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1. INTRODUCTION

On 15 December 2000, a commercial
aircraft experienced severe icing when
flying at about 5000 m above the ground
over the complex terrain of Iceland. The
icing was not predicted by the current
operational forecast systems. In this
paper the icing event is described briefly
and a series of numerical simulations is
carried out to investigate the nature of the
event and to what extent it can be
predicted by a numerical weather
prediction system and at what resolutions.

3. THE SYNOPTIC SITUATION

On 15 January 2000 at 12 UTC there
was a low between Iceland and Greenland
and an eastward-moving occluded front
over the westernmost part of Iceland (Fig.
1). Ahead of the front there were strong
winds from the south-southeast at low
levels. At middle and upper tropospheric
levels, the wind direction was roughly the
same, but the wind speed was stronger.
The icing took place at 5200 m.a.s.l., over
the complex terrain of W-Iceland just east
of the front.

Fig. 1 The synoptic situation over Iceland
on 15 December 2000 at 12 UTC. The
white dot indicates the location of the icing
incident.

2. THE SIMULATIONS

The event has been simulated with the
MM5 system (Grell et al., 1995), with
horizontal resolutions of 9, 3 and 1 km and
vertical resolutions of 23 and 40 sigma
levels (Fig. 2). The simulations are carried
out with the Eta turbulence scheme, the
Reisner2 microphysics and the Grell
cumulus parameterization. The
simulations are forced with boundaries
from the ECMWF and they are initialized
with data from the same source at 12 UTC
on 14 December 2000.

3. RESULTS

The simulations reproduce substantial
amount of super-cooled liquid water where
the icing was observed (Fig. 3). Only a
few km further downstream, the cloud
water is in frozen form. The supercooled
liquid water is associated with rapid
ascending motion in a mountain wave,
immediately upstream of second mountain
ridge.

Sensitivity ~ studies  with different
horizontal resolutions (Fig. 4) show that at
dx=1km, there is substantial lifting and
high concentration of supercooled liquid
water. At dx=3km, the qualitative picture
is about the same, but the updrafts are
less intense and so is the concentration of
the supercooled liquid water. At dx=9km,
there is much less updraft and no
significant concentration of supercooled
liquid water.

The supercooled water appears clearly
when the simulations are carried out in 40
vertical levels (at dx=3km), while reducing
the number of vertical levels down to 23
eliminates the supercooled water at high
levels and thereby the icing conditions
(Fig.5).

Sensitivity tests with different orography
(Fig. 6) indicate that the ascending motion



responsible for the supercooled water is a
result of not only the mountains
downstream of the location of the icing
event, but also of the mountains upstream
of the icing location.

In this case high static stability, strong
low level winds positive vertical windshear
and little changes in wind direction with
height contributed to amplified mountain
waves in which the icing is observed.

CONCLUSIONS

The present study shows that
atmospheric icing conditions created by a
frontal system interacting with mesoscale
mountains can be predicted if the
horizontal and vertical resolutions in the
calculations are sufficiently high. The
results are very encouraging for real-time
high-resolution numerical prediction for
aviation in Iceland.

They also indicate that to create icing
conditions, lifting downstream of
mountains may be quite as important as
lifting on the upstream side.
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Fig. 2. The simulation domains. The green shading indicates the topography.
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Fig. 3 (a). Liquid cloud water (green,
g/kg), ice (yellow, g/kg) at 5,2 km a.s.l.,
mslp (hPa) and 10 m wind vectors at 1400
UTC on 15 December 2000.
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Fig. 3 (a). Liquid cloud water (green,
a/kg), ice (yellow, g/kg), wind vectors
temperature and potential temperature in a
cross section shown in the figure to the left.
(1400 UTC on 15 December 2000). A
black dotted arrow indicates the flight
track
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Fig. 4. Liquid water, relative humidity, wind vectors and potential
temperature as in Fig. 3(b), but with a horizontal resolution of (a)
9 km, (b) 3 kmand (c) 1 km.
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Fig. 5. Liquid water, relative humidity, wind vectors and potential

temperature as in Fig. 3(b), but with a vertical resolution of (a) 23
levls and (b) 40 levels.
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Fig. 6. Liquid water, relative humidity, wind vectors and
potential temperature as in Fig. 3(b), but with (a) no
mountains, (b) the mountain downstream removed, (c) the
mountain upstream removed and (d) true topography.



