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1. INTRODUCTION 
 

Variational data analysis schemes, 
3DVAR (e.g., Parrish and Derber 1992) and 
4DVAR (e.g., Courtier et al. 1994). have 
dominated the operational atmospheric data 
assimilation for numerical weather prediction. Both 
3DVAR and 4DVAR assimilations generally at 
each update cycle start with a crude background 
error covariance model which is homogeneous, 
isotropic and stationary. 

Recently many studies have experimented 
with ensemble-based data assimilation schemes 
(e.g., Evensen 1994; Houtekamer and Mitchell 
1998, 2001; Anderson 2001; Bishop et al. 2001; 
Whitaker and Hamill 2002; Ott et al. 2003; Snyder 
and Zhang 2003). Most of such experiments are 
based on a method known as the ensemble 
Kalman filter (EnKF).  One potential advantage of 
the EnKF-based technique is that it provides a 
feasible way to produce flow-dependent estimate 
of the forecast error covariance.  Another potential 
advantage is that the processes of ensemble 
forecast and data assimilation are unified. Tests of 
EnKF in real operational environment are still in 
progress. Recent experiments in an environment 
close to operations show that the ensemble 
square root filter (EnSRF) (Whitaker and Hamill 
2005) and the EnKF with perturbed observations 
(EnKFPO) (Houtekamer et al. 2005), have 
comparable results with the operational 3DVAR.  

With further comparisons of fully 
developed and tuned EnKF with 3DVAR still 
underway and given that the computational cost 
for implementing the full ensemble filter is still a 
concern for operational centers, it would be 
appealing to have an intermediate algorithm that 
can benefit from the flow-dependent information 
that ensembles provide and also can easily fit in 
the current operational 3DVAR framework without 
incurring much extra cost.   
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As discussed in this study, we envisage a 

hybrid data assimilation technique (Hamill and 
Snyder 2000; Etherton and Bishop 2004; Lorenc 
2003; Buehner 2004) potentially has such 
attractive properties. In particular we study the 
hybrid ensemble transform Kalman filter (ETKF)-
3DVAR scheme and explore its skills by 
comparing with the EnSRF, one of the intensively 
tested full ensemble filters.    
    
2. THE HYBRID ETKF-3DVAR AND THE EnSRF 
ANALYSIS SCHEMES 
 
2.1  The hybrid ETKF-3DVAR scheme 
 

Figure 1 illustrates how the hybrid ETKF-
3DVAR data assimilation cycle works. We start 
with an ensemble of K  background forecasts at 
time . We then repeat the following four steps 
for each data assimilation cycle. 1) Update the 
ensemble mean by the hybrid ETKF-3DVAR 
background error covariance, where the 
background error covariance is approximated by a 
linear combination of the sample covariance 
matrix of the ETKF forecast ensemble and the 
3DVAR covariance matrix. 2) Update the forecast 
perturbations by the ETKF transformation matrix 
(Bishop et al. 2001; Wang and Bishop 2003; Wang 
et al. 2004) with no 3DVAR covariance involved. 
3) Add the updated ensemble perturbations to the 
updated ensemble mean to generate 

0t

K  initial 
ensemble members. 4) Make K  forecasts starting 
from the K  initial ensemble members to the next 
analysis time.  
 
2.2  The EnSRF analysis scheme 
 
 The EnSRF was first explored in Whitaker 
and Hamill (2002).  Here we focus on the 
operational difference between the EnSRF and the 
hybrid ETKF-3DVAR schemes. In the hybrid 
ETKF-3DVAR, observations are assimilated 
simultaneously for the ensemble mean, and the 
perturbation is updated by the ETKF 



transformation matrix at once.  The EnSRF 
assimilates observations serially for each member. 
For the hybrid ETKF-3DVAR, since the ensemble 
mean update can be solved variationally (Lorenc 
2003; Buhner 2004) and the ensemble 
perturbations are adjusted inexpensively with the 
ETKF transformation matrix in the ensemble 
subspace, the computational cost of the hybrid is 
expected not as expensive as in the EnSRF 
especially with the a huge number of observations. 
Unlike the hybrid ETKF-3DVAR where the 
background error covariance is estimated partly 
from the ensemble and partly from the 3DVAR 
covariance, the background-error covariance of 
the EnSRF is estimated fully from the ensemble 
and to avoid the problem of filter divergence due 
to sampling error, the background error covariance 
model is modified by a process called “covariance 
localization”.  
 

 
Figure 1. Illustration of the hybrid ETKF-3DVAR analysis and 
ensemble generation cycle for a hypothetical three-member 
ensemble.  
 
3. EXPERIMENT DESIGN 
 
3.1. Model, observation and ensemble 
configuration 
 

In this study, we run a dry, global, two-
layer primitive equation model (Zou et al. 1993). 
The model is spectral and the model state vector 
includes spectral coefficients of vorticity, 
divergence at two levels, and the layer thickness, 
πΔ , where π  is the Exner function. There is a 

simple, zonal wavenumber 2 terrain. The 
parameters chosen are the same as in Hamill and 
Whitaker (2004). The model is run at T31 
resolution with the error doubling time about 4 
days. . Perfect model assumption is made in the 
following experiment.  

The observations of interface π  and 
surface π , 362 of each, are taken at a set of 
nearly equally spaced locations on a spherical 
geodesic grid (Fig. 2). The observations consisted 
of the T31 true state plus errors drawn from a 
distribution with zero mean and standard deviation 
of 8.75  and 0.875  for 
interface 

11 −− KJkg 11 −− KJkg
π  and surface π  respectively. The 

number chosen are about a quarter of the globally 
averaged climatological spread of the nature runs.  
Observation errors are assumed to be 
independent spatially and temporally and 
observations are assimilated every 24h. 

In all the experiments, the ensemble size 
is 50 members. The ensemble was initialized with 
random draws from the model climatology. The 
data assimilation is conducted for 150-day period 
and the statistics is accumulated over the last 100 
days. The online estimate of the inflation factor is 
based on running previous two weeks’ innovation 
statistics (Wang and Bishop 2003; Wang et al. 
2004; Etherton and Bishop 2004). 

 

 
Fig. 2  Observation locations on 362 spherical geodesic grids. 

 
 
3.2. 3DVAR error covariance 
 
 To simulate the static 3DVAR background 
error covariance. We first collect actual 
background error samples over time and then 
calculate the sample covariances. To avoid error 
divergence due to the limited sample size of the 
background error collected, covariance localization 
is applied. Also following Etherton and Bishop 
(2004) the maximal likelihood theory (Dee 1995) is 
applied to make online estimate of the magnitude 
for the 3DVAR error variance.  
 
4. RESULTS 



 
4.1. Analysis error 
 

Fig. 3 shows the rms analysis error in the 
norm of Kinetic energy, second layer thickness 

2πΔ , and the surface pressure π .  The black 
bars correspond to the results of the hybrid ETKF-
3DVAR as a function of the weighting coefficient, 
α . The grey bars correspond to the rms analysis 
errors of the EnSRF with respect to different 
covariance localization length scale. The white bar 
is the result for the 3DVAR. The optimal linear 
combination coefficient for the hybrid ETKF-
3DVAR is 0.4 for all three norms.  The localization 
scale that produces the smallest rms for the 
EnSRF in this experiment is about 15000km ~ 
25000km. In all three measures, the best 
performance of the hybrid ETKF-3DVAR is only 
slightly worse than that of the EnSRF.  
Quantitatively, 90% of the improvement of the 
EnSRF over the 3DVAR is achieved by the hybrid 
ETKF-3DVAR.  

 
 

 
 
Fig. 3 Root mean square analysis error for Kinetic energy 

norm, second-layer thickness 2πΔ  norm and surface π  
norm. The black bars are results for the hybrid ETKF-3DVAR 
scheme with different linear combination coefficient α = 0.2, 
0.4, 0.6, 0.8, 1.0. The grey bars are results for the EnSRF with 
different covariance localization scales, 5000km, 15000km, 
25000km, 35000km, 45000km. The white bar is for the 3DVAR. 
 
4.2. Flow dependent covariance model 
 
 To demonstrate that with the ensemble 
covariance incorporated, the background error 
covariance is flow-dependent, we plot the analysis 

increment associated with assimilating a single 
observation. For illustration, we conduct the 
experiment based on the background ensemble at 
the 100th data assimilation cycle from each 
experiment above. Fig. 4 and Fig. 5 show the 
result for the hybrid ETKF-3DVAR with the optimal 
coefficient 4.0=α  and EnSRF with the optimal 
covariance localization scale 25000km. The 
contours are the background ensemble mean for 
the 100th cycle. The shades are analysis increment 
by assimilating one interface π  observation with 
the value of  at KkgJ //3 ( )WN oo 108,47 . Both 
increments from the hybrid and the EnSRF follow 
the flow pattern at the 100th cycle and the wind 
increment is dynamically consistent with the 
interface height increment. 
 

 
 
 
Fig. 4 A snap shot (the 100th analysis cycle) of the ensemble 

mean upper layer wind (U , ) and thickness (V 2πΔ ) 
increments for single 3J/kg/K interface π  observation 
increment at (47N, 108W) for the ETKF-3DVAR scheme with 

40.=α . The black dot is the observation location. The 
contours are the background ensemble mean at the 100th cycle 
and the shades are the single observation increment. 
 



 
 
Fig. 5 Same as Fig. 4 except for the EnSRF with localization 
scale of 25000km. 
  
4.3. Maximal perturbation growth in Kinetic energy 
norm  
 
 For using an ensemble to represent the 
background error covariance, one would prefer an 
ensemble that is able to reliably identify forecasts 
which is very likely to have large forecast errors. 
Because rapid amplification of analysis error can 
lead to large forecast error, it is desirable for the 
ensemble subspace to represent possible fast-
growing analysis errors. We measure such an 
ability of an ensemble by calculating the fastest 
growth during the first 24h within the ensemble 
subspace under a certain norm.  
 Fig. 6 shows the 24h maximal growth in 
Kinetic energy norm within the ETKF and EnSRF 
ensemble subspaces. For the ETKF, the maximal 
growth corresponding to the optimal performance 
in rms analysis error measure (Fig. 3 4.0=α ) is 
larger than that of the EnSRF (Fig. 3 localization 
15000km~25000km). While the maximal growth 
for the ETKF with different linear combination 
coefficients is similar, the maximal growth of the 
EnSRF varies with the localization scale applied.  
In general the maximal growth decreases with 

more severe localization.  It is speculated that the 
slower growth for the more severe localization 
may be due to the imbalanced perturbations 
induced by severe localization (e.g., Lorenz 2003).   
 

 
 
Fig. 6 Maximal 24hr perturbation growth in Kinetic energy norm 
within the ensemble perturbation subspace for the hybrid 
ETKF-3DVAR (black bars) with different linear combination 
coefficients α = 0.2, 0.4, 0.6, 0.8, 1.0 and the EnSRF (grey 
bars) with different covariance localization scales (5000km, 
15000km, 25000km, 35000km, 45000km). 
 
 
4.4. Balance 
 
 In operational data assimilation system, 
initialization is necessary because otherwise 
imbalance between mass, momentum and 
diabatic heating in the analysis can produce large-
amplitude gravity waves. As discussed by Mitchell 
et al. (2002) and Lorenc (2003), the approximation 
adopted in EnKF, such as the covariance 
localization by Schur product can introduce 
imbalance, which compromises the benefits of 
avoiding filter divergence and bringing more 
accurate analysis. To evaluate the degree of 
balance/imbalance for an analysis generated by a 
data assimilation scheme, a useful global measure 
is the mean absolute tendency of surface pressure 
(Lynch and Huang 1992).  A quantity equivalent to 
the surface pressure in the two-layer primitive 
equation model is the surface Exner function. Fig. 
7 shows the mean absolute tendency of the hourly 
surface π  averaged over global grids, all 
ensemble members, all time, for the first 24hr 
period. As expected, for the EnSRF, compared to 
the true tendency, imbalance is more substantial 
when the localization is more severe. For the 
hybrid, blending the ETKF ensemble covariance 
with no localization, the initial analyses are much 
more balanced than when the background 
covariance is purely from the 3DVAR. The 



analysis ensemble for the hybrid with the optimal 
coefficient in rms analysis error measure 
( 4.0=α ) is more balanced than the EnSRF with 
optimal localization (15000km~25000km). This 
result suggests that it is more necessary for the 
EnSRF to have an explicit initialization step or to 
use a forecast with extra damping of gravity waves 
than the hybrid ETKF-3DVAR.   
 

 
 
Fig. 7 Mean absolute surface π  tendency (J/kg/K/hr) 
averaged globally, over the first 24hr period, and all ensemble 
members, for the first 24h. The black bars are for the hybrid 
ETKF-3DVAR with different linear combination coefficients 
α = 0.2, 0.4, 0.6, 0.8, 1.0 and the grey bars are for the EnSRF 
with different covariance localization scales (5000km, 
15000km, 25000km, 35000km, 45000km). The white is for the 
truth. 
 
4.5. Skill of ensemble spread 
 
 To measure the skill of the ensemble 
spread we use a method similar to Wang and 
Bishop (2003). We first consider a scatterplot of 
points whose ordinate and abscissa is respectively 
given by the squared analysis error and the 
analysis ensemble variance for a particular 
variable of interest. We collect such points over 
global grids and for all time samples. We then 
divide these points into four equally populated 
bins, arranged in order of increasing ensemble 
variance. Then we average the squared analysis 
error and analysis ensemble variance for each bin 
and take the square root. Connecting the points 
then yields a curve describing the relationship 
between the analysis ensemble spread and the 
rms analysis error. Fig. 8 shows an example of 
such curves of surface π  for the hybrid with 

40.=α  and the EnSRF with localization length 
scale equal to 15000km.  There are two aspects of 
the curve that we are interested to exam. First, 

further averaging the four points we find that both 
schemes’ ensemble spread is approximately equal 
to the rms analysis error, which means the 
ensemble spread is reliable. Second, how well can 
the ensemble spread distinguish an analysis with 
large error from that with small error, i.e., how 
precise is the ensemble spread? For a perfect 
ensemble, the curve constructed in the way above 
should follow a reference line with 45 degrees.  
Fig. 8 shows that the ensemble spread of both 
schemes are sub-optimal. It is negatively biased 
for small analysis error and positively biased for 
large analysis error. The extent to which the 
ensemble spread is biased can be seen by how 
much rotation it needs to fall parallel with the 
reference line. From Fig. 8, the hybrid and the 
EnSRF have similar skill in ensemble spread 
precision. 
 

 
 
Fig. 8 The relationship between the surface π analysis spread 
and rms analysis error for the hybrid ETKF-3DVAR (dashed) 
and the EnSRF (solid). The dotted line is a reference line for a 
perfect ensemble. 
  
5. CONCLUSIONS 
 
 In this paper, we compare the skill of the 
hybrid ETKF-3DVAR and the full EnSRF analysis 
schemes with an observation system simulation 
experiment run with the two-layer primitive 
equation model with a perfect model assumption. 
The hybrid ETKF-3DVAR updates the mean with a 
linear combination of the ensemble and 3DVAR 
covariance, which can fit in the current variational 
framework easily (Lorenc 2003; Buehner 2004). 
The ensemble perturbation is updated and 
generated by the ETKF, which is computationally 



efficient (e.g., Bishop et al. 2001).  The EnSRF 
(Whitaker and Hamill 2002) on the other hand runs 
relatively expensive parallel data assimilation for 
each ensemble member and costs scale with the 
number of observations as serial assimilation of 
observation is used. Experiments in this paper 
show promising results for the hybrid ETKF-
3DVAR as the hybrid can achieve a large portion 
(90%) of the EnSRF’s analysis improvement over 
the 3DVAR. The ensemble spread skill for the 
hybrid is similar to the EnSRF. To avoid filter 
divergence, the covariance localization is 
necessary for the EnSRF. For the hybrid ETKF-
3DVAR experiment, no covariance localization is 
required as blending in the full rank 3DVAR 
background error covariance stabilizes the 
analysis cycles. Experiments show that applying 
inappropriate localization can induce imbalanced 
states and thus degrades the maximal growth in 
the ensemble perturbation subspace. The hybrid 
ETKF-3DVAR can be taken as an encouraging 
alternative method to improve the current 
variational data assimilation by incorporating 
ensemble information.  
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