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1 .  INTRODUCTION        * 
 
After several years’ implementation, the en-

semble Kalman filter (Burgers et al. 1998; Even-
sen 1994; 2003; Houtekamer and Mitchell 1998; 
Whitaker and Hamill 2002) was found to be a po-
tential atmospheric data assimilation method for 
both large scale (Houtekamer and Mitchell 2001) 
and small scale (Dowell et al. 2004; Snyder and 
Zhang 2003; Tong and Xue 2005; Zhang et al. 
2004) applications. The most important advantage 
of the ensemble-based data assimilation scheme 
(Anderson 2001; Bishop et al. 2001; Houtekamer 
and Mitchell 1998; Tippett et al. 2003; Whitaker 
and Hamill 2002) is that it provides a practical way 
to calculate and evolve the error statistics by using 
an ensemble to represent the probability density 
function (PDF) of the error and propagating the 
PDF through ensemble forecast (Evensen 1994). 
In the context of convective scale data assimila-
tion, the flow-dependent multivariate background 
error covariances, provided by the ensemble, play 
an essential role, with which dynamically consis-
tent wind, thermodynamic and microphysical fields 
can be retrieved accurately from simulated radar 
radial velocity and reflectivity observations (Snyder 
and Zhang 2003; Tong and Xue 2005; Zhang et al. 
2004). Encouraged by mostly Observing System 
Simulation Experiment (OSSE) results, people 
have been moving toward using real data (Dowell 
et al. 2004; Dowell and Wicker 2004; Houtekamer 
et al. 2005) and exploring the possibility of opera-
tional implementation of this data assimilation 
method. 

In most OSSE studies, only forecast error due 
to uncertain initial conditions was taken into ac-
count, while forecast error due to model deficien-
cies was neglected. However, in real-world appli-
cations, the first challenge might be encountered 
by the ensemble Kalman filter (hereafter EnKF) is 
the model error. The essential part of the EnKF is 
the error covariance, which determines the accu-
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racy of the analysis. Convective-scale data assimi-
lation, which mainly depends on the observations 
from the radar, is more of a retrieval problem, 
since the model state is not directly observed. 
Therefore, multivariate error covariance is more 
important for convective-scale data assimilation.  
The flow-dependent and multivariate covariacnes 
are built up through model evolution of each en-
semble member. Whether they can be determined 
correctly depends on whether the model evolu-
tions are correct. The systematic model error can 
cause the ensemble member not be drawn from 
the distribution that produces truth because the 
model attractor and the system attractor differ 
(Hansen 2002). 

Systematic errors can result from uncertain 
parameters used in the model. One way to ac-
count for the model error of this type is through 
parameter estimation, so that the parameters can 
be more adequately constrained by available ob-
servations. Different techniques, e.g. maximum 
likelihood method (Dee 1995); extended Kalman 
filter (Hao et al. 1995); variational method (Derber 
1989; Yu and O'Brien 1991; Zou et al. 1992) have 
been applied for parameter estimation purpose in 
meteorology. Navon (1992) reviewed the varia-
tional approach via an adjoint model for parameter 
estimation and discussed the issue of parameter 
identifiability. Recently, Crook et al. (2004) applied 
the 4DVAR method to estimate a coefficient of the 
terminal velocity formulation used in their cloud 
model.  

Anderson (2001) first suggested that the EnKF 
can be used for parameter estimation by including 
the model parameters as part of the model state 
and being estimated simultaneously with the 
model state. Annan et al. (2005a) applied the 
EnKF method to simultaneously estimate 12 pa-
rameters in a low-resolution coupled atmosphere-
ocean model with steady-state dynamics, which 
works successfully with identical twin testing. An-
nan and Hargreavers (2004) also successfully ap-
plied this method to perform multivariate parame-
ter estimation in the presence of chaotic dynamic 
with the Lorenz model. More recently, they have 
extended their results to a realistic intermediate 
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complexity atmospheric GCM with both an identi-
cal twin experiment and reanalysis data (Annan et 
al. 2005b). However, in contrast to weather predic-
tion, the climate forecasts depend strongly on 
parameterizations rather than initial conditions 
(Annan et al. 2005a).  Kivman (2003) found that 
the EnKF performed poorly when applied to simul-
taneous state and parameter estimation in the Lo-
renz model. He attributed this to utilizing only two 
statistical moments in the analysis step by Kalman 
filter based method, which is unable to deal with 
highly non-Gaussian probability distribution in the 
parameter space. Aksoy et al. (2005) applied the 
EnKF method to simultaneous estimation of up to 
6 parameters and model state with a two-
dimensional, hydrostatic, non-rotating, and incom-
pressible sea-breeze model. They found that the 
estimation of single imperfect parameters with the 
EnKF is successful, while the results were de-
clined when estimated parameter increased. 

For convective-scale numerical weather pre-
diction, explicit microphysics schemes are used to 
predict the evolution of cloud and precipitation. 
Most cloud model utilize bulk microphysics 
scheme, in which the particle distributions are pa-
rameterized in functional forms. McCumber et al. 
(1991) tested the sensitivity of tropical convective 
system simulation to the change of size distribu-
tion parameters. Ferrier et al. (1995) also did 
some microphysical parameter sensitivity study 
when simulating squall systems in midlatitude con-
tinental and tropical environment. More recently, 
Gilmore et al. (2004) examined the precipitation 
uncertainty of simulated midlatitude multicell and 
supercell due to variations in particle parameters. 
All these studies demonstrated that the structure 
and the evolution of simulated convective systems 
are sensitivity to microphysical parameterization. 
Variations in microphysical parameters, such as 
collection coefficients, drop size distribution pa-
rameters and particle densities, have profound 
effect upon the characteristics of precipitation sys-
tems and their associated dynamical process. 

As indicated by those simulation sensitivity 
studies, microphysical parameterization could be 
an important source of model error for convective 
scale data assimilation and prediction. The pur-
pose of this study is to examine the impact of the 
errors in some of these microphysical parameters 
on the retrieved model state and to determine the 
ability of the EnKF method in correcting these er-
rors through parameter estimation. 

The remainder of this paper is organized as 
follows. Section 2 outlines our ensemble square 
root filter (EnSRF) data assimilation configura-
tions. In section 3, we will describe our parameter 

estimation process. The results of the parameter 
retrieval experiments are discussed in section 4. 
Conclusions and discussions are given in section 
5. 

2 .  DATA ASSIMILATION ENVIRONMENT 

2.1. The Model and the Natural Simulation 
The forecast model and the truth simulation 

are inherited from Tong and Xue (2005, hereafter 
TX05). Briefly, the Advanced Regional Prediction 
System (Xue et al. 2000; Xue et al. 2003; Xue et 
al. 2001), a fully compressible and nonhydrostatic 
atmospheric prediction system is used. The ARPS 
contains 12 prognostic state variables, including 
three velocity components u, v, w, potential tem-
perature θ, pressure p, the mixing ratios for water 
vapor qv,  cloud water qc, rainwater qr, cloud ice qi, 
snow qs and hail qh, plus the turbulence kinetic 
energy used by the 1.5-order subgrid-scale turbu-
lence closure scheme.   

The truth simulation or the nature run is for the 
May 20, 1977 Del City, Oklahoma supercell storm 
case (Ray et al. 1981). The physical domain is 
64×64×16 km3. The grid spacing is 2 km in the 
horizontal directions and 0.5 km in the vertical. A 
sounding of 3300 J kg-1 CAPE (Xue et al. 2001)is 
used to define the environmental condition and a 4 
K ellipsoidal thermal bubble is used to initiate the 
storm. Open conditions are used at the lateral 
boundaries. Free-slip conditions are applied to the 
top and the bottom boundaries. A constant wind of 

3u =  m s-1 and 14v = m s-1 is subtracted from the 
observed sounding to keep the primary storm cell 
near the center of model grid. More detailed infor-
mation about the natural run can be found in 
TX05. The actual sounding used by the truth simu-
lation can be found in Xue et al. (2001) and the 
general evolution of the storm is similar to that 
documented in the same paper. 

2.2. Simulated Radar Data 
We assume that the radial velocity and reflec-

tivity data are available from a WSR-88D radar 
located at the south-west corner of the model do-
main. The WSR-88D radar is assumed to operate 
in standard precipitation-mode, having 14 eleva-
tions with the lowest elevation at 0.5º and highest 
at 19.5º. The maximum range is 230 km. The ef-
fects of the curvature of the earth and the beam 
bending due to vertical change of refractivity are 
taken into account by using the simply effective 
earth radius model discussed in (Doviak and Zrnic 
1993).  
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Following Xue et al. (2005, hereafter XTD05), 
the simulated observations are assumed to be 
available on the original radar elevation levels, i.e., 
the data are on the radar plan position indicator 
(PPI) rather than at the model vertical levels. We 
do assume that on each elevation level, radar ob-
servations are already interpolated from the radar 
polar coordinate to the Cartesian coordinate; in 
another word, the observations are found in the 
vertical columns through the model scalar points. 
A simplified radar emulator that does power-gain-
based sampling in the vertical direction is used to 
interpolate the data from the model vertical levels 
to the radar elevation levels: 
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where eη  and gη  are respectively the elevation 
level and grid point values of either radial velocity 
(Vr) or reflectivity factor (Z in mm6 m-3). ∆z is the 
depth of the layer in which grid point value gη  is 
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following (Wood and Brown 1997), where φw is the 
1 degree beam width. φg is the elevation angle for 
the grid point value and φ0 the elevation at the 
beam center. 

The grid point values of radial velocity involved 
in the numerator of are calculated from 
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where α is the local elevation angle and β the azi-
muth angle of the radar beam that goes through 
the given grid point. u, v and w are the model air 
velocity components interpolated to the scalar 
point of a staggered model grid. wt is the fall veloc-
ity calculated on scalar point. The fall velocity is 
calculated from 
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where ZR, ZS and ZH are the reflectivity factors (in 
mm6 m-3) of rain, snow and hail respectively. wtr, 
wts and wth are the mass-weighted mean terminal 
velocities of rain, snow and hail, which are calcu-
lated using Eq. (11)-(13) of Lin et al. (1983) and 
are consistent with those used in the model’s mi-
crophysics scheme. After Vr is sampled from the 
grid, random error drawn from a normal distribu-

tion with zero mean and standard deviation of 1 m 
s-1 are added as the simulated observation errors.  

The simulated reflectivity factor at grid point is 
calculated from the mixing ratio of rain, snow and 
hail. The same formulations of reflectivity factor for 
rain and snow are used as those in TX05. The 
reflectivity equation of dry hail is also included and 
follows Smith et al. (1975). The transition zone 
from dry to wet hail is defined to be -2.5°C to 
2.5°C. After the values of equivalent reflectivity on 
elevation levels are obtained, they are transformed 
into the commonly used reflectivity, Z, in dBZ 
(Z=10 log10(Ze )). In our system, reflectivity Z, in 
dBZ, is directly assimilated. 

2.3. The EnSRF Data Assimilation Method 
An ensemble square root filter (EnSRF, 

Whitaker and Hamill 2002) is used in this study 
and the actual implementation of the filter for radar 
data assimilation is described in Xue et al. (2005) 
with noted differences. For the control OSS ex-
periment (CNTL), the model is assumed to be per-
fect, i.e., the default values of the microphysical 
parameters in the ARPS are assumed to be the 
true values. The procedure of initializing the en-
semble is different from that in TX05. Spatially 
smoothed perturbations are added to the first 
guess of the initial condition, which is a homoge-
neous environment defined by the sounding. For 
each model variable at grid point (l, m, n), the spa-
tially smoothed perturbation is calculated as 

∑
∈

=
Skji

kjiWkjirEnml
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where ),,( kjir is a random number sampled from 
a normal distribution with zero mean and standard 
deviation of 1. ),,( kjiW is a 3D distance-
dependent weighting function. E is a scaling pa-
rameter to obtain the right standard deviation of 
the perturbation field. The fifth-order correlation 
function (Eq. (4.10) of Gaspari and Cohn 1999) is 
used here to calculate W. The sum is over grid 
points, which are located within the 3D radius of 
influence. The radius of influence is 6km, which 
was chosen based on the correlation length scale 
of errors obtained in TX05. The same correlation 
function and cut off radius are used by the covari-
ance localization. 

After the smoothed perturbations are obtained, 
they are rescaled, i.e., E in Eq. 1 is determined, so 
that the standard deviation equals to that of the 
specified value for each variable. The standard 
deviations of the perturbations are, respectively, 2 
m/s for velocity components, 2K for perturbation 
potential temperature, 0.6 g kg-1 for qv, qr and qh, 
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0.4 g kg-1 for qi and qs, and 0.2 g kg-1 for qc. For 
the mixing ratio of hydrometeors, the perturbations 
are only added within 6km distance from the first 
observed precipitation region in horizontal. They 
are further limited to the vertical levels, where the 
hydrometeors are expected. Negative values of 
perturbed mixing ratios are set to zero. The per-
turbations for velocity components, potential tem-
perature and specific humidity are added to the 
entire domain except the boundary zone. Some 
spurious cells triggered by adding perturbations in 
non-precipitation region can be suppressed by 
assimilating reflectivity everywhere. We found that 
by using the spatially smoothed initial perturba-
tions, the ensemble spread of most model vari-
ables grows within the first 5 min forecast. Perturb-
ing microphysical fields also contributes to larger 
ensemble spread for microphysical variables. Lar-
ger initial ensemble spread results in smaller en-
semble mean rms errors in early assimilation pe-
riod (see green curves Fig. 6). We also found that 
with this new initial perturbation method, updating 
model variables that are indirectly related to reflec-
tivity via observation operation does not hurt the 
analysis at early assimilation period. Therefore, 
with our current assimilation configuration, we do 
not hold the update of those variables when as-
similating reflectivity data as what we did in TX05. 

The same covariance localization procedure 
as that in TX05 and XTD05 are applied here to 
avoid the influence of unreliable covariances at 
large distance from the observations. No covari-
ance inflation is applied here, because the differ-
ence of the analysis rms (root-mean-square) er-
rors caused by covariance inflation is not as large 
as that caused by different realization of the initial 
perturbations, i.e., using different set of initial en-
semble members. We do find some sensitivity of 
the analysis to the realization of the initial pertur-
bations and mostly in the first few cycles, but the 
sensitivity is not as large as that found in Snyder 
and Zhang (2003).  

Forty ensemble members are used. The first 
ensemble forecast start at 20 minutes of model 
time. Ensemble members are integrated for 5 
minutes before the first analysis. Both radial veloc-
ity and reflectivity, including reflectivity in non-
precipitation region, are assimilated in all experi-
ments. 

3 .  THE DESIGN OF THE PARAMETER 
ESTIMATION EXPERIMENTS 

3.1. Microphysics Scheme and Selection of 
Parameters to be Estimated 

 

The ice microphysics scheme in the ARPS is a 
5-class (cloud water, rain, cloud ice, snow and 
hail/graupel) single moment scheme after Lin et al. 
(1983). The scheme assumes that the particle size 
distribution functions for rain, snow and 
hail/graupel have an exponential form: 

( ) ( )xxxx DnDn λ−= exp0 , (6) 
where x represents r (rain), s (snow) or h (hail). 

( )xn D Dδ  is the number of drops per unit volume 

between diameters D and D+δD. xn0  is the inter-

cept parameter, which is the value of xn for D=0. 
The slope parameter, which equals to the inverse 
of the mean size diameter of each distribution, is 
diagnosed as: 
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where xρ is the constant particle density, ρ is the 
air density and xq is the hydrometeor mixing ratio. 

The limitation of the single moment bulk mi-
crophysics scheme is that the intercept 0xn and the 
density xρ  are prescribed constants. It can be 
seen from Eqs. (6) and (7) that for a given mixing 
ratio xq , the larger the intercept or the density, the 
more the hydrometeor spectrum are weighted to-
ward small particles. When performing model 
simulation, adjusting these constant parameters 
can directly impact the bulk terminal velocity and 
the number concentration of species, which result 
in the change of the trajectory of the hydrometeors 
within the cloud and the particle growth rate. 
These changes in the microphysical processes will 
affect the water budgets within the cloud and 
hence the latent heating and hydrometer loading, 
which lead to the change of the buoyancy and 
subsequent updraft and downdraft pattern. 

The limitation of the 3-ice microphysics 
scheme is that the parameterization can not rep-
resent the convective clouds in a variety of large-
scale environments and are not necessarily suit-
able for different precipitation systems. For exam-
ple, the parameterization of LFO83 microphysical 
scheme is formulated for the intense continental 
storms with the presence of high-density hail. The 
3-ice scheme of (Rutledge and Hobbs 1983; 1984) 
is more suitable for oceanic systems, because it 
represents the large precipitating ice in the form of 
graupel. The differences come from either the 
treatment of the microphysical process or using 
different parameters, such as hydrometeor densi-
ties and intercept parameters. 
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The way to treat the microphysical processes 
is not the focus of this study. What we are inter-
ested in is how much our storm-scale data assimi-
lated can be influenced by prescribing those ad-
justable parameters and whether we can correct 
the incorrectly specified parameters by using the 
data, i.e., retrieving the parameters as well as the 
model state with radar observations. The parame-
ters selected for this study are the intercepts of 
rain, snow and hail size distributions, the density 
of snow and the density of hail. Observation and 
sensitivity studies (e.g. Ferrier et al. 1995; Pas-
sarelli 1978) indicate that the coefficients associ-
ated with the formula for hydrometeor fall speeds 
and the collection efficiency parameters are also 
uncertain parameters, which affect the micro-
physical processes significantly. In this study, we 
only focus on the density and the intercept pa-

rameters, partly because they are easier be con-
trolled in the model code. Estimate fall speed and 
collection efficiency parameters could be our fu-
ture work. 

3.2. Parameter Estimation with EnSRF 
 

With the single-moment bulk microphysics 
scheme, the intercept parameters and the bulk 
density of snow and hail are spatially and tempo-
rally constants. The default values of the intercept 
parameters for rain, snow and hail size distribu-
tions in the ARPS are 8×10-2 cm-4, 3×10-2 cm-4 and 
4×10-2 cm-4, respectively, following LFO83. The 
density of rainwater, snow and hail are specified to 
be 1.0 g cm-3, 0.1 g cm-3 and 0.913 g cm-3, respec-
tively (see Table 1). 

 
Table 1 List of experiments and the first guess values of microphysical parameters 

 
Experiments* n0r (cm-4) n0s (cm-4) n0h (cm-4) ρs (g cm-3) ρh (g cm-3) 

CNTL 0.08 0.03 4x10-4 0.1 0.913 
Experiments retrieving or with wrong hail parameters 

In experiment names HNaρb or HNaρbNE, a is the exponent without the minus sign in the in-
tercept parameter, e.g., 4x10-a, and b is the first digit after the decimal point in density. 

HN6ρ9/HN6ρ9NE 0.08 0.03 4x10-6 0.1 0.913 
HN3ρ9/HN3ρ9NE 0.08 0.03 4x10-3 0.1 0.913 
HN4ρ4/ HN4ρ4NE 0.08 0.03 4x10-4 0.1 0.4 
HN3ρ4/ HN3ρ4NE 0.08 0.03 4x10-3 0.1 0.4 

Experiments retrieving or with wrong snow parameters 
In experiment names SNaρb or SNaρbNE, a and b represent the digits after the decimal point in 

the intercept parameter and density, respectively. 
SN007ρ1/SN007ρ1NE 0.08 0.007 4x10-4 0.1 0.913 

SN1ρ1/ SN1ρ1NE 0.08 0.1 4x10-4 0.1 0.913 
SN3ρ1/ SN3ρ1NE 0.08 0.3 4x10-4 0.1 0.913 

SN03ρ4/ SN03ρ4NE 0.08 0.03 4x10-4 0.4 0.913 
SN007ρ4/ SN007ρ4NE 0.08 0.007 4x10-4 0.4 0.913 

Experiments retrieving or with wrong rain parameters 
In the experiment names, RNa and RNaNE, a represents the digits after the decimal 

point in the intercept parameter. 
RN8/RN8NE 0.8 0.03 4x10-4 0.1 0.913 
RN3/RN3NE 0.3 0.03 4x10-4 0.1 0.913 

RN03/RN03NE 0.03 0.03 4x10-4 0.1 0.913 
Experiments retrieving or with three wrong intercept parameters 

RSHNa/ RSHn0aNE 0.30 0.1 4x10-3 0.1 0.913 
RSHNb/ RSHn0bNE 0.30 0.007 4x10-3 0.1 0.913 

* In the experiment names, H, S, R, N and ρ denote hail, snow, rain, intercept parameter and density, re-
spectively. The experiment with the name ending with ‘NE’ means that the parameter estimation or re-
trieval is not performed, and the wrong initial guesses of the parameters are kept throughout the assimila-
tion cycles. The numbers in bold represent initial guesses that deviate from the true values. 
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A number of observational studies indicate 
that the intercept parameters of hydrometeor dis-
tribution can vary widely among precipitation sys-
tems occur in different large-scale environment. 
Also, within a same precipitation system the inter-
cept parameters can vary spatially and with the 
evolution of the system, although in this study we 
do not consider the spatial and temporal variations 
of the microphysical parameters. The hail/graupel 
intercept hn0 , reviewed by Gilmore et al. (2004) 
(Gilmore et al. 2004), ranges from 10-6 to greater 
than 100 cm-4. Observed snow intercept parameter 
n0s varies from 10-3 cm-4 to 100 cm-4 (Braham 
1990; Houze et al. 1979; Houze et al. 1980; Lo 
and Jr. 1982; Mitchell 1988; Passarelli 1978). For 
raindrop spectra, several studies (Joss and Wald-
vogel 1969; Sekhon and Srivastava 1971; 
Srivastava 1971; Waldvogel 1974) demonstrated 
that n0r cannot be a constant as defined by Mar-
shall and Palmer (1948), but is a function of rain-
fall rate. Joss et al. (1968) found that n0r varies 
between 3×10-2 cm-4 and 100 cm-4 (Pruppacher 
and Klett 1978). Sudden change in the raindrop 
spectra, recognized as ‘n0r jump’, were observed 
by Waldvogel (1974), when the precipitation 
changed from one type to another and even when 
the precipitation type remained the same. The 
changes of n0r were attributed to the changes in 
the microphysical processes occurring in the cloud 
system (Pruppacher and Klett 1978).  

In the LFO83 scheme, the term hail is used 
loosely to represent high density graupel, ice pel-
lets, frozen rain and hailstones. According to 
Pruppacher and Klett (1978), the bulk density of 
hail has been found to vary between 0.7 and 0.9 g 
cm-3 and the observed density of graupel ranges 
from 0.05 g cm-3 to 0.89 g cm-3. The term snow in 
the LFO83 scheme is used to represent snow 
crystals, snowflakes and low-density graupel parti-
cles. The bulk densities of snow particles ranges 
from 0.05 to 0.89 g cm-3 (Lin et al. 1983; Prup-
pacher and Klett 1978).  

Based on the above observation studies of 
hydrometeor size spectrum, we designed several 
parameter retrieval experiments (Table 1). In this 
study, we still assume that the true values of those 
microphysical parameters, which are used in the 
CNTL experiment, do not change with space and 
time. No parameter estimation is performed for the 
CNTL experiment. In the parameter retrieval ex-
periments, we picked the first guesses of one or 
some of the five parameters to be different from 
that in the CNTL experiment, but within the range 
of the observed values. For the three intercept 
parameters, we first choose their initial values to 

be commonly an order different from the true 
value, so that the sensitivity and the retrieval re-
sults can be compared directly among them. We 
picked the first guesses of the hail intercept and 
the hail density based on the sensitivity study of 
Gilmore et al. (2004). For snow and rain intercept 
parameters, we also chose other two first guesses 
(a larger and a smaller value than the ‘true’ value), 
which are closer to the ‘true’ value and are more 
often observed. We randomly picked a larger 
value of snow density.  

As mentioned before, the parameter estima-
tion with the EnKF is realized by considering the 
parameters as part of the model state. For each 
ensemble member, the perturbations of the pa-
rameter to be estimated is sampled from a normal 
prior distribution with mean equals to zero. Ideally, 
the initial ensemble spread, i.e. the standard de-
viation of the prior distribution, should represent 
the error of the first guess. Therefore, the standard 
deviation of the prior distribution is specified to be 
the initial error of each parameter. However, the 
initial error is usually unknown in reality. There-
fore, we tested a narrower prior distribution with 
experiment HN6ρ9, in which the hail intercept of 
ensemble members are sampled from a prior dis-
tribution with the one standard deviation width 
equals to ½ of its initial error. 

The uncertainty associated with the intercept 
parameters can be more than an order of magni-
tude. Initial sampling the parameter ensemble 
from a broad prior distribution can easily result in 
unphysical negative values. Any inaccuracy in the 
analysis can also result in negative intercept and 
density. Therefore, the five microphysical parame-
ters are logarithmically transformed and multiplied 
by 10 before the analysis, and then transformed 
back during the forecast step.  

At each analysis step, the covariances be-
tween the parameters and the observations are 
calculated and are used in the update equation of 
the EnSRF. For parameter retrieval purpose, only 
reflectivity data greater than 10 dBZ are used. 
These data are assimilated sequentially.  

An important issue we confronted with the pa-
rameter estimation is the ‘filter divergence’.  The 
tendency of filter divergence is much more pro-
nounced with parameter retrieval than model state 
retrieval because of two reasons. First, at each 
analysis step, 400 (the first cycle) to more than 
4000 (the last cycle) reflectivity observations are 
used to update the parameters, while the data 
used to update the model variables at a certain 
grid point are limited through covariance localiza-
tion. The parameter ensemble narrows quickly by 
the repeated use of the data. Another reason 
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causes the continuous narrowing of the parameter 
ensemble is that they remain constant during the 
forecast step, while errors and ensemble spread 
associated with model state variables grow during 
the forecast step.  

To compensate the infinitely shrinking of the 
parameter ensemble, a minimum standard devia-
tion is pre-specified, so that when the posterior 
standard deviation becomes smaller than the 
minimum value, the parameter ensemble spread is 
adjusted to restore the minimum. A similar vari-
ance inflation procedure was applied in Aksoy et 
al. (2005). However, we found in our case that a 
minimum standard deviation, as small as less than 
5% of the initial standard deviation is required. The 
ensemble spread can decrease to 5% of its initial 
amount within the first two assimilation cycles, be-
cause a large amount of data is used to estimate 
the parameters. The sensitivity of the parameter 
retrieval to the variance inflation procedure will be 
discussed. 

4 .  RESULTS 

4.1. Sensitivity of EnSRF analyses to micro-
physical parameters 
Whether the chosen parameters can be re-

trieved from the observational data depends on 
whether the model output, in the forms of observa-
tions, is sensitive to these parameters. To test the 
sensitivity of the analyzed model state to the five 
parameters that we want to retrieve, we calculate 
the difference between the observations and the 
corresponding analysis projected to the observa-
tions: 

2( )a obs

n
dη η η= −∑ ,  (8) 

where η represents the radial velocity or reflectiv-
ity. The sum is over the data points with observed 
reflectivity greater than 10dBZ, which are the data 
used for parameter estimation. Without the super-
script ‘a’ in the equation, it is actually the observa-
tion term without the weighing coefficient of the 
cost function used in typical variational analysis.  
 The sensitivities to the five individual parame-
ters are calculated from the output of five assimila-
tion experiments, that are, respectively, HN3ρ9NE, 
SN3ρ1NE, RN8NE, HN4ρ4NE and SN03ρ4NE 
listed in Table 1. In the five experiments, the 
wrong initial guesses of the individual parameters 
are kept the same throughout the assimilation cy-
cles and the parameter retrieval is not performed. 
The sensitivity measures how different the results 
of analysis are from the experiment with correct 
parameter values. The relative sensitivities of the 

analyzed reflectivity to the five parameters are 
plotted in Fig. 1. The relative sensitivity is defined 
as dη normalized by that of experiment CNTL. For 
all cases, the first analysis is performed at 25 min-
utes of the truth storm and the analysis cycles end 
at 100 minutes. 
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dη
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Fig. 1. The sensitivity of the analyzed reflectivity 
to the hail intercept n0h (red, corresponding to 
HN3ρ9 but without parameter retrieval), snow in-
tercept n0s (blue, SN3ρ1), rain intercept n0r 
(green, RN8), hail density ρh (pink, HN4ρ4) and 
snow density ρs (orange, SN03ρ4) from data as-
similation experiments with wrong parameters 
and without parameter retrieval. dη defined by 
Eq. (8) is normalized by that of experiment CNTL.  

 
 It can be seen from Fig. 1 that among all five 

parameters, the analyzed reflectivity is most sensi-
tive to n0h, the intercept parameter of hail. The 
analyzed reflectivity is least sensitive rain intercept 
parameter, n0r, and the sensitivity to snow inter-
cept parameter n0s is in-between those of hail and 
rain. Generally, the sensitivity increases with as-
similation cycles for n0h and n0s. In early period of 
assimilation, except for the first analysis cycle, the 
retrieved reflectivity shows larger sensitivities to 
n0h and the density of hail ρh but smaller sensitivi-
ties to n0s and n0r. At the later stage, the reflectivity 
shows larger sensitivities to n0h and n0s and is rela-
tively insensitive to n0r and ρs. The retrieved radial 
velocity (not shown) is much less sensitive to 
these five microphysical parameters than the re-
trieved microphysical fields are, although the sen-
sitivity is still highest for n0h. For this reason, that 
we will not use radial velocity data to retrieve (or 
update) these microphysical parameters. They are 
used, however, to update the state variables. 

When an incorrect value of n0r. or ρh is used in 
the model to perform the data assimilation, the 
ensemble mean forecast and analysis rms (root-
mean squre) errors of all model state variables 
increase (blue curves in Fig. 6, not shown for ρh). 
The qs is most sensitive to the change of hail pa-
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rameters. Less qs in the anvil and more qh aloft are 
found in the ensemble mean analysis when larger 
hail intercept or smaller hail density is used in the 
model (Fig. 2b and 2d) and more qs in the anvil 
and less qh aloft are found in the ensemble mean 
analysis when smaller hail intercept is used (Fig. 
2d). The sensitivity of the precipitation structure to 
the hail intercept and the hail density is similar to 
what was found in Gilmore et al. (2004). Larger 
hail intercept results in higher number concentra-
tions, smaller mean particles sizes of hail and 

smaller terminal velocity and vise versa. The ter-
minal velocity of hail can also be greatly reduced 
by decreasing the particle density. Increasing the 
number of smaller drops and reducing the terminal 
velocity of hail both result in enhanced upward 
fluxes of qh, higher-altitude transport of qh, longer 
residence time of qh aloft, more collection of snow 
in the updraft region and lower amounts of snow 
transported to the anvil region. Larger upward flux 
of qh also leads to smaller qr and qh at the low lev-
els. 

 

0.0

4.0

8.0

12.0

16.0

 (
km

)

X-Z PLANE AT Y=29.0 KM
T=3600.0 s (1:00:00)

qr (g/kg, CONTOUR) MAX=4.558 inc=1.000
qh (g/kg, CONTOUR) MAX=5.248 inc=1.000
qs (g/kg, CONTOUR)  MAX=2.609 inc=0.4000

qr (g/kg, CONTOUR) MAX=5.155 inc=1.000
qh (g/kg, CONTOUR) MAX=5.866 inc=1.000
qs (g/kg, CONTOUR)  MAX=1.444 inc=0.4000

0.0 16.0 32.0 48.0 64.0
0.0

4.0

8.0

12.0

16.0

 (km)

 (
km

)

qr (g/kg, CONTOUR) MAX=4.320 inc=1.000
qh (g/kg, CONTOUR) MAX=4.625 inc=1.000
qs (g/kg, CONTOUR)  MAX=4.283 inc=0.4000

0.0 16.0 32.0 48.0 64.0
 (km)

qr (g/kg, CONTOUR) MAX=4.695 inc=1.000
qh (g/kg, CONTOUR) MAX=5.535 inc=1.000
qs (g/kg, CONTOUR)  MAX=1.961 inc=0.4000

(a) (b)

(c) (d)

 
Fig. 2. Vertical cross section of qr (red, with intervals of 1 g kg-1), qh (blue, with intervals of 1 g kg-1) 
and qs (green, with intervals of 0.2 g kg-1) through the point of domain-wide maximum vertical veloc-
ity of the ensemble mean analysis at 60 min for (a) CNTL, (b) HN3ρ9NE, (c) HN6ρ9NE, and (d) 
HN4ρ4NE. The last three experiments use incorrect microphysical parameters without parameter 
estimation. 

 
Snow, cloud ice and cloud water are the three 

species that are most sensitive to the changes in 
the intercept parameter and density of snow. 

Other model state variables, including qr and qh 
are relatively insensitive to these parameters (c.f., 
blue curves in Fig. 7). We can see from Fig. 3 that 
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the model storm has systematically more/less 
snow and less/more cloud water and ice (Fig. 3b 
and 3c) when larger/smaller snow intercept pa-
rameter is used. The snow distribution becomes 
more heavily weighted toward smaller particles 
and the bulk terminal velocity decreases when the 
intercept parameter of snow is increased. In the 
model, the accretional growth of snow through the 
interaction of snow with cloud water and ice are 

proportional to the snow intercept parameter. 
Therefore, the snow content increases by accret-
ing more cloud water and ice when snow intercept 
parameter increases. With smaller terminal veloc-
ity due to larger n0s, the centroid of qs is located at 
higher altitudes (see Fig. 3b and 3c). The two ac-
cretion terms in the model are inversely propor-
tional to the snow density, therefore, larger snow 
density leads to less snow content (Fig. 3d). 
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Fig. 3. Vertical cross section of qc (red, with intervals of 0.5 g kg-1), qi (blue, with intervals of 0.4 
g kg-1) and qs(green, with intervals of 0.4 g kg-1) through the maximum vertical velocity of the 
ensemble mean analysis at 60 min for (a) CNTL, (b) SN3ρ1NE, (c) SN007ρ1NE and (d) 
SN03ρ4NE at 60 min. Panels (b) – (d) are for the experiments with incorrect parameters with-
out parameter estimation. 

 
Larger/smaller rain intercept parameter results 

more/less rain (compare Fig. 4 with Fig. 2a). Tem-
perature and vertical velocity are more sensitive to 
the changes in the rain intercept parameter than to 
the changes in the snow parameters (blue curves 
of Fig. 7c and 7d, and Fig. 8c and 7d). Larger in-

tercept parameter of rain results in more raindrops 
with smaller sizes, which contributes to stronger 
downdraft and low-level cold pool via evaporation. 

 
4.2. Results of Experiments Retrieving Single 

Parameters 
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First, we performed ten experiments, in which 
the five parameters are initialized with wrong val-
ues and estimated individually. In each of these 
experiments, only the parameter that is to be esti-
mated is perturbed among the ensemble members 
around its first guess value and updated using the 
reflectivity data; all other parameters are kept at 

their true values. Fig. 5 shows the time series of 
the ensemble mean (red curves) and the standard 
deviation (blue curves) of the estimated parame-
ters alone with their true values (black lines) dur-
ing the 80 minutes of assimilation. The values at 
20 min indicate the prior distributions of these pa-
rameters.
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Fig. 4. As Fig. 2, but for experiments (a) RN8NE and (b) RN03NE, that have incorrect values of rain 
intercept parameter. 

 
As can be seen from Fig. 5a, the estimated 

hail intercept of experiment HN3ρ9 reaches the 
true value at the end of the third assimilation cycle 
and then oscillates around the true value in the 
rest of the cycles. The estimated hail intercept ap-
proaches the true value slower in experiment 
HN6ρ9 and even more so when the initial prior 
distribution is narrower. For the hail intercept pa-
rameter retrieval experiments, the minimum stan-
dard deviation specified here is 0.35 in logarithmic 
units. The rate of convergence towards the truth 
for this parameter is comparable to those of the 
ensemble mean rms errors of most model state 
variables. The errors of the estimated hail inter-
cept from these three experiments are around 

0.0001 cm-4 when converted back to its original 
units, where the true hail intercept parameter is 
0.0004 cm-4. The estimated model state is gener-
ally insensitive to this amount of parameter error, 
as shown by Fig. 6 that the rms errors of most 
state variables (red curves) are almost indistin-
guishable from those of CNTL experiment (black 
curves) that uses true parameters.  Ideally, the 
posterior ensemble spread of the parameter pro-
vides a good measure of the parameter error. Ob-
viously, the error here is underestimated by the 
posterior ensemble spread. A larger pre-specified 
minimum spread will result in larger oscillations 
around the truth in the estimated parameter, which 
will be discussed in more detail later.  
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Fig. 5. Time series of ensemble mean (red curves) and standard deviation (blue curves) of the en-
semble of estimated parameters from single-parameter retrieval experiments (a) 10log(n0h) from 
HN3ρ9 (the one has the larger initial guess), HN6ρ9 (the one has the smaller initial guess) and 
HN6ρ9b (the same as HN6ρ9, but with smaller initial spread) (b) 10log(ρh) from HN4ρ4 and 
HN4ρ4b (the same as HN4ρ4, but with larger pre-specified minimum standard deviation) , (c) 
10log(n0s) from SN3ρ1 (the one has the largest initial guess), SN1ρ1 and SN007ρ1 (the one has 
the smallest initial guess), (d) 10log(ρs) from SN03ρ4, (e) 10log(n0r) from RN8 (the one has the 
largest initial guess), RN3, RN03 (the one has the smallest initial guess) and (f) the same as (c) but 
with different realizations of the initial random perturbations to the parameter.. The true values of 
the parameters are shown as straight black lines, 
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Fig. 6. The rms errors of ensemble-mean forecast and analysis, averaged over points at which the true re-
flectivity is greater than 10dBZ for (a) u, (b) v, (c) w, (d) 'θ , (e) 'p , (f) qc, (g) qr, (h) qv (the curves with lar-
ger values) and qi (the curves with lower values), (i) qs and (j) qh, for experiment CNTL (black), HN3ρ9 
(red), HN3ρ9NE (blue) and the ensemble spread of CNTL (green). Units are shown in the plots. The drop 
of the error curves at specific times corresponds to the reduction of error by analysis. 

 
We performed three parameter retrieval ex-

periments with three different initial guess values 
for snow and rain intercept parameters. One of the 
experiments, SN3ρ1 or RN8, has an initial guess 
one order of magnitude different from the true 
value, so that it can be easily compared with the 
retrieval experiment for the hail intercept parame-
ter HN3ρ9, but this value is rarely observed for 
snow or rain. The other two experiments, SN1ρ1 
and SN007ρ1 for snow intercept parameter or 
RN3 and RN03 for rain intercept parameter, have 
their first guesses set to more realistic values. The 
pre-specified minimum standard deviation is 0.35 
for the snow intercept and 0.5 for the rain intercept 
in logarithmic units. It can be seen from Fig. 5c, e 
that with the same magnitude of initial errors, the 
retrieved snow and rain intercept parameters con-
verge more slowly than the hail intercept parame-
ter. This is consistent with our earlier sensitivity 
analysis; initially, the retrieved model state is not 
very sensitive to n0s and n0r therefore the retrieval 
of them is difficult We can also see that the re-
trieved n0s in all three experiments first arrives at 
values that are lower than their first guesses (Fig. 
5c) while the retrieved value of n0r first rise above 
their first guess values (Fig. 5e). Such behaviors 
are found to be related to the initial sampling er-
rors. A repeat of the same set of experiments for 
n0s, i.e., experiments SN3ρ1, SN1ρ1 and 

SN007ρ1, but with different realizations of the ini-
tial random perturbations to the parameter can 
result in different evolutions of the retrieved values, 
as seen in Fig. 5f; the retrieved parameter eventu-
ally converges to a value that is close to the truth 
in all cases, however. 

The error of the retrieved n0s is around 0.01 
cm-4 after the estimation converges, while the true 
value is 0.03 cm-4. The model state analysis is not 
sensitive to this amount of error, as can be seen in 
Fig. 7; the retrieved model variables are as good 
as those of CNTL starting from 45 min or the fifth 
cycle. The error of the retrieved n0r is around 0.03 
cm-3 for experiment RN8 while the truth value is 
0.08 cm-3. The errors of most retrieved state vari-
ables are comparable to those of CNTL starting 
from 70 min, except for qv whose errors are still 
smaller than those when no parameter estimation 
is performed (Fig. 8). When the initial errors in the 
snow or rain intercept parameters are less than an 
order of magnitude, the impact of the parameter 
estimation on the model state retrieval is limited, 
because the analysis is relatively insensitive to 
small errors in these parameters. Even though all 
retrieved parameters are closer to their true values 
than their initial guesses, whether the retrieved 
model state is improved at the end of assimilation 
cycles depends on the rate of convergence of 
these retrieved parameters towards their true val-
ues. The convergence rate, on the other hand, is 
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found to be very sensitive to the realization of the 
initial random perturbations to the parameters (see, 
Fig. 5c and 5f). 

Both retrieved hail and snow densities, ρh and 
ρs, approach their true values very quickly (Fig. 5b 
and 5d) in the single-parameter retrieval experi-
ments. The pre-specified minimum spread for 
snow density is 0.3 in logarithmic unit. The error of 
the retrieved ρs after convergence is less than 
0.015 g kg-1, which is very low. The rms error of 
the retrieved model state is indistinguishable from 
that of CNTL (not shown). For ρh, we tried two 
minimum standard deviations, a smaller one of 0.1 
and a larger one of 0.35 in logarithmic units. It can 
be seen from Fig. 5b that with the larger minimum, 
the retrieved ρh shows large oscillations around 
the true value. This kind of oscillations was also 
seen in the retrieval experiments for other parame-

ters. The model state retrieval with the smaller 
minimum is also as good as the CNTL (not 
shown). With the larger minimum, the retrieved 
model state is still very good except for qv, qs and 
qh (Fig. 9). A large increase in ensemble mean rms 
forecast error in qh can be seen at 50, 65, 80 and 
95 minutes (Fig. 9j), which is caused by the re-
trieved ρh being much larger than the truth at 45, 
60, 75 and 90 minutes (Fig. 5b). Since our stan-
dard deviation restoration procedure for the pa-
rameters is somewhat artificial, the specification of 
the ensemble spread thresholds require some 
care. A larger threshold can result in significant 
oscillations of the retrieved parameter. Too smaller 
a threshold can lead to slow convergence. Often, 
numerical experiments are required to arrive at the 
most suitable thresholds. 
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Fig. 7. As Fig. 6 but for experiments CNTL (black), SN3ρ1 (red) and SN3ρ1NE (blue). The ensemble spread 
curves for CNTL are not plotted. 

 
 



Extended abstract, 17th Conference on Numerical Weather Prediction 
August 1-5, Washington DC 

 14

0.0

2.0

4.0

6.0

20 40 60 80 100
0.0

2.0

4.0

6.0

20 40 60 80 100
0.0

2.0

4.0

6.0

20 40 60 80 100
0.0

1.0

2.0

3.0

20 40 60 80 100
0

20

40

60

80

20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

20 40 60 80 100

t (min) t (min) t (min) t (min) t (min)

t (min) t (min) t (min) t (min) t (min)

u (m/s) v (m/s) w (m/s) θ' (K) P (Pa)

qc (g/kg) qr (g/kg) qv, qi (g/kg) qs (g/kg) qh (g/kg)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

 
 

Fig. 8. As Fig. 7 but for experiments CNTL (black), RN8 (red) and RN8NE (blue). 
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Fig. 9, As Fig. 7 but for experiments CNTL (black), HN4ρ4 (red) with pre-specified minimum standard 
deviation of 0.35 in logarithmic unit, and HN4ρ4NE (blue) 

 
To understand how the microphysical parame-

ters are retrieved from reflectivity data, i.e., to ex-
amine the issue of parameter identifiability (Navon 
1997), we calculate the error correlation coeffi-
cients between each individual parameter and the 
forecast reflectivity. It is the cross correlation be-
tween the parameter and the forecast reflectivity 
that determines how the parameter can be ad-
justed from the reflectivity observations.  

Significant and meaningful correlation coeffi-
cient can be found between the forecast reflectivity 
and n0h, ρh, n0s and ρs (Fig. 10). The color shades 
in Fig. 10a and c show the observed reflectivity at 
the first radar elevation. The echoes of the right 
cell are located 40 to 70 km away from the radar. 
Based on the radar geometry, the reflectivity at the 
first elevation level represents the precipitation 
between surface and 1.5 km AGL. The reflectivity 
at the seventh elevation level (Fig. 10b and 10d) 
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represents the precipitation between 4 and 9 km 
AGL. It can be seen from Fig. 10a and 10c that a 
negative/positive correlation coefficient between 
reflectivity and n0h/ρh is found at low level heavy 
precipitation region. A positive/negative correlation 
coefficient center between forecast reflectivity and 
n0h/ρh is located at the transient region between 
the updraft and anvil (Fig. 10b and 10d). This is 
consistent with the sensitivity of the analysis to 
these two parameters. Larger n0h or smaller ρh 
results in less qr and qh at low levels, leading to 
higher reflectivity. The reflectivity is therefore 
negative correlated with n0h and positively corre-

lated with ρh. At the middle levels, larger n0h or 
smaller qh results in more qh being transported to 
high altitudes, leading to higher reflectivity at the 
updraft-to-anvil transient region. The reflectivity in 
the transient region is therefore positively corre-
lated with n0h and negatively correlated with qh. At 
the higher altitude anvil region, the reflectivity and 
n0h are negatively correlated (Fig. 10b), because 
larger hail intercept parameter leads to smaller qs 
and therefore smaller reflectivity there. Significant 
correlation coefficients between reflectivity and the 
snow intercept parameter and snow density are 
also found in the anvil region (Fig. 10e and 10f). 
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Fig. 10.  Forecast error correlation coefficients at intervals of 0.1, between reflectivity and (a) n0h on  
the 1st elevation level from HN3ρ9, (b) n0h on the 7th elevation level from HN3ρ9, (c) ρh on the 1st 
elevation level from HN4ρ4, (d) ρh on the 7th elevation level from HN4ρ4, (e) n0s on the 6th elevation 
from SN3ρ1, (f) ρs on the 6th elevation level from SN03ρ4,  calculated from the ensemble at t = 70 
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4.3. Results of Multiple Parameter Retrievals  
 

It was shown in the last section that the five 
microphysical parameters can be retrieved rea-
sonably well individually from the radar reflectivity 
data together with the model state variables. In this 
section, we further explore the ability of the EnKF 
in simultaneously retrieving more than one pa-
rameter. Four experiments are presented here for 
this purpose. First, the two parameters defining the 
hail size distribution (HN3ρ4) then the two parame-
ters defining the snow size distribution (SN007ρ4) 
are estimated, in separate experiments. Then, the 
three intercept parameters are estimated simulta-
neously, starting from two different combinations of 
their first guesses  

For the two-parameter case HN3ρ4 , the com-
bination of the first guesses of the hail intercept 
and the hail density is for a storm with the pres-
ence of moderate-density graupel rather than high 
density hail (see Table 1). The ‘true’ storm is a 

typical mid-latitude continental storm producing 
mainly high density hail. It can be seen from Fig. 
11a and 11b for experiment HN3ρ4 that the re-
trieved hail intercept parameter approaches the 
true value at the eighth assimilation cycle. The es-
timated hail density first deviates to values much 
higher than the true value but is gradually drawn 
back and reaches the true value during the last two 
assimilation cycles. The parameters approach their 
true values much slower than when they are re-
trieved individually. The retrieved model state is 
much better than the case without parameter esti-
mation (see the red and blue curves in Fig. 12), but 
is not as good as that from CNTL or the corre-
sponding experiments retrieving single parameters. 
Similarly, the intercept parameter and density of 
snow can also be simultaneously retrieved from 
reflectivity data (Fig. 11c and 11d) and the re-
trieved model state in this case is generally better 
than the case with incorrect parameters. 
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Fig. 11. As Fig. 5, but (upper panel) for experiment HN3ρ4 (a) 10log(n0h) , (b)10log(ρh) and (lower 
panel) for experiment SN007ρ4 (c) 10log(n0s) and (d)10log(ρs). 
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Fig. 12. As Fig. 6, but for experiments CNTL (black), HN3ρ4 (red) and HN3ρ4NE (blue). 
 
In the first three-parameter retrieval experi-

ment, the three intercept parameters start from first 
guesses that are larger than their true values 
(RSHNa, Table 1). The retrieval results are shown 
in Fig. 13. It can be seen that the intercept parame-
ters of both hail and rain can be estimated cor-
rectly, but at a slower rate. The retrieval of the 
snow intercept parameter is, however, not suc-
cessful. The structure of correlation coefficient be-
tween hail intercept parameter and forecast reflec-
tivity is similar to that of single-parameter retrieval 
experiment HN3ρ9, but the maximum value of the 
correlation coefficient is smaller (not shown). No 
significant correlation is found for the intercept pa-
rameter of snow, explaining the failure of retrieval. 
Despite this problem, the retrieved model state is 
still improved over the case where none of the 
three intercept parameters are corrected via re-
trieval, but it is worse than that of CNTL.  

In the other experiment that tries to retrieve the 
three intercept parameters (RSHNb, Table 1), the 
initial guess of the snow intercept parameter is set 
to 0.007 cm-4, smaller than the true value of 0.03 
cm-4. It is otherwise the same as RSHNa.  With this 
set of initial guesses, none of the three parameters 
can be correctly retrieved. Their values occasion-
ally approach the level of true value and but stay 
away from it most of the other times (not shown). 
The reason for this failure will be investigated fur-
ther. 

 

5 .  SUMMARY AND DISCUSSIONS 
 

In this study, we first examined the impact of 
errors in several uncertain parameters in the ice 
microphysics scheme used in the ARPS model, on 
the retrieval of the model state for a simulated su-
percell thunderstorm. We then explored the possi-
bility of correcting this type of model errors through 
simultaneous retrieval of these uncertain parame-
ters as well as the model state using an ensemble 
square-root Kalman filter (EnSRF). Radar reflectiv-
ity data are used for the parameter retrievals. The 
microphysical parameters examined include the 
intercept parameters of assumed drop size distri-
butions (DSDs) for rain, snow and hail, and the 
densities of hail and snow.  

The EnSRF performs very well when retrieving 
a single error-containing parameter. The times for 
the parameters to approach their true values de-
pend on the specific parameter to be retrieved. 
Generally, a parameter is easier to retrieve when 
the model output is more sensitive to the parame-
ter. The analyzed model state is most sensitive to 
the parameters of hail DSD; hence the hail inter-
cept parameter and hail density are the most re-
trievable among the five parameters. The analyzed 
model state, when the hail intercept parameter and 
density are properly retrieved, is as good as that of 
the experiment with perfect parameters. The snow 
density, and the snow and rain intercept parame-
ters can also be successfully retrieved from reflec-
tivity data, even though the model output is less 
sensitive to these parameters. Significant and 
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physically meaningful spatial error correlations 
were shown to exist between the retrieved micro-
physical parameters and the model reflectivity out-
put, and such correlations play a key role in suc-
cessful parameter estimation. 

 

-70

-54

-38

-22

20 40 60 80 100

-30

-22

-14

-6

2

10

20 40 60 80 100

-20

-12

-4

4

12

20 40 60 80 100

t (min)

t (min)

t (min)

10
lo

g(
n0

s 
(c

m
**

-4
))

10
lo

g(
n0

h 
(c

m
**

-4
))

10
lo

g(
n0

r 
(c

m
**

-4
))

(a)

(b)

(c)

 
Fig. 13. As Fig. 6, but for experiment RSHNa. (a) 
10log(n0h), (b) 10log(n0s), and (c) 10log(n0r). 
 
It is found that the parameter retrieval is very 

sensitive to the realization of initial perturbations 
sampled for the initial parameter ensemble. This is 
mainly caused by the limited ensemble size used 
here. The random variations in the initial sampling 
can directly affect the rate at which the parameter 
converges to the true value, and in some cases 
even the success or failure of the retrieval. The 
amount that the retrieved model state can be im-
proved by the parameter estimation highly de-
pends on the rate of convergence of the retrieved 

parameter, because when the convergence is 
slow, most of the analysis cycles are then per-
formed with the wrong values of the parameters. 
This is especially important for the snow and the 
rain intercept parameters, because the realistic 
ranges of these two parameters are not as wide as 
that of hail intercept; even with the same magni-
tude of errors in the parameters, the model output 
is less sensitive to the intercept parameters of 
snow and rain DSDs. 

It is also found that the results of parameter re-
trieval are very sensitive to the variance-inflation 
procedure applied to the retrieved parameters. The 
specification of both the width of initial prior distri-
bution and the imposed minimum variance thresh-
old can affect the convergence rate and the accu-
racy of the final parameter estimate. In our case, 
rather small minimum variance thresholds are 
needed and larger variances can cause large oscil-
lations around the true value in the retrieved pa-
rameters. The need for parameter variance infla-
tion is because that a huge number of reflectivity 
data, taken from the entire storm body, is used to 
estimate single or few parameters. The correlation 
information determines the direction to which the 
parameter should be adjusted, while the variance 
determines the amount of adjustment. If a major of 
the data provides the same direction of adjustment, 
the application of adjustments due to many data 
quickly diminishes the ensemble spread of the re-
trieved parameter. On the other hand, constantly 
inflating the variance can cause overadjustment, 
leading to large oscillations around the truth. A bet-
ter, optimal, procedure is needed to make the evo-
lutions of the error and ensemble spread consis-
tent during the analysis. This will become more 
important when we start to deal with real data, 
where the truth is unknown. 

The results of multiple parameter retrievals are 
generally not as good as those of single-parameter 
retrieval, not surprisingly because of the added 
errors in the initial guesses of the parameters. The 
two parameters defining the hail or the snow distri-
bution, i.e., the intercept parameter and density, 
can be simultaneously retrieved sucessfully from 
the reflectivity data. The retrieval of the hail pa-
rameters may be especially important for storm-
scale NWP and data assimilation, because 
hail/graupel can significantly influence the quantity 
and type of precipitation in many types of mid-
latitude storms (Gilmore et al. 2004). When all 
three intercept parameters contain errors and are 
simultaneously estimated, the retrieval results are 
very sensitive to the initial guesses of the parame-
ters. 
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Fig. 14. As Fig. 6, but for experiments CNTL (black), RSHNa (red) and RSHNaNE (blue). 
 

The sensitivities of the analysis and fore-
cast to the microphysical parameters, and 
therefore, the identifiability of these parame-
ters, are probably case dependent and may 
differ for different types of convective systems. 
In this study, we applied the parameter esti-
mation to a supercell storm only. Some pa-
rameters may be more retrievable with other 
convective systems, such as the squall line 
systems that contain both vigorous convection 
and the stratiform precipitation regions. Other, 
such as the dual-polarization, data, may be 
very helpful for microphysical parameter re-
trieval. Work in assimilating polarimetric Dop-
ple radar data using EnKF is in progress (Jung 
et al. 2005). 

We should point out that currently we con-
sidered only the uncertainties in the micro-
physical parameters in the model. The five 
parameters retrieved are actually also involved 
in the observation operators of reflectivity. In 
this study, this involvement is not considered; 
true values of these parameters are used in 
the observational operators. Preliminary tests 
showed that the analysis is very sensitive to 
parameter errors in the observation operators 
because they directly affect what the model 
thinks the observational data are. We have not 
obtained any successful retrieval so far, based 
on a limited number of experiments, when 
these uncertainties with the observation op-
erators are taken into account. Future work 
should investigate how to correct the errors in 

both prediction model and the observation 
operators.  
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