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1. INTRODUCTION

Accurate analyses and short-term forecasts of
weather conditions can greatly assist the Army in its
battlespace operations. Such information can be used
to predict impact areas of a chemical or biological
attack, to diagnose atmospheric effects on
electromagnetic surveillance, and in general to manage
personnel and materiel in a battlefield.

Because of the complexity of atmospheric
processes and because of a lack of observations,
producing highly accurate analyses and short term
forecasts of atmospheric conditions is very challenging.
The latter problem of a lack of observations is a
particularly difficult one, as regions in which battlefield
operations are ongoing are less likely to have routine
weather observations available.

To address this problem and, thus, to enhance the
Army’s ability to diagnose and predict atmospheric
conditions, research has been directed towards
developing an improved analysis technique. This
technique, termed the response filter, has shown
significant improvements relative to simpler techniques
that are oftentimes applied to this problem.

2. BACKGROUND

In atmospheric sciences, a multitude of techniques,
including function fitting (linear interpolation, splines,
etc.), successive correction methods [e.g., Cressman
(1959); Barnes (1964)], statistical objective analysis
(also called optimal interpolation), and variational
analysis, are used. As discussed by Askelson et al.
(2005), function fitting, successive correction methods,
and statistical objective analysis schemes can be recast
in terms of one-pass distance dependent weighted
averaging (OPDDWA). It can also be argued that if a
response function can be defined for variational
schemes, then they too can be recast in terms of
OPDDWA (Doswell and Caracena 1988). OPDDWA,
therefore, is a fundamental objective analysis process.
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For one-dimensional OPDDWA can be

expressed as
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OEWICRINCIE) ™)

where f,(x) denotes the analysis field, N, is the

number of observations used in the analysis, f(x,) is

the observation value at location i, and w,(x,, —x) is

the weight applied to observation f(x,), with the

subscript N indicating that weights are typically
N,

normalized such that » w,(x,-x)=1 so that the
i=1

average (zeroth harmonic) of the input field remains

unchanged.

The response function is commonly used to
interpret the effects an analysis scheme has on the
input. As shown by Askelson and Straka (2005), for real
data the response function can be interpreted in terms
of changes to the amplitudes and phases of the
sinusoids that comprise the input field. Because the
response function provides this information at multiple
frequencies, it can enhance understanding of the
properties of an analysis scheme relative to single-
valued measures like root mean square differences and
mean absolute differences.

To illustrate the use of the response function in the
interpretation of an analysis scheme and to set the
stage for later illustration, consider Fig. 1. As is
apparent in Fig. 1a, the quality of the Barnes analysis
(dashed line), which is applied using (1) with
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where «, is the smoothing parameter, is affected by the

distribution of the observations. This is made clear
when one compares the Barnes analysis [dashed line;
feames(X)] to the analysis one would obtain using the
Barnes scheme if the domain of the observations were
infinite and continuous [solid line; fineor(X)]. The situation
where the domain of the observations is infinite and



continuous is optimal in the sense that all possible
information regarding the observation field is available
to the analysis scheme. This situation is never realized,
of course, and thus analysis schemes must generally
work with a limited amount of information regarding the
input field.

The reasons why fgames(X) is not equal to fineor(X) are
illustrated in Figs. 1b,c. Figure 1b illustrates the
amplitude modulations for fieor(X) (dotted line), feames(X)
(dashed line), and for the response filter analysis (solid
line), which will be discussed in section 4. As shown by
Askelson and Straka (2005), the amplitude modulation
is the ratio of a wave’s output amplitude to its input
amplitude. If the domain of the input field is infinite and
continuous, the amplitude modulation of the Barnes
scheme is constant, as shown by the dotted line in Fig.
1b. When the domain of the input field is not infinite and
continuous, however, the amplitude modulation of the
Barnes scheme depends on analysis location, as shown
by the dotted line in Fig. 1b. Because the amplitude
modulation of the Barnes scheme varies with location
when the domain of the input field is discrete, the
Barnes scheme cannot replicate fineor(X) in this situation.
Moreover, this variation in amplitude modulation results
in a distorted post-analysis representation of the input
wave, which can readily be seen by comparing the
Barnes analysis on the left side of the domain to the
Barnes analysis on the right side of the domain and
noting that the extremes of the analysis field are
different on the two halves of the analysis domain.

Distortion of the analysis field also results from
phase modulations, which are illustrated in Fig. 1c.
Phase modulation is the amount by which the phase of
an input wave is altered by an analysis scheme. For an
input field having an infinite and continuous domain, the
Barnes scheme produces no phase modulation. When
the domain of the input field is discrete, however, the
Barnes scheme produces nonzero phase modulations,
as shown by the dashed line in Fig. 1c. These nonzero
phase shifts are apparent in Fig. 1a in the non-
alignment of the extremes of the Barnes analysis field
with the extremes of the input field. Because phase
modulation is not generally constant across an analysis
domain, input waves are distorted.

Consequently,  observation  distribution  can
significantly impact the quality of the output of an
analysis scheme. It does so by producing amplitude
and phase modulations that vary with analysis location.

3. FORMULATION OF THE RESPONSE FILTER

The purpose of the response filter is to explicitly
incorporate information regarding the distribution of
observations so as to produce analyses as close to
those desired [e.g., fineor(X) in Fig. 1] as possible. In
doing so, variations in amplitude and phase modulations
across the analysis domain (e.g., dashed lines in Figs.
1b,c) are mitigated.

The response filter is based upon the response
function. As shown by Askelson et al. (2005), the
response function for an OPDDWA analysis of one-
dimensional, discrete data is given by
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where W, (v,x) is the complex conjugate of the Fourier

transform of the normalized effective weight function
and v is frequency (= 1/wavelength). As shown by
Askelson and Straka (2005) and Askelson et al. (2005),
the corresponding amplitude and phase modulations are
given by
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where n is an integer. The 2mn term is required in (5)
because tan™'( ) is 21 periodic and thus, because n is

not generally known, ¢, . (%) is 2rmn ambiguous.”

The approach with the response filter is to dictate
desired amplitude and phase modulations as a function
of frequency and to minimize the differences between
these amplitude and phase modulations and those
produced by an analysis scheme. This is accomplished
using the response filter functional Jgr given by

Ny
JRF[WN1 e Wy ]: zlm I]W;(vk,x)| - Mk]z
k:lN‘ ’ ©6)
+ 7;]& [(PW\*(‘,M) - Pk]z
y

where  w, =wy(x,,—x), Ng is the number of

frequencies, [, is a user-controlled parameter that

determines the relative importance placed on matching
My, My is the desired amplitude modulation at frequency
Vi, ¥ is a user-controlled parameter that determines how
important the second term in Jgr is relative to the first
term, 1, is a user-controlled parameter that determines

the relative importance placed on matching Py, and Py is
the desired phase modulation at frequency vi. The first
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For the interested reader, techniques do exist for
resolving this phase ambiguity. See, for instance,
Steiglitz (1982).



term on the rhs of (6) is the summation, over frequency,
of 1, -weighted squared differences between desired
amplitude modulations M, and actual amplitude
modulations [y (v,.x)|, which, from (4), depend upon
both the weights [WNI,...,

distribution relative to the analysis location x. The
second term on the rhs of (6) is the summation, over
frequency, of [, -weighted squared differences

WNN] and the observation

between desired phase modulations Px and actual

phase modulations P (1) which, from (5), again

depend upon both the weights [wN‘,...,wN\,] and the

observation distribution relative to the analysis location
X.
Under appropriate conditions, simplifications can be

applied to |Wy(v,.x) and Pyeiy N (6).  These

conditions tend be satisfied when one is producing an
analysis and not trying to compute something like a
derivative. In that case, one would not want to move
waves and thus would set A, =0. When phase shifts
are nearly zero, the first term under the radical in (4)
tends to dominate the second (especially for waves that
are retained at a non-negligible amplitude) and

i), = 3wy (1~ x)eos2le, —x)]. (7)

where the subscript sp indicates small phase shift.

N,
Moreover, since Y w,(x,

i=1

- x)cos[2mv(x,, — x)] is typically

N,
much larger than > w,(x, — x)sin[2v(x, - x)] when

i=1

phase shifts are small, the phase modulation Py o) in
(5) is
N,

D wy (x,, = x)sin[2mv(x,, — x)] .* With

i=1

simplifications and a multiplication by 2 to simplify

directly related to the magnitude of

these

s

A power series expansion for tan"'x is
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X X X
tanlx:x—?+?——+ (Salas et al. 1986, p.

703). If the magnitude of x is small, then the cubic and
higher order terms are small relative to the first term in
the expansion and thus the magnitude of the phase

modulation is directly related to
N,

> wy(x,, — x)sin[2mv(x,, — x)]. If, in  addition
D wy(x, - x)cos[2mv(x, —x)] is positive, which is

typical for Iow-pass filters (especially for lower

frequencies), then ZW\(xm x)sin[2v(x,, — x)] also
i=1

indicates the correct direction (sign) of the phase shift.

subsequent analysis, one can form, from (6), what is
termed the linear response filter functional J,,. ,, given

by
Tre_in [WM s Wy ]:
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This form of the response filter functional is very useful
in that it defines a linear least squares minimization
problem for w,(x,, —x). For this reason, the adjective
‘linear’ is ascribed to this functional.

The linearized response filter (hereinafter Irf) is
obtalned from (8) by obtaining

O pr i WV| ]/6wV x, — x) and setting the result to

zero. Denotlng x,,—x as x,., this operation produces
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Algebraic manipulation of (9) results in

N, N,
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N, N,
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which can be further manipulated into
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This is the general form of the Irf.
Ifin (11) 7,, =1, and y =1, the Irf simplifies to



N, Ny
2wy, 21y, cos[2av, (), — )]
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} , (12)
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where the trigonometric identity
cos(a —b)=cosacosb +sinasinb has been applied.

Equations (11) and (12) contain the free parameter
j. Since there are N, weights (js), (11) and (12)
encapsulate N, equations for each analysis location x.
These two sets of equations can be expressed in the
matrix form Ax=B as

- -
D1, M, cos(2m,x),)
4, Ay, || Wy, kN: !
4y 4y Wy 21 M, cos(2m,x.,)
; e = MMk ko2 , (13)
: : : =
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where

N[, cos(27zvkx;i)cos(27zvkx;j)

A, = 14
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for (11) and
Ny
A, =31, cos[2m, (x), = x; )] (15)
k=1

for (12), with j giving the row index and i giving the
column index.

It is noted that both the number of rows and the
number of columns in A are determined by the number

of weights No. Thus, A is always a square matrix.
Furthermore, A is symmetric regardless of whether

(14) or (15) is used because swapping the j and i
indices does not change either (14) or (15). Finally, if
two (or more observations) are collocated, then A is

singular and weights cannot be determined using (13).
In this situation A is singular for either (14) or (15)

because two or more rows of A are equivalent. This

equivalence arises because these rows have equivalent
x,; values.
When (15) is used, A has a couple other useful

properties. First, in this situation the diagonal elements

N
of A are equal to zlm . Second, if (15) is used and if

k=1
the set of observations used to obtain analysis values
remains the same, the frequencies used in J,,. , (x)

remain the same, and the /,, remain the same, then
A only needs to be computed once to produce an

analysis.
The symmetry of A and the form of (13) means

that (13) results from the attempt to find an extremum,
with respect to the weights w, , of

1

Wy AW, -B'w, =0, (16)
where WNT:[WM Wy, Wy ] superscript T
indicates matrix transpose, and

Ny Ny
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Equation (16) is simply an alternate expression of the
linear response filter functional J,. ., (8). If
leTAwN >0 for all possible wy , then A would be a
2— =— — =

positive semidefinite matrix. At this point, however, it

has not been shown that %riéwN >0 for all possible

wy . For positive I, , I, , and y, the |hs of (16) is
greater than or equal to zero for all possible wy,

however, because it is equivalentto J,,. ,, .

With the Irf, equations (13) and (14) or (13) and (15)
are solved at each location where an analysis is
desired, with the resulting wy subsequently used in (1)
to obtain the analysis value.

Two and three-dimensional versions of the Irf have
also been developed (Lin 2004). The mathematical
development of these versions of the Irf is essentially
the same as the one-dimensional version, with the
primary differences being housekeeping associated with
the extra dimensions. In the interest of brevity, the
details are omitted.

4. RESULTS

An example of the capabilities of the Irf is shown in
Fig. 1. In this example, the Irf was constrained to
produce the amplitude and phase modulations that the
Barnes scheme would have produced if the observation
domain were infinite and continuous. In Fig. 1a, it is
apparent that the analysis produced by the Irf (plus
symbols) is much closer to the analysis that would result
if the observation domain were infinite and continuous
(solid line). The reasons for this are shown in Figs.
1b,c. As is apparent in these figures, the Irf produces
amplitude and phase modulations (solid lines) that are
much closer to those that would result if the observation
domain were infinite and continuous. In doing so, it
greatly reduces the spatial variations in amplitude and
phase modulations that are present in the Barnes
analysis.  Consequently, the Irf produces a more
coherent analysis. The reason the Irf is superior to the



Barnes analysis is the Irf, in  minimizing
JRFJ,.n[wN‘,...,wNN ] finds the weights that produce, as

closely as possible, the desired amplitude and phase
modulations. In doing so, the Irf explicitly takes into
account the distribution of the observations whereas the
Barnes scheme does not. Thus, the Irf is an a posteriori
scheme whereas the Barnes scheme is an a priori
scheme.

Results obtained with the two-dimensional Irf are
illustrated in Figs. 2 and 3. The Irf (Fig. 2b) produces a
more accurate representation of the theoretical result
(Fig. 2c), which is the analysis that would result if the
input field were known everywhere, than does the one-
pass Barnes analysis (Fig. 2a). The reasons for this
superior performance of the Irf are again the amplitude
and phase modulations produced by the Irf. As shown
in Fig. 3, the Irf produces, across the domain, amplitude
modulations (Fig. 3b) that are much closer than those of
the one-pass Barnes scheme (Fig. 3a) to the 0.24
theoretical amplitude modulation. In addition, the phase
modulations of the Irf (Fig. 3d) are generally closer to
zero than are those of the one-pass Barnes scheme
(Fig. 3c). This superior amplitude and phase
modulation performance results in a more coherent
analysis. Interestingly, the Irf, while producing smaller
variations in amplitude and phase modulations, also
produces finer-scale variations in amplitude and phase
modulations. These result in the somewhat rippled
appearance of Fig. 2b. In contrast, the larger-scale
variations of its amplitude and phase modulations
results in the one-pass Barnes scheme producing an
analysis that has larger-scale departures from the
theoretical result (Fig. 2a).

Tests of the three-dimensional Irf have also been
performed. Because of the difficulties associated with
illustrating those tests in a manner similar to Figs. 1-3, a
single-valued measure of performance is used instead.
This single-valued measure is the root mean square
(rms) error, computed here as the difference between
values obtained using an analysis scheme and those
that would be obtained if the observational domain were
infinite and continuous. It is noted that this measure is
labeled with the adjective ‘error’ since results obtained
for an infinite and continuous observational domain are
those that are desired. Results for a one-pass Barnes
scheme and the three-dimensional Irf are shown in Fig.
4 as a function of scatter number, which is used as in
Doswell and Lasher-Trapp (1997) and dictates the
irregularity of the observation distribution. As Fig. 4
illustrates, the three-dimensional Irf produces analysis
fields that are closer to the desired analysis fields than
the one-pass Barnes analysis fields. Moreover, as
scatter number increases and the observation
distribution becomes more irregular, the performance of
the Irf, according to this measure, remains relatively
constant while the performance of the one-pass Barnes
scheme deteriorates rapidly.

Because weight functions like that of Barnes (1964)
are oftentimes employed in successive correction
schemes that use multiple passes, the Irf has also been
tested against those schemes. In these tests, the

Barnes weight function is applied to one-dimensional
data, no background field is used, and the smoothing
parameter used in the Barnes weight function is held
constant with each pass. Then, following Caracena
(1987), the equivalent one-pass weights are computed.
The equivalent one-pass weights are the weights that,
when used in (1), produce the same analysis field in one
analysis pass as that produced by the successive
corrections scheme in multiple analysis passes. These
equivalent one-pass weights are used, along with (4)
and (5), to diagnose the amplitude and phase
modulations of the analysis fields produced by the
successive corrections scheme. Finally, a relation
derived by Pedder (1993) is used to compute the
amplitude modulations the successive corrections
scheme would produce if the observational domain were
infinite and continuous. These amplitude modulations
are then used to drive the Irf. An example of results
obtained is provided in Fig. 5. As in the case of the one-
pass analysis tests (Fig. 1), the Irf produces amplitude
and phase modulations that are much closer to those
desired than does the successive corrections method.
Furthermore, because the If reduces the spatial
variability of the amplitude and phase modulations, it
produces more coherent analyses.

In addition to the Irf, a one-dimensional nonlinear
response filter (hereinafter nrf) that utilizes Jgrr (6) has
been developed. This has been accomplished using
minpack, a minimization software package for multi-
dimensional nonlinear functions developed at Argonne
National Laboratory that utilizes a modified Levenberg-
Marquardt algorithm (Marquardt 1963). An example of
test results is shown in Fig. 6. As Fig. 6a indicates, the
If and nrf weights are nearly equal. The small
differences in the weights for these two schemes,
however, do result in differences in amplitude (Fig. 6b)
and phase (Fig. 6¢) modulations. As illustrated in Fig.
6b, the If and nrf schemes produce amplitude
modulations that are much closer to those desired than
does the one-pass Barnes scheme. The Irf and nrf
schemes have the greatest difficulty at higher
frequencies, which results in part because the /,, and

I,

this test and in part because these schemes are
expected to struggle at higher frequencies because of
the irregularity of the data spacing. With regard to
phase modulation, the Irf and nrf schemes also vastly
outperform the one-pass Barnes scheme, except at the
highest frequencies (Fig. 6¢). The performance at the
very high frequencies is not considered to be highly
detrimental because, as requested, the If and nrf
schemes significantly reduce the amplitudes of the
waves at these frequencies and thus the phase-shifted
results in the analyses at these frequencies show up
with very little amplitude. In fact, the more significant
phase shifts for the Irf and nrf schemes likely result
because these schemes are more successful at
reducing the amplitudes of waves at these frequencies
and in doing so increase the likelihood of the numerator
in (5) becoming larger relative to the denominator and
thus of phase modulations becoming larger.

values are weighted towards lower frequencies in



Finally, the increased performance provided by the
response filter comes with a cost. Timing tests for one-
dimensional analyses having 801 analysis locations
indicate that the Irf, when used with (14), takes about
ten times longer than a three pass successive
corrections scheme. If, however, the Irf is used with
(15) and the previously stated conditions for which A

only has to computed once hold, then the Irf takes only
about four times longer than a three pass successive
corrections scheme.

5. DISCUSSION

The response filter is not necessarily intended to
replace other schemes that adapt to data distributions,
like statistical objective analysis, but is meant to be a
high-quality alternative that can be especially useful
when implementation of other schemes is difficult. For
instance, implementation of the statistical objective
analysis scheme can be complicated by lack of
knowledge regarding background and observation error
covariances and by data that do not satisfy the
assumptions commonly used in this scheme (Daley
1991, §4.2, §4.9).

It is noted that for both JRF[WN‘,...,WM] and

JRFJ,.”[WNI,...,WN% ] these functionals are expressed as

depending only upon the weights and not upon the
analysis location x, the observation locations

{xo yeens X, } or elements like 7,, and I, . The reason
! No My k

for this is that once the analysis conditions (e.g., x, 1,

My, etc.) are set, the remaining problem is to find the
weights. One might argue that these functionals should

be expressed as depending upon x and {x yeesX

This, in fact, is an excellent argument since how well a
set of weights is able to replicate the requested
amplitude and phase modulations depends to a large
extent upon the distribution of the observations around
an analysis location. However, because during an
analysis observations generally cannot be moved and
because moving an analysis location defeats the
purpose of obtaining an analysis value at that location,
these functionals are expressed as being dependent
solely on the weights.

As stated earlier, the mathematical development of
the multidimensional Irf is very similar to that for the
one-dimensional Irf, with only additional housekeeping
associated with the extra dimensions. The
implementation of the multidimensional Irf, however, is
somewhat more complicated owing to the need to select
frequencies for constraining the Irf from a
multidimensional frequency space. Numerous
strategies can be employed, including what Lin (2004)
calls the ‘circle’ and ‘box’ methods for two-dimensional
analyses and the ‘sphere’ and ‘cuboid’ methods for
three-dimensional analyses. The interested reader is
referred to Lin (2004) for more details.

It is important to note that the performance of the Irf
depends upon the /,, and [, . The results presented

herein were obtained with 7, and 7, values that more

heavily weight the lower frequencies in (8). If this
approach is not followed, then the Irf can produce
unrealistic analysis values near data boundaries and
large data gaps. It is thought that these failures result
because the Irf is attempting to handle scales for which
little information is available from the irregularly-spaced
observations. This issue remains as a topic for future
investigation.

Tests have shown that the nrf takes longer to run
than the Irf and occasionally fails to converge to a
solution.  Furthermore, with the nrf there are the
additional uncertainties (relative to the Irf) regarding the
dependence of a solution upon the initial guess and
regarding whether a local, rather than the global,
minimum is obtained. Because of these factors and
because the Irf and nrf produce very similar results (e.g.,
Fig. 6), development has, and is continuing to be,
focused on the Irf.

Numerous issues remain regarding the Irf. These
include the dependence of its efficacy on observation
distribution irregularity, potential trade-offs between
performance at one frequency versus another,
anisotropic application to multidimensional data, and
performance with more complicated (e.g., real) data
sets. Investigations of these issues, via the integration
of the Irf into analysis subsystems of the Local Analysis
and Prediction System (LAPS; http://laps.fsl.noaa.gov/)
for research supported by the Army High Performance
Computing Research Center AHPCRC), are continuing.

6. CONCLUSIONS
The following summarize the results of this work:

1) A filter based upon providing desired amplitude
and phase modulations can be designed even
for irregularly-spaced data.

2) The response filter attempts to provide, as
closely as possible, the desired amplitude and
phase modulations given the observation
distribution.

3) The response filter (both If and nrf) can
provide vastly superior analyses relative to
single- and multiple-pass successive
corrections schemes.

4) The Irf is extensible to multiple dimensions.

5) The response filter (both Irf and nrf) can
struggle in situations (e.g., near data
boundaries or for small-wavelength waves)
where the observations do not provide
sufficient information regarding waves of
interest. These problems are not specific to
the response filter, but instead owe to a lack of
data, for which no scheme can compensate.
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Fig. 1: (a) Analysis results, (b) amplitude modulations,
and (c) phase modulations (degrees) for one pass
Barnes and response filter analyses of a sinusoidal
input field. Thick-dashed lines indicate the limits of the
possible observation locations, x; indicates the left edge
of the observation domain, xz indicates the right edge of
the observational domain, and the downward-pointing
arrows indicate observation locations. In (a), the input
field finp(x) is denoted by the dotted line, observations by
diamonds, the analysis that would result if the
observation domain were infinite and continuous fiheor(X)
by the solid line, a Barnes analysis fgames(X) by the
dashed line, and the corresponding linearized response
filter analysis fresp fit(x) by the plus symbols. In (b),
amplitude modulations for fineor(X) (dotted), fzames(X)
(dashed), and fresp_sit(X) (solid), are shown. In (c) are the
phase modulations for fgames(X) (dashed) and fresp_fit(X)
(solid). The input field is given by f(x)= 4,cos(2zv.x),
with 4,=1 and v, =1/5; the Barnes weight function is

given by
2 s 2
w(y — ) =expl- (5, ) /Kdyzexp[— (e, 0],
i=1

with x, =2.
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Fig. 2: One-pass Barnes analysis (a), two-dimensional Irf analysis (b), and theoretical analysis (realized for
observations on an infinite, continuous domain) (c) for a two-dimensional sinusoidal field sampled at the locations
indicated in (d). The input field is given by f(x,y)= 4,cos[2x(u,x +v,y)], with 4, =1, u,=1/4, and v,=1/10; the

Barnes weight function is given by wy(x, —x,3, - y.x.K,)=

expl- (x,, - x)' [, = (v, - )/ Ky;/%exp[— (x, =) /i, = (v = ¥) [ic, ], with &, =k, =2.
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Fig. 3: Amplitude modulation at the frequency of the input wave as a function of location for (a) one-pass Barnes
analysis and (b) two-dimensional Irf analysis; phase modulation at the frequency of the input wave as a function of
location for (c) one-pass Barnes analysis and (d) two-dimensional Irf analysis. Values correspond to the analyses

depicted in Fig. 2.
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Fig. 4: RMS errors for one-pass Barnes and three-dimensional Irf analyses as a function of scatter
number, which dictates the degree of irregularity of the observation distribution. The input field is
given by f(x,»,z) =4 cos2x(ux +v,y + wz)], with 4, =1, u,=1/8, v,=1/10, and w,=1/15; the

Barnes weight  function is given by wy (¥, =Xy, = y.2, — 2,K,.K,.K,) =

expl- (x, =)’ /i, = (v = ) [, = (24 z)Z/xzyz"exp[— (v =2 i, = (=)' [, = (2 =20 ],
with x, =x, =x, =0.93. From Lin (2004).
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Fig. 5: Amplitude (a) and phase (b) modulations for a three-pass successive corrections method analysis produced
using the Barnes weight function (dashed lines) and for the corresponding Irf analysis (solid line). The amplitude
modulation for the theoretical analysis field, which would be produced if the observational domain were infinite and
continuous, is indicated by the dotted line in (a). The phase modulation for the theoretical analysis field is zero.
Other symbols are as in Fig. 1. The input field is given by f(x) = 4 cos(2zv,x), with 4, =1 and v, =1/3 ; the Barnes

N,
weight function is given by w,(x,, —x,Kd):exp[—(xm. -x)/k, Zexp[—(xm. —x)z/lcd], with x, =1.44. From Solum

i=1

(2005).
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Fig. 6: Results for one-pass Barnes, Irf, and nrf
schemes for analyses at x=5.0 [denoted by the upward-
pointing arrow in (a)] and for a nominal (i.e., before
observation locations are scattered) observational data
spacing of 1.0 (nominal nyquist frequency = 1.2). (a)
Weights for the one-pass Barnes scheme (boxes), the
Irf (plus signs), and the nrf (asterisks) at the locations of
observations used in the analyses (indicated by
downward pointing arrows at the top of the plot). (b)
Requested amplitude modulations My (solid line) and
amplitude modulations of the one-pass Barnes scheme
(dashed line), the Irf (long dashes), and the nrf (dash-
dotted line) as a function of frequency. (c) Phase
modulations of the one-pass Barnes scheme (dashed
line), the Irf (long dashes), and the nrf (dash-dotted line)
as a function of frequency. The requested phase
modulation is zero at all frequencies.
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