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1 INTRODUCTION

The raindrop size distribution (DSD) is funda-
mental for the interpretation of radar rainfall mea-
surements, especially with respect to the parame-
terization of the power laws used to describe the re-
lations between the bulk rain variables (e.g. radar
reflecvity Z, rainfall intensity R).
The different types of sensors used to estimate the
DSD (e.g. Joss-Waldvogel disdrometer, spectroplu-
viometer and video-disdrometer) have a limited sam-
pling volume or a limited sampling surface. The is-
sue of uncertainty in DSD characterization due to
sampling errors (independently of measurement er-
rors) is crucial and has been recognized for a long
time (e.g. Joss and Waldvogel, 1969). To quantify
the sampling error, Gage et al. (2004, GCWT here-
after) have proposed to use time series from two col-
located disdrometers.
The objectives of this paper are to investigate, us-
ing a stochastic DSD model, (i) the accuracy of the
estimator proposed by GCWT and (ii) to quantify
the influence of the disdrometer sampling error on
the derived Z-R relations. First, the stochastic DSD
model is presented. Then the disdrometer sampling
error is quantified. Finally, the uncertainty on the
parameters of the derived Z-R relations is analyzed.

2 DSD SIMULATOR

The DSD simulator used in the following has been
proposed by Berne and Uijlenhoet (2005). It enables
to generate DSD profiles in time corresponding to
non-stationary rainfall. It is based on the exponen-
tial DSD, which two parameters Nt and λ are con-
sidered to be random variables

N(D|Nt, λ) = Nt λ e−λD , (1)

where N(D|Nt, λ)dD denotes the drop concentra-
tion in the diameter interval [D, D + dD] given Nt

and λ. The latter are assumed to be jointly lognor-
mally distributed and their logarithms are assumed
to follow a bivariate first order vector auto-regressive
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Table 1: Mean, standard deviation and characteris-
tic time of N ′ = ln Nt and λ′ = ln λ deduced from
HIRE’98 data at a 60 s time step.

Mean Std θ (s)
N ′ 6.52 0.57 390
λ′ 0.87 0.27 390

process. The parameters have been derived from
DSD measurements for a 4-hour rain event, collected
during the HIRE’98 experiment in Marseille, France
(see Table 1). To be consistent with the data pre-
sented by GCWT, we generate a profile correspond-
ing to 8 hours of disdrometer measurements, with a
time resolution of 60 s.

To simulate the sampling process of a JW dis-
drometer, Poissonian fluctuations are added to every
time interval of the profile. The simulator is used
here to generate 100 sampled profiles correspond-
ing to the same reference profile. This is equivalent
to having 100 collocated disdrometers sampling the
same rain event.
The simulator provides profiles of Nt and λ, with
a given resolution, from which the bulk rain vari-
ables can be derived. We focus in this paper on the
radar reflectivity Z for a 10 cm wavelength weather
radar (i.e. S-band, so attenuation effects due to pre-
cipitation are negligible). The main advantage of a
simulation approach is the possibility to generate a
large number of sampled time series, and therefore
the possibility to use a Monte Carlo approach to de-
rive robust statistics on the sampling effects.

3 QUANTIFICATION OF THE SAM-
PLING ERROR ON THE RADAR RE-
FLECTIVITY

The quantification of the sampling error for a non-
stationary rain event is complex due to the mixing
of sampling fluctuations and natural variability. The
variance of Z over the population of Nt and λ can
be written as

Var [Z] = Var [E [Z|Nt, λ]] + E [Var [Z|Nt, λ]] , (2)



where E denotes the expectation and Var the vari-
ance. Equation (2) shows that the total variability,
Var[Z], is the sum of a first term, Var[E[Z|Nt, λ]],
which represents the natural variability, and a sec-
ond term, E[Var[Z|Nt, λ]], which represents the vari-
ability due to the sampling effect. Of course, in
Eq. (2) Z can be replaced by any bulk rain vari-
able (e.g. the rain rate R).
For two collocated disdrometers close enough to
sample the same DSD population, the two sampled
values Z1 and Z2 are independent and identically
distributed for given values of Nt and λ, which im-
plies

{

E [∆Z|Nt, λ] = 0
Var [∆Z|Nt, λ] = 2 Var [Z|Nt, λ]

, (3)

where ∆Z = Z1 − Z2. Writing Eq. (2) with ∆Z

instead of Z and using Eq. (3) yields

Var [∆Z] = E [Var [∆Z|Nt, λ]] = 2 E [Var [Z|Nt, λ]] .

(4)
Equation (4) shows that taking the difference of the
two sampled Z values, as proposed by GCWT, re-
moves the natural variability and allows to quantify
the mean sampling variability alone. These expres-
sions are valid no matter if Z is expresssed in linear
(mm6 m−3) or in logarithmic (dBZ) units. In the
sequel, Z will be expressed in dBZ.

3.1 Estimation of Var[∆Z]

Note that Eq. (4) has been derived for the expec-
tation calculated over the population of Nt and λ. In
practice, we only have access to a subset of the pop-
ulation of Nt and λ, through the measured Z time
series. Therefore, the validity of Eq. (4) over a profile
(i.e. one realization of the bivariate (Nt, λ)-process)
must be investigated, as well as the accuracy of the
estimation of Var[∆Z] from the measurements of two
collocated disdrometers.
To test the validity of Eq. (4) along a pro-
file, we analyze the distribution of (Var[∆Z]-
2E[Var[Z|Nt, λ]])/Var[∆Z] for 100 simulated refer-
ence profiles (representing 100 rain events). Re-
call that conditional upon each reference profile, we
simulate 100 sampled profiles (representing 100 dis-
drometers). Hence, for a given reference pro-
file, Var[∆Z] can be estimated as the average
of the variance of ∆Z calculated over the 4950
(100×99/2) possible pairs. E[Var[Z|Nt, λ]] can be
estimated directly as we dispose of 100 sampled
Z values for every time interval of the reference
profile. In this manner, we obtain one value of
(Var[∆Z]-2E[Var[Z|Nt, λ]])/Var[∆Z] per reference

profile. The mean over the 100 reference profiles
is found to be about 10−5 and 80% of the values are
within the interval ±3 × 10−4. Therefore Eq. (4)
can be considered valid along a profile (i.e. per re-
alization) for the given ratio between the length of
the profile and the characteristic time scale. The
mean sampling error is accurately quantified by
Var[∆Z]/2 (if derived from a large number of sam-
pled profiles).
To assess the accuracy of the estimation of Var[∆Z]
with only two sampled profiles (corresponding to
two disdrometers), the probability distribution of
Var[∆Z] is studied. First, the distribution of
Var[∆Z] calculated using the 4950 pairs of sampled
profiles corresponding to one given reference profile
is plotted in the top panel of Fig. 1. The difference
between an estimate from one single pair of disdrom-
eters and the mean value of Var[∆Z] appears to be
limited (80% of the values are within an interval of
± 10% around the mean).
To quantify the variability of this distribution for
different reference profiles, the distribution of the co-
efficient of variation of the distribution of Var[∆Z]
for the 100 reference profiles is plotted in the bottom
panel of Fig. 1. The mean is about 0.079 and the
10% and 90% quantiles are about 0.074 and 0.083,
respectively. This indicates that the distribution
plotted in the top panel of Fig. 1 is representative
for different reference profiles for the employed pa-
rameters of the stochastic DSD model. In summary,
Var[∆Z]/2, calculated from two collocated disdrom-
eters and hence closely related to the estimator pro-
posed by GCWT, provides a relatively accurate es-
timate of the mean sampling error affecting radar
reflectivity time series derived from JW disdrome-
ters.

3.2 Influence of the length of the profile

The results presented in the previous section have
been derived from simulated rain profiles of 8 hours,
which corresponds to about 74 times the character-
istic time scale of the studied rainfall (see Table 1).
This section is devoted to the analysis of the influ-
ence of the length of the profile on the accuracy of
the sampling error estimation. Figure 2 presents the
evolution of the mean of the coefficient of variation of
the distributions of Var[∆Z] as a function of the ra-
tio of the length of the profile and the characteristic
time scale. It is clear from Fig. 2 that the length of
the measurement series must be significantly larger
than the characteristic time scale (i.e. the decorrela-
tion time) in order to obtain an accurate estimation
of the mean sampling error. For instance, to achieve
an accuracy corresponding to a coefficient of vari-



Figure 1: Top panel: distribution of Var[∆Z] val-
ues from 4950 simulated pairs of disdrometers for a
given reference profile. Bottom panel: distribution
of the coefficient of variation of the distributions of
Var[∆Z] from 100 reference profiles.

ation of about 0.15 (0.10), one needs a time series
which is about 20 (50) times longer than the char-
acteristic time scale. In practice, these estimates
provide a lower bound, as mixing of different types
of precipitation is likely to occur more often when
the time series become longer.

Figure 2: Coefficient of variation of the distibutions
of Var[∆Z] as a function of the ratio of the length
of the time series and the characteristic time scale.
The solid line indicates the mean; the dashed lines
indicate the 10% and 90% quantiles.

4 UNCERTAINTY DUE TO SAMPLING
EFFECTS IN THE Z-R RELATION

DSD measurements are often used to derive the
parameter values of a power law of the form Z =
a Rb to relate the radar reflectvity Z to the rainfall
intensity R.

4.1 Variability of the parameters a and b

For a given reference profile, a reference power
law Z-R relation can be fitted (with a non-linear
regression technique). A power law can also be fitted
on each sampled profile and the relative deviation
from the reference relation can be calculated. In this
manner, we obtain the distribution of the “relative
error” on the prefactor a and the exponent b for each
reference profile. For instance, Figure 3 presents the
distribution of the relative error on a and b for a
given reference profile.

Figure 3: Distribution of the relative error on the
prefactor a (top panel) and on the exponent b (bot-
tom panel), from 100 sampled profiles corresponding
to the same reference profile.

The uncertainty on the Z-R relation due to sam-
pling errors can be quantified as the standard devia-
tion of this distribution for the parameters a and b.
To have more robust statistics, we analyze the dis-
tribution of this standard deviation for 100 reference
profiles. Figure 4 shows that in case of an exponen-
tial DSD, the disdrometer sampling error generates



a limited uncertainty in the parameters of the Z-R
relation: about 10% for the prefactor and about 3%
for the exponent. It must be noted that the prefac-
tor is more affected than the exponent. These values
correspond to mean estimates, and the individual
deviations can be larger.

Figure 4: Distribution of σa-values (top panel) and
σb-values (bottom panel) from 100 reference profiles.

4.2 Influence of the length of the profile

The length of the profile has an influence on the
values of the fitted power laws. Figure 5 presents
the evolution of the mean of the standard deviation
of the relative error on the parameters a and b as a
function of the ratio between the length of the profile
and the characteristic time scale. When the length
of the profile increases, the uncertainty on both pa-
rameters decreases, as well as the dispersion of the
distribution (indicated by the 10% and 90% quan-
tiles). For instance, the mean standard deviation of
the relative error on a is about 10% for a length of
20 times the characteristic time scale.

5 CONCLUSIONS

A simulation framework, based on a stochastic
model capable of simulating the sampling process
of a JW disdrometer in non-stationary rain, has
been used to show that the estimator proposed by

Figure 5: Mean standard deviation of the relative
error on the prefactor (top panel) and the exponent
(bottom panel) of the Z-R relation as a function of
the ratio of the length of the time series and the
characteristic time scale. The solid line indicates
the mean; the dashed lines indicate the 10% and
90% quantiles.

GCWT is reliable, but that the ratio between the
length of the profile and the characteristic time scale
has a significant influence on its accuracy. This
approach also allows to quantify the uncertainty
due to the sampling error in the parameterization
of the Z-R relation, which appears to be limited
for the exponential DSD and the given parameters
of the stochastic DSD model. The prefactor is
more affected than the exponent of the power law
Z = a Rb. Further investigation is needed to assess
the influence of alternative DSD models (gamma,
lognormal).
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