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1. Introduction* 
 

The interaction between the electromagnetic waves 
emitted by a polarimetric radar and precipitation is in 
general complex because of propagation through a non-
homogeneous medium. This complexity makes the 
problem very complicated. To make progress in this 
field, one has to make assumptions in order to simplify 
the problem. This raises the question about the validity 
of these new assumptions. One of the most important 
assumptions done at this moment is to assume 
uniformity for cross range variability of precipitation. 
With new resolution methods, we can probe the problem 
with less assumptions. 
 
The polarization allows us to identify hydrometeors 
(dry/wet snow, freezing rain, rain, hail) and biological 
scatterers (birds, insects). It also allows us to detect 
electrically active storm and to improve quantitative 
estimations of precipitation (Zrnic and Ryzhkov, 1999). 
This is defined as the variation of the electric field in 
time and in space. Polarimetric radar gives more 
information as the differential propagation phase shift 
φDP that represents the cumulative phase shift 
introduced by wave propagation through precipitation. 
Its range gradient is the specific differential propagation 
phase KDP which is related to precipitation rate by 
 

( ) 866,0 1,5 DPKR λ=     (1) 
 
For the same precipitation rate, we see that KDP is 
inversely proportional to the wavelength λ. The expected 
value of KDP is 0.5 °/km.  For this value of KDP,  the 
precipitation rate has to be greater than 20 mm/h for S-
band radar, 12 for C-band and 7 for X-band. This 
parameter has several advantages : it’s independent of 
radar calibration, it’s immune to propagation effects, to 
precipitation attenuation and to partial radar beam 
blockage. It’s also less sensible to drop size distribution 
variations and to the presence of hail (Ryzhkov and 
Zrnic, 1996). Far of the radar, negative values of KDP 
sometimes appear at the rear side of isolated convective 
cells or at the leading edge of squall lines when strong 
reflectivity azimuthal gradient is observed. We will 
determine and characterize the effects of cross and 
down range variability of precipitation on φDP in order to 
explain this kind of observations.  
 
We examine first the propagation of a plane wave 
through a non-homogeneous slab of dielectric spheres 
and obtain the equation for the transmitted wave. 
Secondly, we consider the propagation of a plane wave 
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through a non-homogeneous dielectric slab and use the 
perturbation method to derive an analytical solution for 
the transmitted wave. Finally, we compare the two 
solutions, define an effective propagation constant and 
establish the variability of the refractive index on the 
precipitation rate. This in turn helps us to assess the 
effect of spatial variability of precipitation on φDP. 

. 

2. Non-homogeneous slab of dielectric spheres 
 

We consider the propagation of a plane wave 
through a non-homogeneous slab of dielectric spheres 
as shown in fig.1. We use the same theory exposed in 
Bringi and Chadrasekar (2001) for the case with a 
constant number of spheres. We want to find the 
transmitted wave equation at an arbitrary point P far off 
the slab. 

 
Fig. 1. Slab consisting of dielectric spheres. 
 
We suppose that the wave interacting with a particular 
sphere is the unperturbed incident field. This 
approximation is valid for a sparse distribution of 
spheres. The scattered wave at P by a sphere at rr  is 
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where )ˆ,ˆ( isf
r

is the vector scattering amplitude. 
 
We define ( )',',' zn φρ as the number of spheres per 
unit volume. A volume element dV contains 
( )dVzn ',',' φρ spheres. We will remove the primes to 

simplify the notation but we have to keep in mind that 

0' ρρρ −= , 0' φφφ −=  and zz ='  for future use. 

This elementary volume is centered at ( )zr ,,φρ≡
r

. 
Using the continuum approximation, the electric field 
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iê

î
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Applying  the superposition principle, the total scattered field at P is given by 
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where dzdddV   φρρ= , 2
0

22 )( zzR −+= ρ and ρρ dRdR  =  for a given z . Then, )(PE s
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can be written 
as 
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In fig. 1, we see that ( ) Rzzis −=⋅=≡ 0
ˆˆcosθµ  and 
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Integrating by parts, 
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We suppose that ( ) µφ disfzRnd )ˆ,ˆ(),,(
r

 is a well-behaved function and that the second integral is negligible 
because P is several wavelengths form the slab. Then, 
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where we neglected the contribution from the upper limit ( )∞→R  (oscillating contribution). This is acceptable if 

( )zn ,,φρ  is null when ∞→ρ . With the far-field approximation, we can define )( 0 zzR −≈  since 

)(    00 zz −<<ρ .  In this case we obtain 
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The total electric field at P is given by: 
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where )ˆ,ˆ( iif
r

is the forward scattering amplitude in the direction is ˆˆ = . The component of )(PE
r

parallel to the 

incident linear polarization state ( )iê  with mVE  10 = is 
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This equation is valid  to first-order in the slab thickness (d). 
 

_____________________________________________  
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3. Non-homogeneous dielectric slab 
 

To study the propagation of a plane wave through a 
non-homogeneous dielectric slab, we use a method 
based on the theory of perturbation developed in 
quantum mechanics. First, we have to know how the 
refractive index of precipitation varies in space. In other 
words, what are the extremum values that this index can 
take. To do so, we have to use a numerical recipe 
developed by Yves Gingras (1997) which calculates the 
propagation constants. With these constants, we can 
retrieve the values that can take the refractive index.  
We believe that the value of the refractive index varies 
around  1. In that case, we will use the Born expansion 
(Nayfeh, 2000) to find the electric field at a particular 
point.  
 
With this result, we will be able to define a propagation 
constant that take into account the spatial variability of 
precipitation. 
 
4. Summary 
 

We showed in this paper a method how to avoid the 
approximation of uniformity in the cross range variablility 
of precipitation. The problem has been divided in two 
cases. First, we considered the plane wave propagation 
through a non-homogeneous slab of dielectric spheres 
and secondly, through a non-homogeneous dielectric 
slab. With the theory exposed in Bringi and 
Chandrasekar for a slab with a constant number of 
spheres, we found the electric field at a point P far off a 
slab with a number of spheres varying with space. 
 
The next step will be to consider the propagation 
through a non-homogeneous dielectric slab. We will 
compare the two results and we will define a 
propagation constant accordingly.  Finally, we will 
determine the effect of spatial variability of precipitation 
on φDP. 
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