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1. INTRODUCTION  
 
 Accurate analyses and short-term forecasts of 
weather conditions can greatly assist the Army in its 
battlespace operations.  Such information can be used 
to predict impact areas of a chemical or biological 
attack, to diagnose atmospheric effects on 
electromagnetic surveillance, and in general to manage 
personnel and materiel in a battlefield. 
 Because of the complexity of atmospheric 
processes and because of a lack of observations, 
producing highly accurate analyses and short term 
forecasts of atmospheric conditions is very challenging.  
The latter problem of a lack of observations is a 
particularly difficult one, as regions in which battlefield 
operations are ongoing are less likely to have routine 
weather observations available. 
 To address this problem and, thus, to enhance the 
Army’s ability to diagnose and predict atmospheric 
conditions, research has been directed towards 
developing an improved analysis technique.  This 
technique, termed the response filter, has shown 
significant improvements relative to simpler techniques 
that are oftentimes applied to this problem. 
 
2. BACKGROUND 
 
 In atmospheric sciences, a multitude of techniques, 
including function fitting (linear interpolation, splines, 
etc.), successive correction methods [e.g., Cressman 
(1959); Barnes (1964)], statistical objective analysis 
(also called optimal interpolation), and variational 
analysis, are used.  As discussed by Askelson et al. 
(2005), function fitting, successive correction methods, 
and statistical objective analysis schemes can be recast 
in terms of one-pass distance dependent weighted 
averaging (OPDDWA).  It can also be argued that if a 
response function can be defined for variational 
schemes, then they too can be recast in terms of 
OPDDWA (Doswell and Caracena 1988).  OPDDWA, 
therefore, is a fundamental objective analysis process. 
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 For one-dimensional data, OPDDWA can be 
expressed as 
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where ( )xfA  denotes the analysis field, No is the 
number of observations used in the analysis, ( )oixf  is 
the observation value at location i, and ( )xxw oiN −  is 
the weight applied to observation ( )oixf , with the 
subscript N indicating that weights are typically 

normalized such that ( ) 1
1
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=

oN

i
oiN xxw  so that the 

average (zeroth harmonic) of the input field remains 
unchanged. 
 The response function is commonly used to 
interpret the effects an analysis scheme has on the 
input.  As shown by Askelson and Straka (2005), for real 
data the response function can be interpreted in terms 
of changes to the amplitudes and phases of the 
sinusoids that comprise the input field.  Because the 
response function provides this information at multiple 
frequencies, it can enhance understanding of the 
properties of an analysis scheme relative to single-
valued measures like root mean square differences and 
mean absolute differences. 
 To illustrate the use of the response function in the 
interpretation of an analysis scheme and to set the 
stage for later illustration, consider Fig. 1.  As is 
apparent in Fig. 1a, the quality of the Barnes analysis 
(dashed line), which is applied using (1) with 
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where dκ  is the smoothing parameter, is affected by the 
distribution of the observations.  This is made clear 
when one compares the Barnes analysis [dashed line; 
fBarnes(x)] to the analysis one would obtain using the 
Barnes scheme if the domain of the observations were 
infinite and continuous [solid line; ftheor(x)].  The situation 
where the domain of the observations is infinite and 
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continuous is optimal in the sense that all possible 
information regarding the observation field is available 
to the analysis scheme.  This situation is never realized, 
of course, and thus analysis schemes must generally 
work with a limited amount of information regarding the 
input field. 
 The reasons why fBarnes(x) is not equal to ftheor(x) are 
illustrated in Figs. 1b,c.  Figure 1b illustrates the 
amplitude modulations for ftheor(x) (dotted line), fBarnes(x) 
(dashed line), and for the response filter analysis (solid 
line), which will be discussed in section 4.  As shown by 
Askelson and Straka (2005), the amplitude modulation 
is the ratio of a wave’s output amplitude to its input 
amplitude.  If the domain of the input field is infinite and 
continuous, the amplitude modulation of the Barnes 
scheme is constant, as shown by the dotted line in Fig. 
1b.  When the domain of the input field is not infinite and 
continuous, however, the amplitude modulation of the 
Barnes scheme depends on analysis location, as shown 
by the dotted line in Fig. 1b.  Because the amplitude 
modulation of the Barnes scheme varies with location 
when the domain of the input field is discrete, the 
Barnes scheme cannot replicate ftheor(x) in this situation.  
Moreover, this variation in amplitude modulation results 
in a distorted post-analysis representation of the input 
wave, which can readily be seen by comparing the 
Barnes analysis on the left side of the domain to the 
Barnes analysis on the right side of the domain and 
noting that the extremes of the analysis field are 
different on the two halves of the analysis domain. 
 Distortion of the analysis field also results from 
phase modulations, which are illustrated in Fig. 1c.  
Phase modulation is the amount by which the phase of 
an input wave is altered by an analysis scheme.  For an 
input field having an infinite and continuous domain, the 
Barnes scheme produces no phase modulation.  When 
the domain of the input field is discrete, however, the 
Barnes scheme produces nonzero phase modulations, 
as shown by the dashed line in Fig. 1c.  These nonzero 
phase shifts are apparent in Fig. 1a in the non-
alignment of the extremes of the Barnes analysis field 
with the extremes of the input field.  Because phase 
modulation is not generally constant across an analysis 
domain, input waves are distorted. 
 Consequently, observation distribution can 
significantly impact the quality of the output of an 
analysis scheme.  It does so by producing amplitude 
and phase modulations that vary with analysis location. 
 
3. FORMULATION OF THE RESPONSE FILTER 
 
 The purpose of the response filter is to explicitly 
incorporate information regarding the distribution of 
observations so as to produce analyses as close to 
those desired [e.g., ftheor(x) in Fig. 1] as possible.  In 
doing so, variations in amplitude and phase modulations 
across the analysis domain (e.g., dashed lines in Figs. 
1b,c) are mitigated. 
 The response filter is based upon the response 
function.  As shown by Askelson et al. (2005), the 
response function for an OPDDWA analysis of one-
dimensional, discrete data is given by 
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where ( )xvWN ,∗  is the complex conjugate of the Fourier 
transform of the normalized effective weight function 
and v is frequency (= 1/wavelength).  As shown by 
Askelson and Straka (2005) and Askelson et al. (2005), 
the corresponding amplitude and phase modulations are 
given by 
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where n is an integer.  The 2πn term is required in (5) 
because ( )1tan −  is 2π periodic and thus, because n is 
not generally known, ( )xvWN ,∗ϕ  is 2πn ambiguous.∗ 

 The approach with the response filter is to dictate 
desired amplitude and phase modulations as a function 
of frequency and to minimize the differences between 
these amplitude and phase modulations and those 
produced by an analysis scheme.  This is accomplished 
using the response filter functional JRF given by 
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where ( )xxww oiNNi

−= , Nk is the number of 

frequencies, 
kM

I  is a user-controlled parameter that 
determines the relative importance placed on matching 
Mk, Mk is the desired amplitude modulation at frequency 
vk, γ is a user-controlled parameter that determines how 
important the second term in JRF is relative to the first 
term, 

kP
I  is a user-controlled parameter that determines 

the relative importance placed on matching Pk, and Pk is 
the desired phase modulation at frequency vk.  The first 
                                                           
∗ For the interested reader, techniques do exist for 
resolving this phase ambiguity.  See, for instance, 
Steiglitz (1982). 
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term on the rhs of (6) is the summation, over frequency, 
of 

kM
I -weighted squared differences between desired 

amplitude modulations Mk and actual amplitude 
modulations ( )xvW kN ,* , which, from (4), depend upon 

both the weights [ ]
oNNN ww ,,

1
K  and the observation 

distribution relative to the analysis location x.  The 
second term on the rhs of (6) is the summation, over 
frequency, of 

kP
I -weighted squared differences 

between desired phase modulations Pk and actual 
phase modulations ( )xvW kN ,*ϕ , which, from (5), again 

depend upon both the weights [ ]
oNNN ww ,,

1
K  and the 

observation distribution relative to the analysis location 
x. 
 Under appropriate conditions, simplifications can be 
applied to ( )xvW kN ,*  and ( )xvW kN ,*ϕ  in (6).  These 

conditions tend be satisfied when one is producing an 
analysis and not trying to compute something like a 
derivative.  In that case, one would not want to move 
waves and thus would set 0=kP .  When phase shifts 
are nearly zero, the first term under the radical in (4) 
tends to dominate the second (especially for waves that 
are retained at a non-negligible amplitude) and 
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where the subscript sp indicates small phase shift.  
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703).  If the magnitude of x is small, then the cubic and 
higher order terms are small relative to the first term in 
the expansion and thus the magnitude of the phase 
modulation is directly related to 

( ) ( )[ ]∑
=

−−
oN

i
oioiN xxvxxw

1
2sin π .  If, in addition 

( ) ( )[ ]∑
=

−−
oN

i
oioiN xxvxxw

1
2cos π  is positive, which is 

typical for low-pass filters (especially for lower 

frequencies), then ( ) ( )[ ]∑
=

−−
oN

i
oioiN xxvxxw

1
2sin π  also 

indicates the correct direction (sign) of the phase shift. 

subsequent analysis, one can form, from (6), what is 
termed the linear response filter functional linRFJ _  given 
by 
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This form of the response filter functional is very useful 
in that it defines a linear least squares minimization 
problem for ( )xxw oiN − .  For this reason, the adjective 
‘linear’ is ascribed to this functional. 
 The linearized response filter (hereinafter lrf) is 
obtained from (8) by obtaining 

[ ] ( )xxwwwJ ojNNNlinRF oN
−∂∂ ,,

1_ K  and setting the result to 

zero.  Denoting xxoi −  as oix′ , this operation produces 
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Algebraic manipulation of (9) results in 
 

  

( ) ( )

( ) ( )

( ),2cos

2sin2sin

2cos2cos

1

1 1

1 1

∑

∑∑

∑∑

=

= =

= =

′=

′′+

′′

k

k

k o

ik

k o

ik

N

k
ojkkM

N

k

N

i
ojkoikNP

N

k

N

i
ojkoikNM

xvMI

xvxvwI

xvxvwI

π

ππγ

ππ

 (10) 

 
which can be further manipulated into 
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This is the general form of the lrf. 
 If in (11) 

kk PM II =  and 1=γ , the lrf simplifies to 
 



 4

  
( )[ ]

( )∑

∑ ∑

=

= =

′=

′−′

k

k

o k

ki

N

k
ojkkM

N

i

N

k
ojoikMN

xvMI

xxvIw

1

1 1

2cos

2cos

π

π
, (12) 

 
where the trigonometric identity 

( ) bababa sinsincoscoscos +=−  has been applied. 
 Equations (11) and (12) contain the free parameter 
j.  Since there are No weights (js), (11) and (12) 
encapsulate No equations for each analysis location x.  
These two sets of equations can be expressed in the 
matrix form BxA =  as 
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where 
 

  
( ) ( )

( ) ( )∑
=









′′+

′′
=

k

k

k
N

k ojkoikP

ojkoikM
ji xvxvI

xvxvI
A

1 2sin2sin

2cos2cos

ππγ

ππ
 (14) 

 
for (11) and 
 

  ( )[ ]∑
=

′−′=
k

k

N

k
ojoikMji xxvIA

1

2cos π  (15) 

 
for (12), with j giving the row index and i giving the 
column index. 
 It is noted that both the number of rows and the 
number of columns in A  are determined by the number 

of weights No.  Thus, A  is always a square matrix.  

Furthermore, A  is symmetric regardless of whether 

(14) or (15) is used because swapping the j and i 
indices does not change either (14) or (15).  Finally, if 
two (or more observations) are collocated, then A  is 

singular and weights cannot be determined using (13).  
In this situation A  is singular for either (14) or (15) 

because two or more rows of A  are equivalent.  This 

equivalence arises because these rows have equivalent 
ojx′  values. 

 When (15) is used, A  has a couple other useful 

properties.  First, in this situation the diagonal elements 
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the set of observations used to obtain analysis values 
remains the same, the frequencies used in ( )xJ linRF _  
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kM

I  remain the same, then 

A  only needs to be computed once to produce an 

analysis. 
 The symmetry of A  and the form of (13) means 

that (13) results from the attempt to find an extremum, 
with respect to the weights 
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Equation (16) is simply an alternate expression of the 
linear response filter functional linRFJ _  (8).  If 

0
2
1

≥NN wAw T  for all possible Nw , then A  would be a 

positive semidefinite matrix.  At this point, however, it 

has not been shown that 0
2
1

≥NN wAw T  for all possible 

Nw .  For positive 
kM

I , 
kP
I , and γ, the lhs of (16) is 

greater than or equal to zero for all possible Nw , 

however, because it is equivalent to linRFJ _ . 
 With the lrf, equations (13) and (14) or (13) and (15) 
are solved at each location where an analysis is 
desired, with the resulting wN subsequently used in (1) 
to obtain the analysis value. 
 Two and three-dimensional versions of the lrf have 
also been developed (Lin 2004).  The mathematical 
development of these versions of the lrf is essentially 
the same as the one-dimensional version, with the 
primary differences being housekeeping associated with 
the extra dimensions.  In the interest of brevity, the 
details are omitted. 
 
4. RESULTS 
 
 An example of the capabilities of the lrf is shown in 
Fig. 1.  In this example, the lrf was constrained to 
produce the amplitude and phase modulations that the 
Barnes scheme would have produced if the observation 
domain were infinite and continuous.  In Fig. 1a, it is 
apparent that the analysis produced by the lrf (plus 
symbols) is much closer to the analysis that would result 
if the observation domain were infinite and continuous 
(solid line).  The reasons for this are shown in Figs. 
1b,c.  As is apparent in these figures, the lrf produces 
amplitude and phase modulations (solid lines) that are 
much closer to those that would result if the observation 
domain were infinite and continuous.  In doing so, it 
greatly reduces the spatial variations in amplitude and 
phase modulations that are present in the Barnes 
analysis.  Consequently, the lrf produces a more 
coherent analysis.  The reason the lrf is superior to the 
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Barnes analysis is the lrf, in minimizing 
[ ]

oNNNlinRF wwJ ,,
1_ K , finds the weights that produce, as 

closely as possible, the desired amplitude and phase 
modulations.  In doing so, the lrf explicitly takes into 
account the distribution of the observations whereas the 
Barnes scheme does not.  Thus, the lrf is an a posteriori 
scheme whereas the Barnes scheme is an a priori 
scheme. 
 Results obtained with the two-dimensional lrf are 
illustrated in Figs. 2 and 3.  The lrf (Fig. 2b) produces a 
more accurate representation of the theoretical result 
(Fig. 2c), which is the analysis that would result if the 
input field were known everywhere, than does the one-
pass Barnes analysis (Fig. 2a).  The reasons for this 
superior performance of the lrf are again the amplitude 
and phase modulations produced by the lrf.  As shown 
in Fig. 3, the lrf produces, across the domain, amplitude 
modulations (Fig. 3b) that are much closer than those of 
the one-pass Barnes scheme (Fig. 3a) to the 0.24 
theoretical amplitude modulation.  In addition, the phase 
modulations of the lrf (Fig. 3d) are generally closer to 
zero than are those of the one-pass Barnes scheme 
(Fig. 3c).  This superior amplitude and phase 
modulation performance results in a more coherent 
analysis.  Interestingly, the lrf, while producing smaller 
variations in amplitude and phase modulations, also 
produces finer-scale variations in amplitude and phase 
modulations.  These result in the somewhat rippled 
appearance of Fig. 2b.  In contrast, the larger-scale 
variations of its amplitude and phase modulations 
results in the one-pass Barnes scheme producing an 
analysis that has larger-scale departures from the 
theoretical result (Fig. 2a). 
 Tests of the three-dimensional lrf have also been 
performed.  Because of the difficulties associated with 
illustrating those tests in a manner similar to Figs. 1-3, a 
single-valued measure of performance is used instead.  
This single-valued measure is the root mean square 
(rms) error, computed here as the difference between 
values obtained using an analysis scheme and those 
that would be obtained if the observational domain were 
infinite and continuous.  It is noted that this measure is 
labeled with the adjective ‘error’ since results obtained 
for an infinite and continuous observational domain are 
those that are desired.  Results for a one-pass Barnes 
scheme and the three-dimensional lrf are shown in Fig. 
4 as a function of scatter number, which is used as in 
Doswell and Lasher-Trapp (1997) and dictates the 
irregularity of the observation distribution.  As Fig. 4 
illustrates, the three-dimensional lrf produces analysis 
fields that are closer to the desired analysis fields than 
the one-pass Barnes analysis fields.  Moreover, as 
scatter number increases and the observation 
distribution becomes more irregular, the performance of 
the lrf, according to this measure, remains relatively 
constant while the performance of the one-pass Barnes 
scheme deteriorates rapidly. 
 Because weight functions like that of Barnes (1964) 
are oftentimes employed in successive correction 
schemes that use multiple passes, the lrf has also been 
tested against those schemes.  In these tests, the 

Barnes weight function is applied to one-dimensional 
data, no background field is used, and the smoothing 
parameter used in the Barnes weight function is held 
constant with each pass.  Then, following Caracena 
(1987), the equivalent one-pass weights are computed.  
The equivalent one-pass weights are the weights that, 
when used in (1), produce the same analysis field in one 
analysis pass as that produced by the successive 
corrections scheme in multiple analysis passes.  These 
equivalent one-pass weights are used, along with (4) 
and (5), to diagnose the amplitude and phase 
modulations of the analysis fields produced by the 
successive corrections scheme.  Finally, a relation 
derived by Pedder (1993) is used to compute the 
amplitude modulations the successive corrections 
scheme would produce if the observational domain were 
infinite and continuous.  These amplitude modulations 
are then used to drive the lrf.  An example of results 
obtained is provided in Fig. 5.  As in the case of the one-
pass analysis tests (Fig. 1), the lrf produces amplitude 
and phase modulations that are much closer to those 
desired than does the successive corrections method.  
Furthermore, because the lrf reduces the spatial 
variability of the amplitude and phase modulations, it 
produces more coherent analyses. 
 In addition to the lrf, a one-dimensional nonlinear 
response filter (hereinafter nrf) that utilizes JRF (6) has 
been developed.  This has been accomplished using 
minpack, a minimization software package for multi-
dimensional nonlinear functions developed at Argonne 
National Laboratory that utilizes a modified Levenberg-
Marquardt algorithm (Marquardt 1963).  An example of 
test results is shown in Fig. 6.  As Fig. 6a indicates, the 
lrf and nrf weights are nearly equal.  The small 
differences in the weights for these two schemes, 
however, do result in differences in amplitude (Fig. 6b) 
and phase (Fig. 6c) modulations.  As illustrated in Fig. 
6b, the lrf and nrf schemes produce amplitude 
modulations that are much closer to those desired than 
does the one-pass Barnes scheme.  The lrf and nrf 
schemes have the greatest difficulty at higher 
frequencies, which results in part because the 

kM
I  and 

kP
I  values are weighted towards lower frequencies in 
this test and in part because these schemes are 
expected to struggle at higher frequencies because of 
the irregularity of the data spacing.  With regard to 
phase modulation, the lrf and nrf schemes also vastly 
outperform the one-pass Barnes scheme, except at the 
highest frequencies (Fig. 6c).  The performance at the 
very high frequencies is not considered to be highly 
detrimental because, as requested, the lrf and nrf 
schemes significantly reduce the amplitudes of the 
waves at these frequencies and thus the phase-shifted 
results in the analyses at these frequencies show up 
with very little amplitude.  In fact, the more significant 
phase shifts for the lrf and nrf schemes likely result 
because these schemes are more successful at 
reducing the amplitudes of waves at these frequencies 
and in doing so increase the likelihood of the numerator 
in (5) becoming larger relative to the denominator and 
thus of phase modulations becoming larger. 
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 Finally, the increased performance provided by the 
response filter comes with a cost.  Timing tests for one-
dimensional analyses having 801 analysis locations 
indicate that the lrf, when used with (14), takes about 
ten times longer than a three pass successive 
corrections scheme.  If, however, the lrf is used with 
(15) and the previously stated conditions for which A  

only has to computed once hold, then the lrf takes only 
about four times longer than a three pass successive 
corrections scheme. 
 
5. DISCUSSION 
 
 The response filter is not necessarily intended to 
replace other schemes that adapt to data distributions, 
like statistical objective analysis, but is meant to be a 
high-quality alternative that can be especially useful 
when implementation of other schemes is difficult.  For 
instance, implementation of the statistical objective 
analysis scheme can be complicated by lack of 
knowledge regarding background and observation error 
covariances and by data that do not satisfy the 
assumptions commonly used in this scheme (Daley 
1991, §4.2, §4.9). 
 It is noted that for both [ ]

oNNNRF wwJ ,,
1
K  and 

[ ]
oNNNlinRF wwJ ,,

1_ K , these functionals are expressed as 

depending only upon the weights and not upon the 
analysis location x, the observation locations 
{ }

oNoo xx ,,
1
K , or elements like 

kM
I  and 

kP
I .  The reason 

for this is that once the analysis conditions (e.g., x, 
kM

I , 
Mk, etc.) are set, the remaining problem is to find the 
weights.  One might argue that these functionals should 
be expressed as depending upon x and { }

oNoo xx ,,
1
K .  

This, in fact, is an excellent argument since how well a 
set of weights is able to replicate the requested 
amplitude and phase modulations depends to a large 
extent upon the distribution of the observations around 
an analysis location.  However, because during an 
analysis observations generally cannot be moved and 
because moving an analysis location defeats the 
purpose of obtaining an analysis value at that location, 
these functionals are expressed as being dependent 
solely on the weights. 
 As stated earlier, the mathematical development of 
the multidimensional lrf is very similar to that for the 
one-dimensional lrf, with only additional housekeeping 
associated with the extra dimensions.  The 
implementation of the multidimensional lrf, however, is 
somewhat more complicated owing to the need to select 
frequencies for constraining the lrf from a 
multidimensional frequency space.  Numerous 
strategies can be employed, including what Lin (2004) 
calls the ‘circle’ and ‘box’ methods for two-dimensional 
analyses and the ‘sphere’ and ‘cuboid’ methods for 
three-dimensional analyses.  The interested reader is 
referred to Lin (2004) for more details. 
 It is important to note that the performance of the lrf 
depends upon the 

kM
I  and 

kP
I .  The results presented 

herein were obtained with 
kM

I  and 
kP
I  values that more 

heavily weight the lower frequencies in (8).  If this 
approach is not followed, then the lrf can produce 
unrealistic analysis values near data boundaries and 
large data gaps.  It is thought that these failures result 
because the lrf is attempting to handle scales for which 
little information is available from the irregularly-spaced 
observations.  This issue remains as a topic for future 
investigation. 
 Tests have shown that the nrf takes longer to run 
than the lrf and occasionally fails to converge to a 
solution.  Furthermore, with the nrf there are the 
additional uncertainties (relative to the lrf) regarding the 
dependence of a solution upon the initial guess and 
regarding whether a local, rather than the global, 
minimum is obtained.  Because of these factors and 
because the lrf and nrf produce very similar results (e.g., 
Fig. 6), development has, and is continuing to be, 
focused on the lrf. 
 Numerous issues remain regarding the lrf.  These 
include the dependence of its efficacy on observation 
distribution irregularity, potential trade-offs between 
performance at one frequency versus another, 
anisotropic application to multidimensional data, and 
performance with more complicated (e.g., real) data 
sets.  Investigations of these issues, via the integration 
of the lrf into analysis subsystems of the Local Analysis 
and Prediction System (LAPS; http://laps.fsl.noaa.gov/) 
for research supported by the Army High Performance 
Computing Research Center AHPCRC), are continuing. 
 
6. CONCLUSIONS 
 
 The following summarize the results of this work: 
 

1) A filter based upon providing desired amplitude 
and phase modulations can be designed even 
for irregularly-spaced data. 

2) The response filter attempts to provide, as 
closely as possible, the desired amplitude and 
phase modulations given the observation 
distribution. 

3) The response filter (both lrf and nrf) can 
provide vastly superior analyses relative to 
single- and multiple-pass successive 
corrections schemes. 

4) The lrf is extensible to multiple dimensions. 
5) The response filter (both lrf and nrf) can 

struggle in situations (e.g., near data 
boundaries or for small-wavelength waves) 
where the observations do not provide 
sufficient information regarding waves of 
interest.  These problems are not specific to 
the response filter, but instead owe to a lack of 
data, for which no scheme can compensate. 
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Fig. 1: (a) Analysis results, (b) amplitude modulations, 
and (c) phase modulations (degrees) for one pass 
Barnes and response filter analyses of a sinusoidal 
input field.  Thick-dashed lines indicate the limits of the 
possible observation locations, xL indicates the left edge 
of the observation domain, xR indicates the right edge of 
the observational domain, and the downward-pointing 
arrows indicate observation locations.  In (a), the input 
field finp(x) is denoted by the dotted line, observations by 
diamonds, the analysis that would result if the 
observation domain were infinite and continuous ftheor(x) 
by the solid line, a Barnes analysis fBarnes(x) by the 
dashed line, and the corresponding linearized response 
filter analysis fresp_filt(x) by the plus symbols.  In (b), 
amplitude modulations for ftheor(x) (dotted), fBarnes(x) 
(dashed), and fresp_filt(x) (solid), are shown.  In (c) are the 
phase modulations for fBarnes(x) (dashed) and fresp_filt(x) 
(solid).  The input field is given by ( )xvAxf ii π2cos)( = , 
with 1=iA  and 51=iv ; the Barnes weight function is 
given by 

( ) ( )[ ] ( )[ ]∑
=

−−−−=−
oN

i
doidoidoiN xxxxxxw

1

22 expexp, κκκ , 

with 2=dκ . 

(a) (b) 

(c) 
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(a) (b) 

(c) (d) 

Fig. 2: One-pass Barnes analysis (a), two-dimensional lrf analysis (b), and theoretical analysis (realized for 
observations on an infinite, continuous domain) (c) for a two-dimensional sinusoidal field sampled at the locations 
indicated in (d).  The input field is given by ( )[ ]yvxuAyxf iii += π2cos),( , with 1=iA , 4/1=iu , and 10/1=iv ; the 
Barnes weight function is given by ( ) =−− yxoioiN yyxxw κκ ,,,

( ) ( )[ ] ( ) ( )[ ]∑
=

−−−−−−−−
oN

i
yoixoiyoixoi yyxxyyxx

1

2222 expexp κκκκ , with 2== yx κκ . 
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(a) (b) 

(c) 
(d) 

Fig. 3: Amplitude modulation at the frequency of the input wave as a function of location for (a) one-pass Barnes 
analysis and (b) two-dimensional lrf analysis; phase modulation at the frequency of the input wave as a function of 
location for (c) one-pass Barnes analysis and (d) two-dimensional lrf analysis.  Values correspond to the analyses 
depicted in Fig. 2. 
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Fig. 4: RMS errors for one-pass Barnes and three-dimensional lrf analyses as a function of scatter 
number, which dictates the degree of irregularity of the observation distribution.  The input field is 
given by ( )[ ]zwyvxuAzyxf iiii ++= π2cos),,( , with 1=iA , 8/1=iu , 10/1=iv , and 15/1=iw ; the 
Barnes weight function is given by ( ) =−−− zyxoioioiN zzyyxxw κκκ ,,,,,  

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]∑
=

−−−−−−−−−−−−
oN

i
zoiyoixoizoiyoixoi zzyyxxzzyyxx

1

222222 expexp κκκκκκ , 

with 93.0=== zyx κκκ .  From Lin (2004). 
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(a) (b)

Fig. 5: Amplitude (a) and phase (b) modulations for a three-pass successive corrections method analysis produced 
using the Barnes weight function (dashed lines) and for the corresponding lrf analysis (solid line).  The amplitude 
modulation for the theoretical analysis field, which would be produced if the observational domain were infinite and 
continuous, is indicated by the dotted line in (a).  The phase modulation for the theoretical analysis field is zero. 
Other symbols are as in Fig. 1.  The input field is given by ( )xvAxf ii π2cos)( = , with 1=iA  and 31=iv ; the Barnes 

weight function is given by ( ) ( )[ ] ( )[ ]∑
=

−−−−=−
oN

i
doidoidoiN xxxxxxw

1

22 expexp, κκκ , with 44.1=dκ .  From Solum 

(2005). 
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Fig. 6: Results for one-pass Barnes, lrf, and nrf 
schemes for analyses at x=5.0 [denoted by the upward-
pointing arrow in (a)] and for a nominal (i.e., before 
observation locations are scattered) observational data 
spacing of 1.0 (nominal nyquist frequency = 1.2).  (a) 
Weights for the one-pass Barnes scheme (boxes), the 
lrf (plus signs), and the nrf (asterisks) at the locations of 
observations used in the analyses (indicated by 
downward pointing arrows at the top of the plot).  (b) 
Requested amplitude modulations Mk (solid line) and 
amplitude modulations of the one-pass Barnes scheme 
(dashed line), the lrf (long dashes), and the nrf (dash-
dotted line) as a function of frequency.  (c) Phase 
modulations of the one-pass Barnes scheme (dashed 
line), the lrf (long dashes), and the nrf (dash-dotted line) 
as a function of frequency.  The requested phase 
modulation is zero at all frequencies. 
 
 

(a) (b) 

(c) 


