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1 INTRODUCTION

At short wavelengths (e.g. C- and X-band), the
attenuation of the radar signal by the precipitation
along its path is a critical issue for quantitative radar
rain estimates that has been recognized for a long
time (e.g. Hitschfeld and Bordan, 1954). A recently
developed stochastic simulator of range profiles of
raindrop size distributions (DSD) provides a con-
trolled experiment framework to investigate the ac-
curacy and robustness of attenuation correction al-
gorithms (Berne and Uijlenhoet, 2005).
This paper focuses on the quantification of the influ-
ence of uncertainties concerning the radar calibra-
tion, the parameterization of a power-law relation
between the radar reflectivity Z and the specific at-
tenuation k, and total path integrated attenuation
(PIA) estimations. The analysis concerns single fre-
quency, incoherent and non-polarimetric radar sys-
tems. Two attenuation correction algorithms are
studied: a forward algorithm based on the ana-
lytical solution proposed by Hitschfeld and Bordan
(1954) and a backward algorithm based on the so-
lution proposed by Marzoug and Amayenc (1994).
From DSD range profiles, the corresponding profiles
of bulk rain variables are derived. Using a Monte
Carlo approach, the accuracy of the two algorithms
is quantified for the different sources of error previ-
ously mentioned.

2 DSD SIMULATOR

The DSD simulator used in the following has been
proposed by Berne and Uijlenhoet (2005). It enables
to generate realistic DSD range profiles. It is based
on the exponential DSD, which two parameters Nt

and λ are considered to be random variables

N(D|Nt, λ) = Nt λ e−λD , (1)

where N(D|Nt, λ)dD denotes the drop concentra-
tion in the diameter interval [D, D + dD] given Nt

and λ. The latter are assumed to be jointly lognor-
mally distributed and their logarithms are assumed
to follow a bivariate first order vector auto-regressive
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Table 1: Mean, standard deviation and characteris-
tic time of N ′ = ln Nt and λ′ = ln λ deduced from
HIRE’98 data at a 60 s time step.

Mean Std θ (s)
N ′ 7.49 0.44 430
λ′ 0.88 0.32 430

process. Assuming Taylor’s hypothesis with a con-
stant velocity of 12.5 m s−1 (see Berne and Ui-
jlenhoet, 2005), the parameters have been derived
from DSD measurements for an intense rain period
of 45 minutes, collected during the HIRE’98 experi-
ment in Marseille, France (see Table 1).

The generated DSD profiles have a total length of
30 km, with a spatial resolution of 25 m. From these
DSD profiles, the corresponding profiles of bulk rain
variables (e.g. R, Z and k) are easily derived. This
controlled experiment framework allows to apply a
Monte Carlo technique to quantify the respective in-
fluence of the different sources of uncertainty in at-
tenuation correction.

3 ATTENUATION CORRECTION AL-

GORITHMS

As mentioned in the introduction, we consider
incoherent, single frequency and non-polarimetric
radar systems. Two different types of algorithms
will be studied in the following. The measured at-
tenuated reflectivity Za reads

Za(r) = δcA(r)Z(r) , (2)

where δc is the calibration error factor and A(r) is
the two-way attenuation factor at the range r (0 ≤
A ≤ 1). Assuming the Z-k relation reads

Z = δαα kδββ , (3)

where δα (δβ respectively) is the error factor in α
(β). Therefore, A can be written as

A(r) = exp

[

−0.2 ln(10)

∫ r

0

(

Z(s)

δαα

)1/(δββ)

ds

]

.

(4)



Hitschfeld and Bordan (1954) (HB hereafter) pro-
posed an analytical solution to express Z as a func-
tion of Za:

Z(r) = Za(r)/
[

δ
1/(δββ)
c −

0.2 ln(10)

δββ

∫ r

0

(Za(s)/δαα)
1/(δββ)

ds

]δββ

.

(5)

The HB algorithm is a forward algorithm because
the integral is between 0 and r. However, the differ-
ence in its denominator can be close to 0 and this
makes the algorithm highly unstable.
To avoid instability problems, another family of at-
tenuation correction algorithms has been developed.
It is based on the knowledge of an estimate A0 of
the PIA at a given range r0. The estimate A0 can
be uncertain, that is

A(r0) = δAA0 , (6)

where δA is the error factor in A0. The reformulation
of Eq.(5) starting from r0 and going backward to the
radar guarantees the stability of the algorithms. As
an example, we use the solution proposed by Mar-
zoug and Amayenc (1994) (MA hereafter):

Z(r) =Za(r)/
[

(δcδAA0)
1/(δββ)

+
0.2 ln(10)

δββ

∫ r0

r

(Za(s)/δαα)1/(δββ) ds

]δββ

.

(7)

The main drawback of such a backward algorithm is
that it requires a reliable estimation of the PIA at a
given range.
To study the accuracy of the algorithms, we use a
Monte Carlo technique. The analysis focuses on at-
tenuation correction using Eqs. (5) and (7). One
thousand profiles of Nt and λ (hence of Z, k and
Za) are generated. To be consistent with operational
radar sampling resolutions, the high spatial resolu-
tion (25 m) profiles are averaged at a lower spatial
resolution of 250 m. On each profile a Z-k power-law
relation is fitted by means of a non-linear regression
technique. It must be noted that they constitute the
best possible power-law relations. The exact PIA
value is calculated as the difference between the non-
attenuated and the attenuated Z profiles. Then the
two algorithms are applied using the fitted relations
on the 1000 profiles.
Figure 1 shows the median, as well as the 10% and

90% quantiles, of the distribution of the root mean
square error (RMSE) calculated between the exact
Z profiles and the Zc profiles obtained by applying
the two attenuation correction algorithms without
any uncertainty (i.e. δc = δα = δβ = δA = 1). The

Figure 1: Median (solid line) of the distribution of
the RMSE calculated between the exact Z profiles
and the Zc profiles obtained by applying the two at-
tenuation correction algorithms, for 1000 profiles at
a 250 m resolution. The dotted (dashed) lines rep-
resent the 10% and 90% quantiles for the HB (MA)
algorithm. ‘div’ indicates the percentage of diverg-
ing HB corrections. The convention is the same for
the subsequent figures.

significant dispersion of the distribution (Fig. 1 is in
log scale) is explained by the fact that the use of
a deterministic power law between Z and k is not
fully consistent with the stochastic nature of these
variables.
Obviously, the MA algorithm (0.05 < median <
0.3 dBZ) is more stable and accurate than the HB al-
gorithm (0.05 < median < 10 dBZ), which diverges
in about 1 in 5 cases. These RMSE values will con-
stitute the reference values for the quantification of
the influence of the different sources of uncertainty,
as detailed in the following sections.

4 INFLUENCE OF THE UNCERTAINTY

IN CALIBRATION

Radar systems can be affected by calibration er-
rors. In this section, the influence of the uncertainty
in calibration on the accuracy of the attenuation
correction algorithms is quantified. For better vi-
sual inspection, the calibration error is expressed in
dBZ as εc = 10 log(δc) and varies in the interval
[-5,+5]. The additional error due to uncertain cali-
bration is calculated as the ratio between the RMSE
values for a given calibration error and the reference
RMSE values. Figure 2 presents the median, as well
as the 10% and 90% quantiles, of the distribution of
RMSE ratio as a function of the calibration error.



The other error factors (δα, δβ and δA) are fixed to
1. When εc > 0, the median values are similar for

Figure 2: Median, 10% and 90% quantiles of the
distribution of the RMSE ratio as a function of the
calibration error εc expressed in dBZ, for the two
attenuation correction algorithms.

the two algorithms but the dispersion is larger for
the HB algorithm. When εc > 0, the distribution
remains similar for the MA algorithm. For the HB
algorithm, Eq. 5 shows that δc < 1 (or εc < 0) results
in more diverging profiles because the denominator
can be close to zero for smaller Za values, as illus-
trated in Fig. 2 by the sharp increase of the median
when −1 < εc < 0 and the divergence of the algo-
rithm when εc < −1 (absence of points).
As expected, the RMSE ratio rapidly increases when
εc 6= 0, that is the calibration error decreases sig-
nificantly the accuracy of the two algorithms. For
instance, the median RMSE ratio value is about 3
when εc = ±1 for the MA algorithm. It is about 4
(8 respectively) when εc = +1 (−1).

5 INFLUENCE OF THE UNCERTAINTY

IN THE PARAMETERIZATION OF

THE Z-K RELATION

The two studied algorithms are based on the as-
sumption of a power-law relation between Z and k.
To analyze the influence of the uncertainty in the
parameters of the Z-k power law on the accuracy of
the two attenuation correction algorithms, an error
factor between 0.7 and 1.3 is applied to the prefac-
tor (the exponent respectively). The additional error
due to uncertain parameterization of the Z-k rela-
tion is calculated as the ratio between the RMSE
values for a given prefactor (exponent) error and
the reference RMSE values. Figure 3 presents the
median, as well as the 10% and 90% quantiles, of
the distribution of the RMSE ratio as a function of
the relative deviation of the prefactor and exponent,
with respect to the reference Z-k relation. The other
error factors (δc and δA) are fixed to 1. For the pref-

Figure 3: Median, 10% and 90% quantiles of the
distribution of the RMSE ratio as a function of the
relative deviation of the prefactor (top panel) and
exponent (bottom panel) of the Z-k power law, for
the two attenuation correction algorithms.

actor (top panel of Fig. 3), the distribution of the
RMSE ratio is very similar for the two algorithms
when δα > 1. However, the HB algorithm is more
sensitive to the error in α when δα < 1, which is con-
sistent with Eq. (5). For instance, the median RMSE
ratio is about 3 when the error is about ±20% in the
prefactor for the MA algorithm. It is about 3 (7 re-
spectively) when the error is about 20% (-20%) for
the HB algorithm.
The influence of the exponent is stronger for both
algorithms, as indicated by the higher values of the
RMSE ratio. It must be noted that the MA algo-
rithm is more sensitive to the error in β. For in-
stance, the median RMSE ratio is about 9 when the
error in the exponent is about 20% for the MA al-
gorithm. It is about 3 when the error is about 20%
for the HB algorithm.

6 INFLUENCE OF THE UNCERTAINTY

IN THE PIA ESTIMATE

The MA algortihm is more accurate and more ro-
bust than the HB algorithm, but it requires an addi-
tional parameter which is the estimate of the PIA at
a given range. This section is devoted to the quan-
tification of the influence of the uncertainty in this
PIA estimate on the accuracy of the MA algorithm.



Similarly to εc, we define εA = 10 log(δA). The er-
ror in the PIA estimate εA is generated as a Gaus-
sian white noise with a standard deviation of 2.5 dB
(Delrieu et al., 1999). The additional error due to
uncertain PIA estimate εA is calculated as the ra-
tio between the RMSE values for the uncertain PIA
estimate and the reference RMSE values. Figure 4
presents the median, as well as the 10% and 90%
quantiles, of the distribution of the RSME ratio as a
function of εA for the MA algorithm. The other er-
ror factors (δc, δα and δβ) are fixed to 1. According

Figure 4: Median, 10% and 90% quantiles of the
distribution of the RMSE ratio as a function of the
PIA error εA expressed in dB for the MA algorithm.

to Eq. (7), Fig. 4 and Fig. 2 should be identical be-
cause δA and δc can be interchanged. In fact, for a
given reference Za profile, the error in the calibra-
tion and in the PIA estimate are generally different
and therefore the deduced distribution of the RMSE
ratio is slightly different. Nevertheless, the influence
of δA is the same as δc.

7 CONCLUSIONS

Attenuation correction is an important step for
quantitative rain estimation using C- or X-band
weather radar. In this paper, we focus on X-band
incoherent, single frequency and non-polarimetric
radar systems. We investigate the influence of uncer-
tainties in the radar calibration, in the parameteri-
zation of a power-law relation between the radar re-
flectivity Z and the specific attenuation k, and in the
total path integrated attenuation (PIA) estimates
on the accuracy of two attenuation correction algo-
rithms. The first (HB algorithm) is based on a for-
ward implementation and is known for its instability.
The second (MA algorithm) is based on a backward
implementation and is stable, but requires an ad-
ditional piece of information which is the PIA at a
given range from the radar. A stochastic model of
DSD range profiles provides a controlled experiment
framework, with fully consistent Z and k profiles, to

quantify the influence of the different sources of un-
certainty. An uncertainty of 1 dBZ in the measured
Z (or of 1 dB in the PIA estimate) leads to a mul-
tiplication of the RMSE by at least a factor 3. An
uncertainty of about 20% in the prefactor (exponent
respectively) leads to a multiplication of the RMSE
by at least a factor 5 (2). The influence of the use
of alternative DSD models (e.g. gamma, lognormal)
is the subject of ongoing research.
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