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 1.  INTRODUCTION 
 

Verification of quantitative precipitation forecasts 
(QPFs) made by fine-grid numerical models for 
mesoscale convective systems (MCSs) can be prob-
lematic. Traditional verification statistics severely penal-
ize a precipitation system that may have been forecast 
with a small positional error or incorrect shape, with 
resultant low correlation coefficients, high root mean 
square errors (RMSEs), and poor values of categorical 
statistics (Ebert and McBride 2000; Baldwin and     
Wandishin 2002). Numerous approaches have been 
applied to deal with the deficiencies of traditional verifi-
cation methods (e.g., Du et al. 2000; Zepeda-Arce et al. 
2000; Bullock et al. 2004). One such approach is the 
Ebert-McBride technique (EMT), which employs the 
concept of matching individual forecast and observed 
areas (Ebert and McBride 2000, hereafter EM2000). 
The technique utilizes contiguous rain areas (CRAs), 
defined as the areas of contiguous observed and fore-
cast rainfall enclosed within a specified isohyet. A dis-
placement is performed by an objective pattern match-
ing technique to optimally align the forecast with the 
observations. The EMT method was originally applied to 
synoptic-scale precipitation systems over Australia. The 
current study adapts the EMT to warm-season MCSs 
occurring over the central U.S. 

(Rogers et al. 1998) with Betts-Miller-Janjic (BMJ) con-
vective parameterization (Janjic 1994), the Penn 
State/NCAR MM5 model version 3.5 (Grell et al. 1995), 
and the WRF model version 1.3 (Skamarock et al. 
2001). Both the MM5 and WRF were run with no con-
vective parameterization and initialized with a “Hot Start” 
procedure (McGinley and Smart 2001) developed for 
the NOAA Forecast Systems Laboratory, Local Analysis 
and Prediction System (Albers et al. 1996).  
 
2.1  Overview of EMT 
 
 The EMT uses CRAs as a way to determine error 
statistics. These CRAs are made up of the union of ob-
served and forecast rainfall areas which exceed a user-
specified threshold amount. An optimal displacement 
vector is then determined by translating the forecast 
area over the observed area, typically by either maxi-
mizing correlation coefficient or by minimizing the total 
squared error. The forecast is permitted to shift within 
an expanded box enclosing the CRA (the maximum 
distance allowed between the forecast and observed 
areas beyond which it is assumed the two areas are 
unrelated). Several user-defined parameters can be 
adjusted to define the temporal and spatial scale of the 
CRA, the pattern matching process, and how verification 
statistics are calculated. 

    
 The International H2O Project (IHOP) that took 
place from 16 May to 26 June 2002 was designed to 
help improve the understanding and prediction of QPF. 
High-resolution model datasets produced for this project 
offered the opportunity to investigate precipitation fore-
cast accuracy as a function of convective system mor-
phology. Analysis from the EMT objective verification 
measures in concert with an observed morphological 
classification scheme revealed systematic errors for 
certain types of MCSs.  

Figure 1 shows two examples of CRA output from 
0000 UTC 13 June 2002 for the a) Eta and b) WRF 6-h 
forecast of precipitation, respectively, in the upper left of 
each plot; with the smoothed NCEP stage IV 6-h accu-
mulated precipitation product in the bottom left panel. A 
displacement vector (in red) is determined by shifting 
the forecast entity to maximize the correlation coefficient 
between the forecast and observed entities. Various 
measures of error were determined before and after 
displacement (shown to the right in Fig. 1). 

  
2.  EMT BACKGROUND 2.2  Improvements to the EMT 
  
 The EMT was used to evaluate the performance of 
three 12-km models: the NCEP operational Eta model  

The EMT objectifies the intuitive process of pattern 
matching. It is therefore important to choose values of 
parameters that give the best agreement between the 
objective pattern matching and the investigator's visual 
interpretation. One of the advantages of this technique 
is that a variety of arbitrary parameters can be tuned 
based on the needs of the user. The following sections  
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a)

  
 
b) 

 
 

Figure 1. Example of CRA output from the Ebert-McBride technique for the 0000 UTC run of the 12-km a) Eta and b) 
WRF models on 13 June 2002. In both (a) and (b), the 6-h model forecast of rain above the 0.25 inch threshold 
is outlined in purple in the upper left. Displacement vectors (in red) show computed displacement of forecast rain 
area to the northeast for the Eta and to the south-southeast for the WRF. Stage IV 6-h observed rainfall accumu-
lation above the 0.25 inch threshold is outlined in purple in the lower left of both (a) and (b), with the shifted fore-
cast overlaid in magenta. Outer purple box shows the area over which CRA statistics (shown to the right) were 
calculated. The graph in the upper right of both (a) and (b) shows point-to-point verification of the shifted forecast 
rainfall versus observed rainfall. The tables in the center right of both (a) and (b) show various statistical meas-
ures used in the study. The legend in the lower right of (b) shows the thresholds for the 6-h rainfall accumula-
tions. 
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describe the modifications made for the purpose of veri-
fying central U.S. MCSs. 
 

a. CRA rainfall threshold 
 

For 24-h QPF verification, EM2000 used a CRA 
critical rainfall threshold of 5 mm (~0.20 inches) per day 
for the minimum accumulation required for a grid point 
to be considered part of a CRA. For our purposes, a 
critical threshold of 0.25 inches in 6 hours was found to 
work reasonably well at corresponding to small MCSs 
over the central U.S.  
  

This threshold was the most important element for 
the inclusion or division of multiple objects in a CRA. 
Since pattern matching generally requires both a fore-
cast and observed entity, CRAs are model dependent. 
This can make it difficult to individually compare statisti-
cal results from different models. Gallus (1999) found 
that the Eta model using the BMJ convective scheme 
often depicted relatively large areas of contiguous low-
to-moderate rainfall because of the design of the 
scheme. These smoothed patterns do not resemble 
typical observed rainfall patterns during warm season 
convective episodes. An example of this can be found 
by comparing Figs. 1a and 1b. One can see the broad 
area of low-to-moderate rainfall forecast in the Eta ver-
sus the intense, but small, area of rainfall forecast in the 
WRF. An overly broad forecast rainfall area can be re-
sponsible for two or more distinct observed systems 
getting combined into one large CRA.  
 
 b. Critical mass threshold 
 
 The critical mass threshold defines a minimum vol-
ume of rainfall necessary for a system to be identified by 
the EMT. Since our study focused on the first 6 hours of 
a model forecast, we chose a critical mass threshold  
(~3 x 1011 kg) corresponding to a combined forecast 
and observed system producing a minimum of          
0.25 inches of rain in 6 hours over a 40000 km2 area.  
  

In the complete absence of a forecast system, the 
threshold will allow the EMT to identify observed sys-
tems whose spatial scales and intensities match the 
minimum radar-based criteria for a MCS. Every ob-
served system from the primary MCS morphological 
types (discussed in section 3) were matched to a corre-
sponding forecast. Systems with very little or no forecast 
rainfall but enough observed rainfall to meet the CRA 
critical mass threshold were included in the statistical 
analysis and were classified based on radar morphology 
just like any other CRA. Thus, the full spectrum of model 
forecasts to observed events was represented. 
  

c. Search radius 
  

The search radius allows for initially separated 
forecast and observed entities to be matched provided 
they are located within the search radius limit. After 
matching, these two rain areas become a single con-
tiguous area. We chose a search domain of 20 grid 

points (240 km) over which a forecast system could be 
shifted to match an observed one. This was roughly 
equal to the length scale used in defining the critical 
mass threshold.   

 
 d. Pattern matching criterion 
 
 Hoffman et al. (1995) found that minimization of 
RMSE and maximization of correlation coefficient were 
the best methods for determining the fit of a forecast 
pattern to an observed one over a rectangular domain. 
EM2000 found that minimizing the total squared error 
gave the best pattern matches for 24-h QPFs, although 
they noted that maximizing the correlation coefficient 
generally gave similar results. In our study, maximiza-
tion of correlation coefficient and minimization of total 
squared error generally gave similar displacements for 
most CRAs, agreeing with EM2000’s findings. However, 
our tests showed that maximization of correlation coeffi-
cient worked better overall near the edge of the IHOP 
domain. When using total squared error minimization, 
forecast rain areas would typically shift off the verifica-
tion grid instead of matching up with nearby observed 
systems. This type of shifting would result in the lowest 
total squared error calculation, by eliminating half of the 
double penalty (rain in the wrong place, no rain in the 
right place). 
  

Maximizing correlation coefficient resulted in more 
reasonable matches and fewer problems of systems 
being shifted off of the domain. This matching strategy 
allowed the forecast rainfall maxima to be shifted to 
closely align with observed maxima, since correlation 
coefficient maximization matches rainfall gradients. In 
addition, for most cases, the use of correlation coeffi-
cient maximization resulted in little relative increase in 
total squared error. However, use of total squared error 
minimization resulted in much lower correlation coeffi-
cients for smaller CRAs.  

 
 e. Error decomposition 
 
 Forecast errors in rain events can be expressed in 
terms of errors in displacement, intensity, and pattern or 
variability of the rainfall (EM2000). The switch to correla-
tion coefficient maximization instead of total squared 
error minimization was found to occasionally result in 
incorrect residual calculations of displacement errors 
that permitted negative RMSEs to occur. Therefore, a 
new error decomposition method was developed using 
correlation coefficient and mean square error (MSE) 
terms based on Murphy (1995). In that paper, MSE was 
represented as: 
 

2222 )1()()( yoyog srsrsygMSE −+−+−=
    

(1)
 

 
where s represents the standard deviation, and ro is the 
original correlation coefficient between the forecast (rep-
resented by y) and observed (represented by g) rain 
fields before the forecast is shifted by the EMT. Rear-
ranging the second and third terms gives: 
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 The first term is the unconditional bias, or volume 
error (MSEvolume). The second term compares the sam-
ple standard deviations of the forecast and observations 
and is a type of pattern error (MSEpattern). The third term 
contains additional pattern error and the displacement 
error. These can be separated by adding and subtract-
ing r (optimal correlation) in the third term:  
 

)(2)1(2)()( 22
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(3)

 
 
 The third term in (3) represents the shape, or fine 
scale pattern error (MSEpattern), since it includes the dif-
ference between a perfect correlation (r=1) and the op-
timal correlation for the forecast, r. The fourth term in (3) 
represents the contribution of displacement error (MSE
displacement), as it includes the difference in covariances 
before and after shifting the forecast. Combining both 
the second and third terms in (3), the error decomposi-
tion (shown in Fig. 1) can be summarized in eq. (4) as:   
 
MSEtotal = MSEvolume + MSEpattern + MSEdisplacement        (4)   
           
 The error decompositions based on total squared 
error minimization (EM2000) and correlation maximiza-
tion (eq. 3) produced very similar results. CRA verifica-
tion of several thousand 24-h QPFs over Australia with 
both approaches gave mean pattern errors that were 
virtually identical, and differences of only a few percent 
between methods for volume and displacement errors 
(EM2000).  
 
 f. Verification statistics computation 
 
 Usually categorical statistics are computed over 
entire model domains. For an object-oriented technique, 
there is uncertainty over which areas should be used for 
calculating various verification statistics. In this study, 
four verification categories were adjusted. Rain volume, 
maximum rainfall, average rain rate, and number of 
gridpoints exceeding the user-defined threshold were 
previously calculated over the union of the observed, 
original forecast, and shifted forecast regions (EM2000). 
To better describe the characteristics of each individual 
entity, these parameters were computed exclusively 
over the observed and original forecast portions of the 
CRA before any displacement occurs. Only gridpoints at 
or above the CRA rainfall threshold were included in the 
analysis area for each portion (the areas enclosed by 
the purple isohyet in Fig. 1).   
 
 g. Filtering 
 
 It is well-known that models cannot adequately pre-
dict the spatial structure of small scales due to interpola-
tion from finite differencing schemes and parameterized 
horizontal diffusive processes. The minimum resolvable 
feature varies as a function of not only the grid-spacing 
of models, but also the numerics and physics in each 

type of model. Most mesoscale models will generally be 
able to resolve only rainfall features of wavelength at 
roughly five times the grid spacing. Harris et al. (2001) 
showed that the 3-km ARPS model could not resolve 
less than 5 delta waves. Baldwin and Wandishin (2002) 
also found 3-5 delta waves to be the smallest resolvable 
wavelength in the 22-km Eta with the KF parameteriza-
tion and in 10- and 22-km versions of the WRF model. 
However in the 12-km Eta with the BMJ parameteriza-
tion, features less than 200 km were not resolved well, 
which might argue for filtering of 17 delta waves. In the 
present study, we decided that the stage IV observa-
tions should be filtered so that the observed rain areas 
resembled what the majority of the 10-12 km grid spac-
ing models run by FSL during IHOP were able to show 
(Koch et al. 2004). Thus, the stage IV data were remap-
ped to each native model grid and filtered using a low-
pass Lanczos filter (Duchon 1979) to remove wave-
lengths less than 6 delta (72 km). This procedure does 
not remove any mismatch in the variability of the model 
QPFs. As will be shown in section 5e, error measures 
reflect the Eta’s low variability in QPFs compared to the 
MM5 and WRF.  
 
3. CLASSIFICATION OF CONVECTIVE SYSTEMS 
 
 A detailed radar-based morphological analysis of 
observed systems was performed for all CRAs identified 
in the IHOP domain. This was done for the first 6 hours 
of each model run available during the IHOP period. 
The observed system highlighted in the stage IV 6-h 
accumulated precipitation product was cross-referenced 
with an observed system indicated in radar observa-
tions. The radar-based morphology used 2-km NEXRAD 
composite base reflectivity radar imagery with a tempo-
ral resolution of 30 minutes. 
  
We defined a radar-based MCS as a convective system 
containing continuous or discontinuous convective ech-
oes that propagated and/or organized in nearly the 
same manner as other convective echoes within the 
system. We required the minimum MCS criteria to have 
at least 30 dBZ of base radar reflectivity over at least a 
10000 km2 (i.e., 100 x 100 km) area and at least 40 dBZ 
in a 2500 km2 (i.e., 50 x 50 km) area. Both dBZ condi-
tions had to exhibit temporal continuity for at least         
3 hours. Using the Z-R relationships of   Z = 200 * R1.6 

1.4 for stratiform and Z = 300 * R for convective rain, 30 
dBZ corresponds to a rain rate of around 0.10 in/hr with      
40 dBZ corresponding to a rain rate of nearly 0.50 in/hr. 
The following sub-sections describe the definitions used 
for the observed system classification. 
 
3.1  General classification 
 
 The first series of classifications began with a dis-
tinction between linear and non-linear systems for those 
meeting the MCS criteria. Since not all observed sys-
tems identified by the EMT met our radar-based MCS 
criteria, separate categories had to be made for these 
“marginal” systems. The classification scheme included 
seven general types of systems: 
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 a. Continuous Linear (CL) 
  
 A continuous major axis of at least 40 dBZ convec-
tive echoes, of at least 100-km length, which share a 
nearly common leading edge and move approximately 
in tandem. In addition, the major axis must be at least 
three times as long as the minor axis. 
 
 b. Continuous Linear Bowing (CLB) 
 
 In addition to the linear criteria above, a linear bow-
ing system must contain a bulging, convex shape (angle 
greater than 30°) of continuous convective cells with a 
tight reflectivity gradient on the front edge of the convec-
tive region. This shape must be identified for at least  
1.5 hours on radar. 
 
 c. Continuous Non-Linear (CNL) 
  
 If the criteria for a CL or CLB were not met, but the 
system contains a contiguous region of echoes that 
satisfy the minimum size criteria for an MCS, then the 
CNL classification is given. 
 
 d. Discontinuous Areal (DA) 
  
 If the above minimum size MCS requirements were 
not met in a continuous area but were met in an area of 
discrete convective elements, in which no element is 
separated by more than 200 km from another, then the 
DA classification is given. 
 
 e. Isolated Cells (IC) 
  
 If discrete cells were too small, isolated, or lack 
temporal continuity to meet the DA classification, but 
had at least 40 dBZ in a 400 km2 area and at least       
30 dBZ in a 1600 km

 4.  OBSERVED MCS TYPE DISTRIBUTIONS 
2 region, then the IC classification 

is given. It is well-understood that a 12-km model cannot 
fully resolve isolated cell events. 
 
 f. Orographically Fixed (OF) 
  
 If a system remained nearly stationary with respect 
to the western edges of the IHOP domain (the Rocky 
Mountains and Black Hills), then the system was classi-
fied as OF since the mesoscale processes influencing 
these mountain systems may differ from systems over 
the Plains.  
 
 g. False Alarm (FA) 
  
 If none of the above criteria are met, then the ob-
served system in the CRA is classified as a FA. 
  
3.2  Additional Linear Classifications 
 
 For every linear type system (either CL or CLB), 
additional sets of classifications were performed by us-
ing the taxonomy proposed by Parker and Johnson 
(2000) and Bluestein and Jain (1985). First, the ar-

rangement of stratiform rainfall with respect to the con-
vective region was classified according to definitions 
given by Parker and Johnson (2000). Second, a classifi-
cation was made based on Bluestein and Jain's (1985) 
four definitions for squall line development. 
 
 a. Stratiform Classification 
 
 Parker and Johnson (2000) defined three areas 
where stratiform precipitation was present with respect 
to convective precipitation in an MCS. Their three cate-
gories: trailing (TS), leading (LS), and parallel (PS), 
were used in this study. Combinations of these types 
were noted, when both were seen for at least 1.5 hours.  
 
 b. Development Classification 
 
 Bluestein and Jain (1985) defined four types of de-
velopment for a squall line MCS. Their four categories: 
broken areal (BA), broken line (BL), back building (BB), 
and embedded areal (EA) were used in this study. 
  

In the 6-h period over which CRAs were defined 
from accumulated rainfall data, multiple radar-based 
systems might be observed within one larger CRA. 
When this was the case, the system with the greater 
temporal, spatial, and/or rain volume was used to define 
the morphology of the CRA. In other cases, when the 
morphology of a single system changed over time, the 
morphology that occurred over the majority of the 6-h 
period was used to classify the CRA. It is understood 
that defining a single convective morphology for multiple 
radar-based systems will increase the amount of statis-
tical uncertainty. However, it is pertinent to include these 
CRAs in the statistical analysis, since a clearly dominat-
ing type occurred in the vast majority of these cases. 

 

 
 A total of 190 CRAs were identified for the Eta, 164 
for the MM5, and 163 for the WRF during the IHOP pe-
riod. Of the CRAs identified, 7% of Eta systems and 2% 
of MM5 and WRF systems were classified as FA (little 
or no observed rain); 4-5% were classified as OF to the 
Rockies and Black Hills at the western edge of the IHOP 
domain. IC systems accounted for 12% of the CRAs in 
the Eta, 6% in the MM5 and 5% in the WRF. Other than 
to note the number of occurrences, we exclude IC, FA, 
and OF systems (22% in the Eta, 13% in the MM5, and 
12% in the WRF) from further analysis in this study. The 
IC and FA systems were only identified because of fore-
casted rainfall; observations did not show enough rain 
volume to meet the CRA critical mass threshold. The 
focus of subsequent evaluation is on model perform-
ance as a function of the observed system morphology 
of the 148 remaining events for the Eta, 144 events for 
the MM5, and 143 events for the WRF.  
  

Fifty-five (37%) observed cases were classified as 
linear in the Eta, 62 (43%) in the MM5, and 60 (42%) in 
the WRF. Ninety-three (63%) observed cases were 
classified as non-linear in the Eta, 82 (57%) in the MM5, 
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and 83 (58%) in the WRF. Figure 2 shows a histogram 
of general, squall, and development types for every 
identified CRA which met MCS criteria. Of the linear 
systems, 86% were classified as CL, with 14% as CLB.  
Due to the low sample sizes associated with the CLB 
category, these systems have been lumped into the CL 
category for the statistical analysis in section 5. Non-
linear systems were led by the CNL category with 61%, 
followed by DA with 39%.  
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For the stratiform rain area classification, TS domi-

nated with 67% of the linear systems. The TS/PS type 
(generally large systems since stratiform rain occurred 
in both regions) garnered the second highest total with 
16%. The categories of LS, PS, and LS/PS (substantial 
areas of each) all had five or fewer occurrences in each 
model. Little statistical significance of LS, PS and LS/PS 
classifications was found, likely owing to the small sam-
ple size in each of these categories. These results were 
fairly similar to the Parker and Johnson (2000) survey of 
central U.S. linear MCS. They found TS was the domi-
nant mode, though only accounting for 40% of the 
cases. The TS/PS type was second highest with 18%. 
In our study, the other categories of stratiform had 
slightly less of a representation than in the Parker and 
Johnson (2000) study, due to a greater domination of 
the TS type. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Among the development types, BA was the most 
common with 44%, followed by BL with 32%, and then 

BB with 23%. EA had only one (1%) occurrence for 
each model CRA and was, therefore, excluded from 
further study. The results for BA differed greatest from 
Bluestein and Jain (1985) who found these events only 
20% of the time for severe squall line cases in Okla-
homa.  
  

Since the classification scheme is conditioned on 
the observed system, forecasts that miss the event (i.e., 
no or very little precipitation is simulated) are included in 
the dataset. In totaling the number of MCS cases where 
no forecast rain volume existed above the 0.25 inch 
rainfall threshold, there were 19 (13%) cases in the Eta,         
31 (22%) cases in the MM5, and 20 (14%) cases in the 
WRF. Thus, the MM5 had a larger number of missed 
events than the Eta or WRF. 
 
5.  CRA STATISTICAL ANALYSIS 
  

Statistics were calculated for the following parame-
ters:  rain volume, rain rate, maximum grid point rainfall, 
phase displacement, and MSE decomposition. This 
analysis was performed for all of the observed systems 
over the Plains meeting minimum MCS criteria. Errors 
were then examined as a function of the observed sys-
tem morphology. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 Figure 2. Histogram of observed systems (general types, stratiform types for linear systems, and development types   
 for linear systems) for all CRAs identified by the EMT applied to the Eta, MM5, and WRF models. 



All statistical results discussed in this section were 
formally evaluated by a Student’s t-test, a multiple com-
parison analysis of variance (ANOVA) utilizing Tukey’s 
Honestly Significant Difference (HSD) procedure (1953), 
and Levene’s Test for Homogeneity of Population Vari-
ances (1960). These tests determined statistical signifi-
cance at the .05 alpha level. For the t-test, basic as-
sumptions were made regarding adequate sample 
sizes, approximate normality, and that the data compris-
ing each sample were randomly selected from their lar-
ger population. For Tukey’s HSD, assumptions of ap-
proximate normality and nearly equal variances in sam-
ples and populations were made in order to accurately 
perform this test, with deviations noted. Thus categories 
with extreme skewness or many outliers and vastly dif-
ferent sample sizes were excluded from discussion be-
low. Levene’s test was used to determine if population 
variances were not all equal for multiple comparisons. 
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The Student’s t-test determined whether errors be-

tween forecast and observed values were biased for 
each type (e.g., is a mean wet bias in the DA category 
for the Eta truly statistically significant?). Tukey’s HSD 
determined statistical significance of differences in 
mean errors between types in a given model (e.g., if 
both DA and CNL have a statistically significant mean 
wet bias for the WRF model, does one type have a 
greater mean bias versus the other?). This conservative 
test was performed to protect the true alpha level of .05 
during multiple comparisons from the effects of multiplic-
ity (e.g., Wilks 1995; Ott and Longnecker 2001). All 
graphical results are presented by using box plots and 
mean diamonds. The box represents the interquartile 
range, from the 25th to the 75th percentile, and the line 
through this box represents the median. The whiskers 
extend from the 25th and 75th percentiles to the outer-
most minimum and maximum values of the sample 
within 1.5 times the interquartile range. The mean dia-
mond represents the mean (middle line) of the sample 
and 95% confidence intervals (apex of lines).  

 
5.1  Rain volume 

 
The Eta showed a mean dry bias with the CL cate-

gory (as noted in section 4, for the CRA statistical 
analysis this category represents the combination of CL 
and CLB systems) and a mean wet bias for the DA 
category (Fig. 3). The mean bias of the CL category was 
significantly drier compared to the CNL and DA catego-
ries. This confirms that the Eta produces too little rain 
volume for linear systems, and this behavior differs from 
its performance with non-linear systems. We speculate 
that the mean dry bias with linear systems reflects the 
lack of transport of condensate away from more intense 
convective cells (which is not included in the BMJ con-
vective scheme), a process known to be very important 
in the upscale growth of organized linear systems (e.g., 
Rutledge, 1986).   

  
Both the MM5 and WRF showed a mean dry bias 

for all three general types (Figs. 4 and 5). The MM5 had 
no categories that were significantly different from the  

 
Figure 3. Box plots and mean diamonds for errors (fore-

cast – observed) in rain volume (km3) for general 
types in the Eta.  
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Figure 4. Same as in Fig. 3 except for the MM5.  
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Figure 5. Same as in Fig. 3 except for the WRF.  
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other categories. In WRF, the CL category was signifi-
cantly drier than the CNL and DA categories. It should 
be noted that Levene’s test for the assumption of equal 
variances was not passed for the WRF comparison, due 
to the larger spread in the CL category versus the CNL 
and DA categories. However, as in the Eta model, the 
WRF appears to have larger dry biases for linear sys-
tems than non-linear ones.   

0

 
As might be expected since all three models had a 

mean dry bias with the linear category, a dry bias was 
also apparent with the dominant stratiform type, TS.  For 
development types, the Eta had a mean dry bias with 
both the BB and BL categories. The mean for the BB 
category was significantly higher than the BA category. 
However, the assumption of equal variances was not 
validated for this comparison. Dry biases were present 
in the MM5 and WRF for both BA and BL categories. 
Differences in biases were not significant among devel-
opment types for the MM5 and WRF. 
 
5.2  Rain rate   
 

The Eta’s forecast average rain rate (for all CRA 
points above the 0.25 inch threshold) was significantly 
lower than observed for both CL and CNL general cate-
gories. It was also significantly lower for the TS and 
TS/PS stratiform categories and the BB, BA, and BL 
development categories. In addition, the Eta produced 
nearly the same average rain rate for practically all gen-
eral types (Fig. 6), unlike observations (Fig. 7), implying 
the model may not have the capability to differentiate its 
rate of rainfall for highly efficient precipitation systems 
from those with lower efficiency. Gallus (1999) showed 
that the Eta with the BMJ convective scheme was fairly 
insensitive to changes in horizontal grid resolution. He 
speculated that the BMJ scheme was so aggressive at 
drying the atmosphere that small-scale structures more 
likely to be produced in the grid-resolved component of 
the rainfall were often eliminated. Operational forecast-
ers have long noted that the rainfall forecasts from the 
Eta appear to be overly smooth and lack fine-scale 
structure. The current analysis agrees with those obser-
vations.  
 

However, for both the MM5 and WRF, the CL cate-
gory had a significantly higher forecast average rain rate 
than that observed (Figs. 8 and 9). The mean errors of 
the CL category were also significantly higher than the 
DA category. For stratiform types, these same trends 
were noted. Both models had significantly higher aver-
age rain rates than observed in the TS category, a result 
consistent with a failure to develop larger areas of 
lighter stratiform rain (such that the heavier convective 
rates dominated these systems). For development 
types, the MM5 and WRF were both significantly higher 
than observed with the BB category. The MM5 and 
WRF results are in contrast to the much lower average 
rain rates of the Eta forecasts.  
 

These results suggest a systematic rainfall distribu-
tion and amount error arising from problems with predic-  
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Figure 6. Box plots and mean diamonds for forecast 

average rain rate (in/6-h) for general types in the 
Eta.  
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Figure 7. Same as Fig. 6 except for observed average 

rain rate (in/6-h).  
  
 
tion of cold pool dynamics. Weisman et al. (1997) 
showed from three-dimensional midlatitude squall line 
simulations performed at a variety of grid resolutions 
that a delayed strengthening of the cold pool occurs with 
explicit models run at resolutions coarser than 4 km. 
Since the cold pool is crucial to the evolution of an MCS 
into an upshear-tilted mature system, such models can 
be expected to underestimate the trailing stratiform pre-
cipitation region commonly produced by the upshear-
tilted front-to-rear flow, while overpredicting the precipi-
tation in the convective leading line. Both characteristics 
are observed with the 12-km MM5 and WRF models in 
the present study. 
 
5.3  Maximum rainfall 
 

Maximum rainfall was defined as the highest ob-
served amount of precipitation in the model's 12-km grid 
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Figure 8. Box plots and mean diamonds for average rain 

rate errors (in/6-h) for general types in the MM5. 
Figure 10. Box plots and mean diamonds for maximum 

rain rate errors (in/6-h) for general types in the Eta. 
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Figure 9. Same as Fig. 8 except for the WRF. 

 
 

and in the filtered stage IV observed accumulation grid. 
The Eta significantly underpredicted average rainfall 
maxima overall, for all general and development types, 
as well as TS and TS/PS stratiform types. Both the CL 
and CNL categories had greater mean dry biases than 
the DA category (Fig. 10). For the development types, 
the BL category had a greater mean dry bias compared 
to the BA category. 

 
As with the average rain rate category, the Eta was 

very uniform in its distribution of average maximum rain 
rate for each system type. The tendency of the Eta to 
have far smaller average maximum rain rates than ob-
served agrees with Gallus (1999), who showed that the 
use of the BMJ scheme prevented large rainfall 
amounts from occurring with fine grid resolution. When 
the Kain-Fritsch scheme was used instead, Gallus 
(1999) noted that much larger rain rates resulted. He 
showed the maximum rain rates in simulated convective 
systems occurred in regions with large grid-resolved  
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Figure 11. Same as Fig. 10 except for the MM5. 
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Figure 12. Same as Fig. 10 except for the WRF. 
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rainfall components.  a) 
  
Once again the MM5 and WRF results were in stark 

contrast to the Eta (Figs. 11 and 12). Both the MM5 and 
WRF had significantly larger maximum rainfall rates, on 
average, than observed for the CL and CNL types. For 
both models, CL systems had significantly larger wet 
biases than both the CNL and DA types. This trend con-
tinued into the stratiform categories with TS forecasts 
being significantly wetter than observed in both the MM5 
and WRF. For all three development types, the MM5 
and WRF had a mean wet bias. The MM5 and WRF 
also exhibited much more variability with the spread of 
the interquartile range (from the 0.25 to the 0.75 percen-
tile) usually double that of the Eta for most types. Since 
the MM5 and WRF typically underestimated rain vol-
ume, the greater rainfall intensities are consistent with 
much smaller rainfall areas than observed.  

 
 

 b) 
5.4  Phase displacement errors 

 
None of the models displayed a strongly preferred 

direction and magnitude of displacement error vectors, 
for any particular MCS classification except for the CL 
type. All three models exhibited a majority of displace-
ments from the northwest for this type (Fig. 13). These 
systems were likely forecast too slowly by the three 
models (especially MM5 and WRF). This may suggest 
that MM5 and WRF simulated cold pools for squall line 
systems were too weak or delayed, a hypothesis fully 
consistent with the rainfall rate bias problems (under-
prediction of the stratiform rain region, overprediction of 
the rain rates in the convective leading lines) discussed 
in section 5.2. In the Eta, the BMJ convective scheme 
does not directly affect the model environment below 
the sub-cloud layer. This makes the scheme’s behavior 
difficult to correlate to specific observed physical pro-
cesses (Kain et al. 2003). Consequently, linear MCS 
cold pools are not realistically simulated.  

 
 
c) 

 
5.5  MSE decomposition 

 
Given similar observed average rainfall volumes 

between the models’ CRAs, one can test whether a 
certain model had significantly lower or higher average 
MSE than the others for a specific type. The average 
total MSE for the Eta was significantly lower than both 
the MM5 and WRF for the CL (Fig. 14) and CNL general 
types. TS was the only stratiform type to be significantly 
lower in the Eta versus MM5 and WRF. However, the 
test for assumption of equal variances in both the CL 
and TS types failed, since both the MM5 and WRF 
clearly had much larger variances than the Eta.   

Figu

ose systems which 
ad a displacement calculated. 

 

   
re 13. Phase displacement errors for the CL general 
type in the Eta (a), MM5 (b), and WRF (c) models. 
Dots represent direction and magnitude of dis-
placement errors from original to shifted forecast. 
Distribution is only shown for th

For the CL and CNL types, both the MM5 and WRF 
had their largest source of total MSE from pattern er-
rors, followed by displacement errors, and then volume 
errors. The Eta was similar in this distribution for the CL 
type. But for the CNL type, larger errors for pattern were 

 h
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Figure 14. Box plots and mean diamonds for total    

MSE (in2) for the CL type in the Eta, MM5, and 
WRF. 
 
 

followed by volume errors, and then displacement er-
rors. The DA type did not display the same distribution 
as the other three general types; there were no signifi-
cant differences between the types of errors for any of 
the models. The magnitude of errors was nearly equally 
distributed among all decomposition terms for this type.  

 
Pattern error was the largest source of average er-

ror in the MSE decomposition for all three models for CL 
and CNL types. The Eta model was also significantly 
lower in average total MSE for these categories com-
pared to the MM5 and WRF. As mentioned in section 
2g, pattern error is strongly influenced by variability, 
which is a function of the effective model resolution. 
Since the Eta model replicates scales 3 to 4 times larger 
than the MM5 and WRF, the Eta has lower variability. 
All other factors being equal, a model with lower vari-
ability will have lower MSE. The magnitude of pattern 
errors are around twice as large for the MM5 and WRF 
compared to the Eta in the CL type (Fig. 15), similar to 
the magnitude of total MSE. Operational models have 
tended to be designed to produce smoothly varying 
QPFs, despite the preference of some human forecast-
ers for more realistic-looking detail and the increasing 
simulation by research models of finer representations 
of QPF. 

 
6.  CONCLUSIONS 

 
The EMT was modified to optimize detection of 

MCSs occurring over the central U.S. and applied to 
forecasts of convective system rainfall from the 12-km 
Eta, MM5, and WRF models during IHOP 2002. This 
technique allowed for the determination of errors as a 
function of observed convective system morphology, a 
procedure not possible with typical gridpoint-to-gridpoint 
domain-wide verification. No attempts were made to use 
the EMT for determining errors as a function of forecast 
convective system morphology, due to an inability of 

 
Figure 15. Box plots and mean diamonds for displace-

ment, pattern, and volume errors (in2) for the CL 
type with combined results from the Eta, MM5, and 
WRF. 
 
 

12-km models to properly simulate detailed convective 
system characteristics.  

  
Systematic deficiencies were found in these models 

for various types of convective systems, when using the 
error measures supplied by the EMT.  While almost all 
of the differences found in comparing the Eta and the 
MM5/WRF were not surprising, the results as a function 
of the observed convective system morphology provide 
additional insight into the spectrum of MCS errors in 
each model. These results should help modelers in their 
assessments and may have some limited relevance to 
forecasters. For modelers, the error metrics can point 
out certain morphological types where the model has a 
systematic bias or relatively inaccurate forecast com-
pared to other observed types. For forecasters, the util-
ity of these results depends ultimately on an a priori 
knowledge of likely convective system morphological 
evolution, based on conceptual/numerical models and 
experience. Knowing what the numerical model QPFs 
typically depict for a certain type of system, forecasters 
can further confirm or reject their forecast formulated on 
the environmental wind/thermodynamic fields and other 
observations. However, forecasting warm-season con-
vective system morphology is in itself a problematic and 
uncertain process. Thus, the conditional verification 
information provided here will probably be of more use 
as an assessment for modelers, rather than as a fore-
casting tool.   

  
The modified EMT suggested that the Eta underes-

timated rain volume for linear systems and overesti-
mated it for discontinuous non-linear ones, while both 
the MM5 and WRF underestimated volume for all sys-
tems. The Eta also produced average rain rates and 
peak rainfall amounts that were much too light for al-
most all systems, likely due to its typically low-variability 
and overly smoothed QPFs. On the other hand, the 
MM5 and WRF both produced average rain rates and 
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peak rainfall amounts that were higher than observed 
for most linear classifications. These two models were 
dry-biased with rain volume reflecting a large underes-
timate of areal coverage compared to observations for 
linear systems. All three models forecast rainfall too far 
northwest for linear systems. These results suggest a 
systematic rainfall distribution and amount error arising 
from problems with prediction of cold pool dynamics, 
following Weisman et al. (1997). The Eta had smaller 
total mean square errors than the MM5 and WRF for 
both CL and CNL systems, as well as for TS types. The 
smaller errors again likely reflect its tendency to produce 
smoother rainfall fields than the WRF and MM5. For all 
general MCS types (except DA), the largest contributors 
to total MSE were pattern errors, typically followed by 
displacement, and then volume errors.  

  
Overall, the modified EMT suggested various sys-

tematic errors are dependent on convective system type 
and model. No one general type or model was consis-
tently better or worse than the other types. Out of the 
stratiform types, TS systems typically had the same 
biases as those of CL systems. Due at least partly to 
small sample sizes, almost all of the other stratiform 
types were not found to have significant biases. Error 
measures did not consistently differ among the devel-
opment types. It is plausible that processes occurring 
during development operate on scales too small for a 
12-km model to differentiate.  

  
In future work, this technique and observed mor-

phology classification scheme could be used to evaluate 
other models or different versions of the same model. 
The EMT could also potentially be applied to verifying 
human forecasts, in addition to those of numerical mod-
els. Since the National Weather Service has moved into 
the digital forecast era with the National Digital Forecast 
Database (Glahn and Ruth 2003), an object-oriented 
gridded verification could occur between human fore-
casts and numerical models. Questions such as how 
does overall rainfall volume and rate differ from the hu-
man versus model forecast and do human forecasts 
exhibit the same northwest bias for linear MCSs could 
be answered. 

  
The EMT’s flexibility for user-defined parameters in 

object-oriented verification, along with its production of 
several error metrics at once, makes the technique a 
valuable tool in the assessment of forecasts. By devel-
oping a classification scheme based upon the observed 
morphology, the technique can further differentiate its 
error measures, and provide modelers with error infor-
mation for specific types of observed systems. Such 
information may be useful in pinpointing specific short-
comings in model physics or dynamics, allowing for 
more potential improvement in numerical forecasts.   
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