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1. Introduction

Automated  quality  control  (QC) 
procedures applied to real-time datastreams 
have  the  distinct  advantages  of  reducing 
tedious  and  repetitious  work,  generalizing 
procedures  across  regions  and  personnel, 
and  reducing  many  types  of  human  error 
(transcription,  for  instance).  When  the 
datasets themselves are heavily automated 
and  subject  to  inaccuracy,  and  the 
observations are difficult and wildly variable 
(for  instance,  precipitation  measurements), 
automation  of  QC  presents  difficult 
problems. The bottom line is that regardless 
of  how  thorough  and  calibrated  the 
automated  procedures  are,  counter 
examples clear to a knowledgeable eye are 
almost certain to arise.  A good example is 
the hourly gauge precipitation observations 
from  the  Hydrometeorological  Automated 
Data System (HADS). To facilitate timely use 
as initialization data in numerical models, we 
have  developed  a  system  of  algorithms 
written in Perl script specifically designed for 
the HADS and for  the operational  stations 
that are part of ASOS. 

These  data  and  the  results  of  their  QC 
provide  a  good  opportunity  to  assess  the 
impacts of such screening. In this paper, we 
describe factors that affect the performance 
of the QC procedures using CONUS rainfall 
data and diagnostic output designed into the 
system itself. The results from the individual 
algorithms  of  the  QC  system  are  first 
illustrated with recent examples. To assess 
and calibrate in a more general  sense the 
overall  impact  of  gauge  screening 
procedures quantitatively, we 

also use a performance algorithm based on 
common  verification  scoring  applied 
between stations and sets of their neighbors 
(usually  these scores are  applied between 
verification data and model results). From a 
user’s perspective, interest in QC is primarily 
dependent  on  its  impact  on  a  particular 
application.  Thus,  we  present  diagnostic 
descriptions  of  the  impacts  on  two 
fundamental gauge applications: analysis of 
precipitation  observations  to  grids 
(specifically, the Stage II products of NCEP; 
(http://www.emc.ncep.noaa.gov/mmb/ylin/pc
panl/stage2/),  and  real-time  verification  of 
model predictions from the FSL-based Real-
Time Verification System (RTVS) (Loughe et 
al. 2001; Mahoney et al. 2002).

2. The QC System

Three  general  types  of  checks  are 
employed within the QC system. First, a set 
of standard screening algorithms for known 
problems are applied. In part, these checks 
include extreme values for  24-h totals  and 
individual  hours,  nonphysical  repeating 
patterns of  hourly observations,  and stuck-
on gauges.  Each of  these checks involves 
the establishment of threshold values, which 
change periodically  as experience with the 
system is improved and as new and different 
observations  are  introduced.  Concerning 
extreme value  thresholds,  though  they  are 
currently set fairly large, on rare occasions 
they  still  will  screen  an  accurate  but  very 
large  observation.  The  tradeoff  is  the 
system’s  ability  to  find a  larger  number  of 
inaccurate medium-range extreme values. 

The  second  set  of  checks  involves  the 
neighbor  checks  with  a  set  of  nearby 
stations. Given the possibility of clustering of 
“reject” HADS sites around a target site, we 
have  found  it  preferable  to  perform  these 
checks using a high-quality set of daily total 
(1200–1200  UTC)  observations  that  have 
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been  processed  (in  many  cases, 
qualitatively  evaluated)  by  individual  River 
Forecast  Centers  (RFCs)  and  routed 
through  the  National  Centers  for 
Environmental  Prediction  (NCEP),  our 
principal  source  for  station  precipitation 
observations.  These  data  in  many  cases 
include 24-h HADS totals computed by the 
RFCs and implicitly designated as accurate 
by  inclusion  in  their  daily  observation 
datastream.  At  present  each  HADS  target 
site  is  compared  to  8  neighbors  within  a 
threshold distance from the target. To further 
ensure a good neighbor set, the verification 
sites  from  the  daily  total  datastream  are 
themselves first compared with neighboring 
daily  sites.  This  use  of  a  qualitatively 
screened  RFC  datastream  introduces  a 
nonautomated but important human element 
into the QC system.

The third set of checks are assessments 
of  QC  performance  during  a  brief  (at 
present, 30 days) historical period just prior 
to the present observation time. To evaluate 
this  performance,  the  results  of  daily 
screening  from  each  of  the  several 
algorithms at each station are imbedded in a 
long  character  string  that  is  saved  for  an 
extended  period.  These  station-specific 
character  strings  also  provide  critical 
information  for  retrospective  system 
evaluation, tuning and revision.

Several  assumptions  (“observational 
philosophies”, if  you will)  are implicit  in the 
design of this system. First, our experience 
shows us that  automated gauges such  as 
the HADS are susceptible to errors that tend 
to repeat themselves from hour to hour and 
from day to day. Hence, a “proving period” is 
built  into  the  system  during  which  time  a 
formerly  rejected  but  improved  gauge  can 
be reinstated  (moved off  the reject  list).  A 
second assumption is that there are inherent 
limits on the periods of  accumulations that 
can  be  addressed  by  QC  algorithms.  For 
instance, neighbor comparisons (now done 
on  24  h  accumulations)  perform  poorly  at 
hourly  intervals  because  of  the  extreme 
temporal  and  spatial  variability  of  hourly 
precipitation, especially during warm-season 
convective  regimes.  This  means  that  QC 
cannot be performed instantaneously except 
for  certain  gross  error  checks  (extreme 
values,  for  instance).  We  assume  that  an 
observation  site  screened  during  the  daily 
QC cycle should be excluded from use for 
the entire 24 h. An area of planned research 

is  assessment  of  the  feasibility  of  6h  QC 
increments.

Details  of  thresholds,  station  history 
character  string  content,  and  output 
diagnostic  files  for  the QC system can be 
found  in  the  readme  file  at  http://www-
frd.fsl.noaa.gov/mab/sdb/diagnostic.cgi. 
Note  that  a  critical  part  of  the  system are 
daily updates to authoritative metadata sites.

 
3. Examples of System Performance

Figure  1  shows  three  examples  of  the 
kinds  of  screening  described above  in  the 
context of typical  HADS observation fields. 
In Fig.  1a,  the observations at  a site near 
Grand Junction in western Colorado would 
fail  the  neighbor  check  because  it  shows 
nonzero  rainfall  in  a  general  field  of  zero 
observations.  As  the  time series  of  hourly 
reports reveals, this site should also fail the 
check  for  recurrent  nonphysical  temporal 
patterns  of  hourly  reports.  In all  likelihood, 
many of the examples of this kind of faulty 
reporting are due to telemetry or other kinds 
of communications problems. In Fig. 1b, the 
time series reveals a likely case of a stuck 
gauge. The neighborhood check for this day 
would also screen this station, but it is quite 
possible  that  such  a  report  would  escape 
neighbor screening if it occurred on a day of 
regional  rainfall  in  eastern  Montana.  The 
observation at  Nampa, Idaho, in Fig. 1c is 
clearly  faulty  because  of  its  extreme  size, 
and  also  because  of  nonmatching 
neighbors. This station is in fact an example 
of a recurrent instrument problem.

The  chart  in  Fig.  2  provides  a  general 
review  of  the  overall  effect  of  the  QC 
system. It  lists counts of  HADS stations in 
several categories of the QC system output 
produced  during  a  short  evaluation  of  the 
QC installation at FSL. Something like 10–
15%  of  the  HADS reports  is  screened  by 
one or another  of  the QC algorithms on a 
typical  day  (it  is  possible  for  an  individual 
report  to  be  screened  by  several  of  the 
algorithms). Day-to-day variability  is  largely 
a  result  of  precipitation  reports;  days  with 
considerable rainfall  in regions with denser 
station distributions will have a larger count. 
Of  the  screening  types,  neighbor  checks 
have  the  largest  effect.  Stations  thus 
screened are also predominantly clustered, 
located in regions of rainfall (see Fig. 3 for 
an  example  from  another  day).  Days  on 
which the neighbor screening results in “no 



rejected  stations”  are  in  fact  days  during 
which the datastream of daily stations was 
late.  It might be preferable on those days to 
perform neighborhood screening  based  on 
the  previous  one  day  or  more  set  of 
accepted  HADS  sites.  Although  small  in 
number,  the  stations  screened because  of 
extreme  values  are  potential  sources  of 
significant  error  in  such  applications  as 
analysis  to  grids  and  computation  of 
verification scores such as magnitude bias. 
It  is  encouraging that  the quantity of stuck 
gauges  has  been  improving  during  the 
course of several years and, at least during 
the period exhibited, is small.

4. Effects on Precipitation Analysis

The NCEP Stage II is a real-time, hourly, 
multi-sensor  (radar+gauges)  national 
precipitation analysis produced at NCEP and 
archived at  NCAR (Lin and Mitchell  2005). 
Currently,  the  Stage  II  program  uses  a 
“gauge reject list” to screen out gauges that 
have  previously  been  flagged  as 
problematic. This gauge reject list is updated 
manually.  Unfortunately,  this  approach  has 
several  limitations,  principally  because it  is 
very labor intensive and there is no way to 
reinstate a rejected gauge. For this reason, 
updates to the gauge reject list  have been 
infrequent  because  of  the amount  of  work 
involved,  and because of  a  concern about 
the  ultimate  thinning  of  the  gauge 
population. As of June 2005, only 80 gauges 
had been placed on the reject list. For these 
reasons,  the automated  scheme described 
here  is  being  considered  to  replace  the 
existing scheme in the analyses procedure.

This begs the question: what is the impact 
of the new automated scheme on the actual 
analyses?  Figure  4  shows  an  example  of 
hourly precipitation analysis performed with 
the  previous  procedure  (b)  and  for 
comparison a similar analysis that employs 
the newly quality-controlled stations (a). The 
difference between the two (a-b) is shown in 
c. Overall, the differences between them are 
small. For example, in eastern Kansas, the 
test  analysis  (new  QC)  has  higher  values 
than  the  operational  analysis,  a  difference 
that appears to be caused by the excluded 
gauges  (mostly  by  failing  the  hourly/daily 
neighbor checks) reporting lower values of 
precipitation  amounts.  The  difference  in 
South Dakota is an anomaly – the gauge at 
Pierre,  SD,  (PIES2)  is  listed  in  the 
operational HADS reject list, and has been 

reporting ~0.2 in per hour of rainfall on and 
off,  for  roughly half  of  each day, day after 
day. The fact that this (clearly faulty) station 
eludes the QC in the new system reveals a 
failure of its present algorithms.

5. Effects on Precipitation Verification

Another  frequent  use  for  precipitation 
reports is as verification data for numerical 
models  that  predict  precipitation.  Although 
verification  data  are  commonly  considered 
as “truth,” it is of course true that there is a 
range of  uncertainty involved with them as 
well  as  with  the  model  fields  themselves. 
One  source  of  this  data  variability  is  the 
quality of the data, hence the interest in QC 
issues in the verification community. 

A first step in assessing the QC impact on 
verification is to determine the magnitude of 
the  difference  between  verification  with 
fields that  have the advantage of thorough 
QC procedures and those that  do not. We 
make this comparison in Figs.  5 and 6. In 
Fig. 5, we show a month of daily verification 
of the Eta model over the CONUS using two 
sources  for  truth  fields:  the  HADS 
observations  from  this  period  with  the 
advantage  of  only  minimal  QC  as  a  red 
curve,  and  the  higher-quality  daily  reports 
(the same as those we use as neighbors in 
the HADS screening algorithms) as a blue 
curve.  Clearly,  substantially  better  scores 
result from use of the better verification data. 
On rare days, however, the reverse is true 
(check  April  6).  We  surmise  that  the 
geographical distribution of rainfall  vis-à-vis 
the  density  variations  in  the distribution  of 
stations in either set is the probable source 
of  this  anomalous  result,  emphasizing  the 
impact  of  other  data  problems  (data 
representativeness,  for  instance)  The days 
with  zero  values  (5,  11,  and  20  April)  are 
days  when  either  the  datastreams  to  FSL 
were delayed or processing hardware failed; 
these scores should be discounted. 

The differences displayed in Fig. 5 result 
from extremities of data quality. In Fig. 7, on 
the other hand, a more useful comparison is 
shown. Both panels display equitable threat 
scores  over  a  several-week  period 
computed using the HADS dataset, with QC 
applied in  the upper  panel  but  withheld  in 
the  lower.  As  previously  shown,  improved 
scores result  from the use of  quality  data; 
scores at all categories improve from 10% to 
15%.  Clearly,  if  small  differences  in 
verification  scores  are  to  be  used  to 



evaluate model performance, the magnitude 
of  the differences due solely to verification 
data must also be considered.

Large day-to-day differences in scores are 
evident in Fig. 5, which also complicate its 
interpretation.  To  determine  the  extent  to 
which  these  differences  are  driven  by  the 
distribution  of  verification  stations 
(“representativeness”  error)  instead  of 
reflecting  different  performance  of  the 
model, we present similar scores computed 
not from model fields but from observations 
at  each  station’s  nearest  quality  neighbor 
observing site. In some sense, these scores 
represent performance that is “as good as it 
gets.” The two resulting curves shown in Fig. 
6  clearly  track each other, suggesting that 
the difference between these scores and the 
Eta model scores might actually be a better 
way to track model performance over time.

6. Future Plans

During  examination  of  the  QC  results, 
several  desirable  revisions  and 
improvements  became  evident.  A  more 
refined  neighbor  checking  mechanism  is 
necessary because our first attempt screens 
too  many  nonzero  reports  in  situations  of 
scattered  rain  reports.  We  are  also 
considering ways to replace the linear yes-
no nature of the set of algorithms with fuzzy 
logic  decision  tools,  and  ways  to  employ 
satellite or radar data directly when a station 
reporting  zero  rainfall  is  of  ambiguous 
accuracy.  Most  importantly,  we  hope  to 
determine  the  feasibility  of  reducing  the 
analysis  time  increment  from  1  day  at 
present to 6 h.
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Fig. 1. Time series of hourly precipitation and geographical plots of precipitation gagesites for 
three anomalous gage observations. See text for explanations. Note that color scale is inches.
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Fig. 2. Daily HADS QC statistics for the days indicated. Columns are: (a) dates; (b) number of 
HADS observations; (c) observations that passed the QC; (d) hourly HADS observations 
screened by the QC algorithms; (e) daily observations screened by neighbor checks; (f) 
HADS observations screened by neighbor checks; (g) observations screened by stuck gage 
algorithm; (h) observations screened by extreme daily total check; and (I) observations 
screened by extreme hourly total(s) check.

(a)            (b)       (c)       (d)       (e)       (f)      (g)       (h)       (I)



Fig. 3. Good (black) and bad (red) hourly gages determined by the automated QC system for 16 
June 2005.



Fig. 4. Stage II analyses of hourly precipitation for 2300-0000 UTC 26-27 June 2005. Panel  
A is the analysis using QC’ed station,  Panel  B is the present operational analysis without 
additional new QC, and Panel C is the difference (A – B).
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Fig. 5. Daily CONUS  equitable threat scores for the eta model for April 2002. The scores 
represented by the blue curve were computed using high-quality daily (1200-1200 UTC) 
observations assembled by river Forecast Centers as verification data; scores represented 
by the red curve were computed using lower-quality lightly-QC’ed HADS daily totals as 
verification data.
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Fig 6. As in Fig. 5, except for equitable threat scores for the eta model (red curve; same 
as blue curve in Fig. 4) compared to scores computed between individual daily stations 
and their nearest neighbors (blue curve).



 

Fig. 7. Average daily  (0000-0000 UTC) equitable threat scores over the CONUS 
for the WRF NNM model during the Development Testbed Center Winter 
Forecast Experiment (DWFE) from 15 January – 31 March 2005. Panel A 
represents scores computed using QC’ed HADS gage observations as 
verification data; Panel B represents scores computed using non-QC’ed HADS 
observations for verification. 
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