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1. INTRODUCTION

High-resolution three-dimensional precipitation
fields are needed for many applications (such to be
used as base in radar simulations).  The traditional
ways of obtaining them are the use of pure stochastic
rainfall models, or using real rainfall measurements
(usually obtained with a radar) as a base of a
downscaling process.

For downscaling techniques, synthesizing rainfall
fields with higher resolution than observed, which
reproduce the rainfall variability at all scales, is quite a
challenge due to the complexities of rainfall (Lanza et
al. 2001). First techniques proposed to impose
random noise to a given high-quality radar-rainfall

field (Krajewski and Georgakakos, 1985).  During last
decades more advanced downscaling techniques that
exploit the fractal behaviour of rainfall have been
proposed (see Lovejoy and Schertzer, 1995 and
Ferraris et al., 2003 for surveys in this issue).

Among fractal techniques, Perica and Foufoula-
Georgiou (1996) proposed a wavelet implementation
of a cascade model based on a variability analysis of
rainfall at different scales.  This technique was later
improved in Venugopal et al. (1999) and used in
Harris and Foufoula-Georgiou (2001) to evaluate the
performance of the Goddard Profiling rainfall retrieval
algorithm.

Another set of downscaling techniques is based
on modelling rainfall fields through the analysis of its
Fourier spectrum (see the Strings of beads model -
Pegram and Clothier, 2001a; 2001b).

Franco et al. (2003) compared both techniques on
disdrometer data concluding that, while wavelet
technique performs well reproducing the rainfall

extremes, it is not able to reproduce the structure of
the generated scales.  On the other hand, Fourier
techniques reproduce well the correlation in the
simulated scales but fail to reproduce the extreme
values.

In this study we propose a 3D downscaling
technique for radar data, based on modelling the
precipitation fields using a combination of wavelets,
Fourier spectral analysis and homotopic techniques.

2. DOWNSCALING PROCESS

The downscaling technique proposed here is
based on three independent steps.

The first one consists on downscaling the first PPI

observed by the radar. This is done using a wavelet
model combined with a Fourier analysis to downscale
up to the desiderated resolution trying to reproduce
both, the extreme rainfall values and the field
structure.

Once the first PPI has the proper resolution, the

second step consists on downscaling the rest of PPIs
through a homotopy of the observed vertical profiles
of reflectivity [VPR].  This approach allows us to
downscale the upper elevations preserving the
original observed radar VPRs.

The last step in the process is the transformation
of the dense simulated polar data to the requested
cartesian grid.

Radar data used in this study were measured with

the C-band radar of the Spanish Meteorological
Institute [INM] located in Corbera de Llobregat (close
to Barcelona).  This radar provides 20-elevation
volume scans with 0.9º azimut resolution and 2 km
range resolution.

3. 2D WAVELET MODEL

The discrete wavelet transform allows us to study
the rainfall field local variability at different scales.  In
this study, for its simplicity, we have chosen the Haar
wavelet base (Figure 1 shows a graphical scheme of
its components).

3.1 Scale variability analysis

The 2D Haar wavelet transform decomposes the
discrete rainfall field observed at a certain scale (m) in
the average component (scaling component, Scm+1)
and three fluctuation components (one in each
direction: Flm+1,1, Flm+1,2; and a crossed one: Flm+1,3;
see Figure 1 for a graphical scheme and the exact
mathematical expression) at the next larger scale
(m+1). This process can be iterated up to the larger

scale possible: the entire rainfall field.  In this work,
the first fluctuation component corresponds to the
variability between azimuts, the second to the
variability between ranges, and the third to the
crossed variability.

This study has been carried out on a 64 x 64 polar
bin area extracted from the radar lowest elevation,
and located near the radar in a region not affected by
ground clutter.

The proposed wavelet model is based on the fact
that sample distributions of the standardized
fluctuations of the reflectivity factor (m m

6
·m

-3
): X m,i,

are Gaussian distributed with zero mean and standard
deviation following a simple scale-law (Perica and
Foufoula-Georgiou, 1996):

Xm,i =
Flm,i
Scm

~ N(0, m,i
2 ) (1)

Concretely, the standard deviation decays with a
power-law over successive fines to coarse scales:

m,i 2(m 1) Hi
1,i (2)

13R.6

*Corresponding author address: Xavier Llort, GRAHI-UPC
Gran Capità 2-4 Ed. Nexus D-102. E08034-Barcelona (Spain).
e-mail: llort@grahi.upc.edu



Scaling
Component

Fluctuation
Component 1

X1 X2

X3 X4

Scaling Comp. =     ΣXi

i=1

4

4
1

Fluc. Comp. 1 =     (-X1+X2-X3+X4)4
1

Fluc. Comp. 2 =     (X1+X2-X3-X4)4
1

Fluc. Comp. 3 =     (-X1+X2+X3-X4)4
1

Fluctuation
Component 2

Fluctuation
Component 3

Fig. 1. Graphical scheme and mathematical expression of the 2D Haar wavelet base components.
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Fig. 2. Standardized fluctuations sample distribution in a stratiform case for two consecutive scales.  Thick line
corresponds to the scale m=1 and thin line to m=2.

Equation 2 relates the standard deviation at each

scale with the one at the smallest observed scale
(m=1), where Hi are the parameters of three scaling
laws fitted to the standard deviations of the three
standardized fluctuations (Xm,i) at different scales.
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Fig. 3. Standardized fluctuations standard deviation at
various scales for three cases: convective (red),

stratiform (blue) and an average of 100 images
containing a mix of cases (black). Different lines
correspond to the three fluctuations: Fl1, (solid), F l2
(dotted) and Fl3 (dashed).

Figure 2 shows the sample distributions of the

three standardized fluctuations at two consecutive
scales for a stratiform case not affected by bright
band.  It should be noted that increasing the scale
results in reducing the number of samples by a factor

of 4.  Therefore, the number of samples of the second
scale-up distributions (m=2) is smaller that in the first
scale (m=1).

Figure 3 shows the standard deviations of the

three standardized fluctuations over several scales for
two different radar images (convective and stratiform)
and for 100 images containing a mix of cases.  It can
be observed, for all the fluctuations, that the
convective case has higher values of Hi (in Eq. 2) than
the stratiform case.  The average of several images
performs between those two cases. Thus, different
power-laws depending on the image characteristics
should be taken into account.

3.2 Downscaling process

The downscaling process consists on, once the
scale variability analysis is done, perform the inverse
wavelet transform with the proper fluctuations.

So, the first step consists on extrapolating the
standard deviations of the three standardized
fluctuations at the current scale, from the
experimental power-law (Equation 2).



Once we have the standard deviations, we
generate random fields Gaussian-distributed with
zero-mean and the appropriate standard deviation.
To avoid obtaining negative reflectivity values in the
final result, Gaussian distributions are truncated

between –1 and 1.  These generated fields will
correspond to the three standardized fluctuations at
the current scale.

The next step is obtaining the fluctuation values

from Equation 1, that is, multiply the standardized
fluctuation components by the scaling component to
undo the standardization.  Finally, simulated
reflectivity values are obtained solving the linear
system of equations written in Figure 1.

If the size of the area to downscale is not a power
of two (requisite for the Haar wavelet model) it is
extended up to the next power with zeros and, after
the wavelet process, cut back to the required size.
The whole process can be iterated up to the
requested resolution.
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Fig. 4. Downscaling of the first radar PPI iterating once
the wavelet process.

Figure 4 shows an example of this downscaling
process, iterating once, over a section of a convective
sitiation.  The fluctuation variance power-laws used
for this example are experimentally obtained from a
dataset of 100 images.  In this figure it can be

appreciated how, preserving the observed pixel
structure, the method introduces new extreme rainfall
values.

4. FOURIER ANALYSIS OF DOWNSCALED

FIELDS

The main problem of the wavelet downscaling
technique described above is that no correlation
between the new generated pixels is taken into
account.  That implies that when we analyze the
Fourier spectra of the downscaled fields, the high
frequency components change respect the ones that
real rainfall would have.
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Fig. 5. Fourier power spectrum radially averaged for a
stratiform image (up), and for the same imaged
downscaled (2 iterations form the images averaged 2

scales-up) plotted in logarithmic scale.  The grey line
represents the mean radially averaged spectrum and
the line its best fit. The slope of that line is plotted inside

each graph.

In order to study how the different methods
perform over the Fourier spectrum of the downscaled

image, we first have averaged the radar images two
scales up, and after applied two iterations of the
technique to reach the original resolution.  Thus we
can compare the original spectrum against the



obtained after the downscaling and decide which
technique is able to reproduce better the original
correlation at lower scales. The comparison skill used
is the slope of the best linear fit to the logarithm of the
power spectrum (the radially averaged power

spectrum derived from the fields is supposed to follow
a power-law in frequency, see Pegram and Clothier,
2001a; 2001b):

( f ) f (3)

Figure 5 shows the radially averaged Fourier

power spectrum for a stratiform image and for the
same image downscaled (with two iterations starting
from the image upscaled two iterations). Mean
spectrum is plotted with its best fit for both graphs.  In
this figure it can be seen how, after the downscaling
process, the slope becomes more close to zero (less
correlation between pixels).

The first step to improve this issue was proposed
by Harris and Foufoula-Georgiou (2001), who
performed a sorting of the rain values generated
within a pixel to improve connectivity.  The sorting is

done in each wavelet iteration by shifting the high
value to the place surrounded by higher values and
the lowest to the place surrounded by lower values.
This pixel sorting succeeds in recovering part of the
lost structure in the downscaling process, but not all.

In order to make another step in this direction, we
studied the power spectrum of the observed
standardized fluctuations in each scale.  The main
idea is not only simulate the right distribution of the
standardized fluctuations when downscaling, but also
their internal structure.  So, in each observed scale
we assume that Equation 3 can also represent the
power spectrum of standardized fluctuations.
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Fig. 6. Power spectrum slope of the three standardized
fluctuations (Fl1 in orange, Fl2 in red and Fl3 in blue) at
the various scales based on 100 rainy images

containing a mix of cases.  The asterisks correspond to
the mean and the bars the 1-  interval.

Figure 6 shows the slope of the standardized

fluctuations radially averaged power spectrum at
various scales for 100 rainy images.  This figure
shows how, while the Fl2 and the Fl3 perform close to
zero in the positive side, Fl1 performs in the negative
side.  Using the best linear fit we can extrapolate the

slope of the Fourier power spectrum of the standard

fluctuations to the new scales.  These slopes are
introduced in the generation of the Gaussian-
distributed fluctuations using a power-law filter.

Both techniques (pixel sorting and imposition of a
concrete Fourier spectrum to the standardized
fluctuations) agree with the downscaling philosophy:
the observed scales do not change after the process.

The slopes of the Fourier power spectra obtained
through the various techniques are summarized in
Table 1 for a stratiform image and a convective one.
In both cases it can be seen that imposing the
structure to the standardized fluctuations and
performing the pixel sorting results in obtaining slopes

corresponding to fields with more correlation at small
scales.

TABLE 1. Slope of the radially averaged Fourier power
spectrum for a stratifom case and a convective case.

Technique Strat. Conv.

Original Image -1.53 -1.61

Wavelet Dowscaling [WvD] -0.90 -1.51

WvD + Pixel sorting -0.98 -1.64

WvD + Fluc. spec. structure -0.92 -1.54

WvD + Fluc. spec. structure + Pixel
sorting

-1.00 -1.67

In order to visually show the effect of imposing
structure when downscaling, Figure 7 shows an

example of downscaling of the first radar PPI with two
iterations starting form the data upscaled two
iterations.  The lower-left plot shows the result of only
applying the wavelet technique, and the lower-right
plot applying also the pixel sorting and imposing
structure to the standardized fluctuations.  From a
qualitative point of view it can be observed that, when
imposing structure, the result is closer to the original
rainfall field.

5. 3D DOWNSCALING

Once the first radar PPI is downscaled up to the
desiderated resolution it is used to downscale the rest

of PPIs through a homotopy of the original observed
VPRs.  The reasons of not downscaling each PPI
using the technique explained before are that the
observed VPR will be destroyed due to the random
component of the process.  Moreover, the homotopy
technique allows us to create “artificial” elevations
between the observed ones.  This last property would
allow us to increase the vertical density of the values
far from radar and thus, improving the results in the
transform to cartesian values.

5.1 VPR Homotopy

To calculate the simulated reflectivity value in a
concrete point when downscaling of the upper
elevations, first we we obtain the VPR at this point.
To do this, we perform a linear homotopy of the
observed VPRs surrounding that point (see Figure 8
for a graphical scheme).  The original VPRs are

considered to be piece-linear functions of the
observed values and, for the homotopy, they are
normalized by their value in the first elevation.
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Fig. 7. Downscaling example.  The upper plots represent the original data (left) and the original data upscaled two
iterations (right).  The second row graphs represent the fields obtained after two wavelet iterations (left) and after two
wavelet iterations, imposing structure to the standardized fluctuations and performing a pixel sorting (right).
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Fig. 8. Homotopy scheme.  The points marked with a
circle correspond to the original data and their profiles
are the black ones.  The red point (star) is the obtained

through 2D downscaling of the first PPI and its vertical
profile (dashed-red) is the obtained through homotopy.

Mathematically, the homotopy is defined as
follows:

G : [0,1]2 H    C(H)

(i, j,h)    G(i, j,h) =Vpi, j (h)
(4)

Where H are the heights, [0,1]
2
 is 2D unit interval,

base for the homotopy, C(H) denotes the continuous
functions in height (the vertical profiles) and Vpi,j is
defined as:

Vpi, j (h) = i Vp1,0(h) + (1 i) Vp1,0(h){ } (1 j) +

+ i Vp1,1(h) + (1 i) Vp0,1(h){ } j
(5)

Where Vp0,0,  Vp0,1,  Vp1,0 and V p1,1. are the
observed profiles surrounding the point of interest,

normalized by their value at the first elevation. With
this process, for each point inside the [0,1]

2
 interval,

we can find a normalized VPR, function of the
surrounding VPRs and the position of that point.  The i
and j index are calculated as linear function of its
position inside the interval.  In particular the homotopy
recovers the original normalized profiles in the interval



extremes, that is, G(0,0, · )=Vp0,0, G(0,1,·)=Vp0,1,
G(1,0,·)=Vp1,0 and G(1,1,·)=Vp1,1.

Once we have calculated the normalized VPR at
the desiderated point, we undo the normalization
using the downscaled value of the first elevation at the
point of analysis, and we take the value in the
corresponding height.  This will be the downscaled
pixel value in that elevation.  The same process can
be used to create “artificial” elevations between the
observed ones.

Figure 9 shows the downscaled fields obtained
through this technique when applied to two different
upper PPIs.  The downscaled first PPI used (base for

the homotopy) is the shown in Figure 7 (down-left).  It
can be observed that the homotopy re-introduces the
variability lost when averaging.

The introduction of a random component in the

VPRs obtained from the homotopy is under
investigation.

5.2 Polar to cartesian transformation

The last step of the 3D downscaling process is the
transform of the downscale polar values into the
requested cartesian grid.  This step is done by the
“nearest neighbour” algorithm in order to preserve the

generated extreme values in the downscaling process
and the small-scales variability (Trapp and Doswell,
2000).

6. CONCLUSIONS

In this work a 2D downscaling technique based on
a wavelet model is presented.  This technique is able
to reproduce the extreme values of the rain (like usual
wavelet models) and, at the same time, improve the
correlation between the generated values in the new
scales.

The 2D dimensional downscaling process is
complemented with a vertical homotopy of VPR in
order to obtain a complete 3D downscaling algorithm.

This vertical downscaling does not destroy the vertical
profiles of reflectivity measured by the radar and
allows us to increase the vertical values density.

This study has been done in polar data, which

implies that not all the pixels have the same area.
Therefore, the standard deviations obtained at the
different scales for the wavelet downscaling will
change depending on the distance to the radar of the
pixels used for its calculation.  Further investigation of
this issue is required.
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Fig. 9. Downscaling of the upper elevations example.  The first column represents the original data at two different
elevations (4.1º and 9.6º), the second column the same data averaged two scales up, and the third column the result of
the 3D downscaling technique.



Future work will include an extended study of how
to improve the results of the 2D downscaling model to
reproduce the spectrum of the fields.  The introduction
of a random component in the vertical downscaling
will be also investigated.
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