information 
content of observations assimilated previously, 
and it is dependent on the order of observations. 
Unconditional information content analysis takes 
into account information from new observations 
without considering previously assimilated 
observations, and it is not dependent on the 
order of observations.  

Examples of conditional and 
unconditional information content analysis are 

shown in Fig. 2. These experiments are 
performed for Hurricane Lili case, which 
occurred from 21 September 2002 to 04 October 
2002. Simulated observations, grouped in 24 
groups, including wind (u, v, and w component), 
perturbation Exner function (p), ice-liquid water 
potential temperature (th) and total water mixing 
ratio (r) observations, are used in the 
experiments. As the figure indicates, the 
conditional information content measure DOF for 
signal (ds) is dependent on the order of 
assimilation of various observation groups 
(forward or reverse order). Unconditional 
information content is not dependent on the 
order of assimilation. The values of ds obtained 
in the experiment using unconditional 
information content analysis are larger than the 
values obtained in the two experiments using 
conditional information content analysis. This is 
because the information content of each data 
group is calculated independently of other 
groups in the unconditional information content 
analysis. 

 
Fig. 2. DOF for signal (ds) for various groups of observations 
in data assimilation experiments with the conditional 
information content calculations, using (i) forward group 
order and (ii) reverse group order. (iii) The unconditional 
information content calculation results are also shown. In 
groups numbered 1 through 4 u-observations are 
assimilated, in groups 5 through 8 v-observations are 
assimilated and so on, as indicated on the horizontal axis. 
Note that w-groups of observations carry most information in 
all experiments. Experimental results employing 50 
ensemble members are shown. The size of the control 
vector x is 54000. In each group of data, 1200 observations 
are used. 
 
4. SUMMARY 
 
 Preliminary results presented in this 
study indicate that it is possible to effectively 
calculate information content measures of 
complex atmospheric models with large-scale 
vectors of state variables, using numerous 
observations. This is of special importance for 
assimilation of current and future satellite 

u-groups v-groups w-groups p-groups th-groups r-groups 
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observations. Further studies are planned in the 
future in applications to real observations. 
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