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1. INTRODUCTION  

The application of the spectrum width, 

i.e. ( )r
v

!2
!  , has been focused on isolating the 

contribution due to turbulence from other mechanisms. 

Most successful applications of ( )r
v

!2
!  are 

obtained for vertically, or nearly vertically, pointed 
radar (e.g. Brewster and Zrnic 1986, Hitschfeld and 
Dennis 1956, Fukao etc. 1994, Kollias and Albrecht 
1999, Rogers and Tripp, 1964); for horizontally 
scanning radars like the WSR-88D, only a few cases 
are reported (Istok and Doviak 1986, Fang, Doviak 
and Melnikov 2003, Meischner etc. 2001). Both the 
weather signal and turbulent velocity are random 
variables. In order to correctly interpret and relate 
them to each other, one has to rely on the accuracy of 
the estimated spectrum widths due to the various 
spectral broadening mechanisms. The relation 
(Doviak and Zrnic 1993, Eq. 5.67)  
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is often used equation in radar meteorology. Here, σ0,  
σα, σt, σs and σd represents the expected spectrum 
width due to hydrometer’s oscillation and/or wobbling, 
antenna rotation, turbulence, shear and diversity of 
the fall speeds of hydrometers. However, according to 
the author’s knowledge, there has not been detailed 
derivation for this relation. It is not clear under what 
condition(s) this relation is valid. Furthermore, this 
relation states that the square of the expected total 
spectrum width equals to the sum of the square of the 
expected widths associated with each mechanism. 
There are no cross terms. Existing theories don’t 
show cross terms, or the conditions under which 
cross terms can be ignored. One of purposes of this 
study is to rigorously derive relations for the first and 
second moment of the expected Doppler spectrum, 
and make clear under what condition(s) the above 
equation is valid. 

Each mechanism contributing to the 
spectrum width broadening has been studied and the 
associated theories were developed based upon 
different conceptual models, such as that for radar 
antenna rotation (Doviak and Zrnic 1993), shear 
(Sloss and Atlas 1968, Atlas, Srivastava and Sloss 
1969, Doviak and Zrinc 1993) and beam width (Atlas 
1964, Nastron 1997, Chu 2002). By decomposing the 
measured radial velocity into steady, turbulent and 
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terminal velocities, we attempt to put all contributors 
in one single unified analytical theoretical frame. This 
is another motivation of this study.  

 
2. Autocorrelation Function and Spectrum Width  

  For the sake of developing some basic 
formulas for application to other sections, we begin 
our analysis with the weather signal’s autocorrelation 
function, ( )

0
, rmTR
s

!
 assuming antenna rotation.  

The starting expression can be written as (i.e. Eq. 
(5.59a) of Doviak and Zrnic 1993) 
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where Ak is the complex amplitude of voltage echoed 
from the kth particle, Fk the weight imposed on kth 
particle due to the radar beam pattern. “ * ” in (1) 
denotes the complex conjugate, and E denotes the 
expectation operation. 

0
r
!

, locates the center of V6, 
and is a function of time if antenna is rotating. 
Consider an elemental volume dV in which there are 
Δk hydrometers. The weather signals from dV have 
the correlation function dR(mTs) 
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are spatially dependent correlation coefficients 
associated with beam displacement due to antenna 
rotation.  
  

3. Spectrum Width with Stationary Antenna 
For a stationary antenna radar, 

( ) 1,
0
!rmT

skF

!
"  if the scatterers’ displacements in 
mTs are small compared to the beamwidth as it 
typically is for meteorological scatterers. The 
subscript k locates the elemental volume dV where Δk 
hydrometers are located. In general ρko(mTs) is a 
function of the location of Δk, 
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where r
!

replaces the subscript k that locates Δk and 
dV. Thus Eq. (2) can be expressed as 
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where ( )rmT
so

!
,!  is the correlation coefficient 

associated with hydrometers’ oscillation and/or 
wobbling at point r

!
and integrating in space then one 

has 
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According to Reynolds decomposition (Pope 2003), 
the velocity field ( )trv ,

!
 can be decomposed into 

time averaged mean (i.e. steady) ( )rv
s

!
 and 

turbulent ( )trv
t
,
!

 components. If the radar beam axis 

is elevated above the horizon, ( )trv ,
!

 should also 

contain a component ( )rvdp
!

 due to the terminal 

velocity of the hydrometer at r
!

. If turbulence is 
approximately statistically stationary at least during 
the period of radar sampling, Eq. (7) then can be 
rewritten as 
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where   
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are the point correlation coefficients associated with 
spread of terminal velocity of hydrometers, 
turbulence, and steady flow at r

!
. The weather 

signal’s correlation coefficient ( )
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,rmT
s
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!  defined as 
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The Doppler spectrum in the frequency domain is 
defined as the Fourier transform of autocorrelation 
function of weather signal. Using the property 
of Fourier transform of 
[ ] [ ] [ ] [ ] [ ]
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gFgFgFgFggggF =  and noting that 

the volumetric integration and Fourier 
transform are commutative, one obtains 

the weighted normalized expected 
Doppler spectrum of weather signals in 
the velocity domain  
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The first moment ( )
0
rv

m

!
 of the weighted normalized 

Doppler spectrum is then 
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, i = o, d, t or s, is the 

first moment of ( )rvS
i

!
, . In this study, we assume 

( ) 0=rv
o

!
. Dovaik and Zrnic (1993) shows 

that ( )rvS
nt

!
,  is equal to the probability density 

function of turbulent flow and its first moment, 
i.e. ( )rv

t

!
, is equal to zero. It can be shown that 

( )rvS
ns

!
,  is a delta function and its first moment is 

just the velocity of steady flow ( )rv
s

!
. These results 

have been used in Eq. (16). The above equation 
shows that the first moment of the weighted 
normalized expected Doppler spectrum is the sum of 
the first moments of each individual normalized 
spectrum weighted by radar beam pattern, range 
weighting and reflectivity.  

The second central moment of the weighted 
normalized expected Doppler spectrum, can be 
written as 
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It can be shown  
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It is noteworthy that this relation differs from Eq. 5.67 
given by Doviak and Zrnic (1993) under the condition 
of a stationary radar antenna in three aspects. Firstly, 
all terms in Eq. (41) are the volumetric mean weighted 
by ( )rrH

n

!!
,
0

; secondly, there is a new term  
associated with the gradient of the mean terminal 
velocity across the radar beam; finally, there is 
another new term depending on the cross product of 
the gradient of the mean terminal velocity and wind. 
Both new terms are have heretofore been neglected 
in the literature. If the spectrum of the terminal 
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velocity or reflectivity is uniform across the radar 
beam, then both new terms will disappear in Eq.(18). 
Furthermore, if hydrometer’s oscillation/wobbling and 
turbulence are also locally homogeneous (i.e., over 
V6), the velocity variances associated with these 
mechanisms can be removed from the volumetric 
integration and the corresponding over bars can be 
removed.  Thus Eq. (18) reduces to 
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Although there is no over bar (i.e. weighted volumetric 
mean) over any term in the Eq. 5.67 given by Doviak 
and Zrnic, considering their Eq. 5.51, their Eq. 5.67 
should be identical to the Eq. (19) given here. From 
the derivation given above, it is clear that expression 
(19) is valid under the conditions: 1. the backscatter 
sections of hydrometers are independent of 
turbulence; 2. the influence of both steady and 
turbulent flows on the weighting function 
( )

0
, rmTF
sk

!
 is negligible; 3. oscillation/wobbling of 

hydrometer is locally homogeneous; 4. turbulence is 
locally homogeneous; 5. the spectrum of the terminal 
velocity of hydrometers or the reflectivity is locally 
homogeneous. It should be pointed out that when we 
derive the expressions of first and second central 
moments of the weighted normalized expected 
Doppler spectrum we assume the velocity field is 
stationary and therefore ( )rv

s

!
is steady. However, 

this assumption is not a necessary condition for our 
derivation. If ( )rv

s

!
 is not only a function of space but 

also a function of time, Eqs. (16) and (18) are still 
available. 
 

 
4. The Effect of Radar Antenna Rotation 

on Spectrum Width 
If radar antenna is stationary, section 3 

shows that the square of the total spectrum width 
equals to the weighted sum of the square of spectrum 
width associated with each contributor. This section 
extends the discussions in section 3 to scanning 
radars. For a scanning radar Eq. (1) can be rewritten 
as 
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where ( )
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 locates the center of the 
resolution volume V6 at zero lag, and, because V6 can 
be displaced 

0
rd
!

 in mTs, 0000
rdrr
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+= . Under the 
condition that the antenna pattern is product 
separable in the θ, φ directions, from Eq. (5.40) in 
Doviak and Zrnic (1993) 
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where 
s

mT!" =# , the one-way transmission loss, 
Pt the power transmitted by radar, g the gain of 
antenna, λ the length of electromagnetic waves 
transmitted by radar. Assume the ( )

sk
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depend on
k
v , and consider an elemental volume 
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= , where θ is the zenith angle. 
The auto covariance for signals backscattered from 
Δk hydrometers in dV can be written as 
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It follows that ( )
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 is the integral of Eq. (25). 
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In general the antenna radiation pattern 

( ) ( )!" 22 ff  is a complex function, but typically 

where ( ) ( )!" 22 ff  has significant value the pattern 
function can be well represented by a real Gaussian 
function. Thus noting the subscript k can be replaced 
by r
!

in the arguments of the variables, one obtains 
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where 
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s
==$  is the azimuth 

displacement of radar beam in mTs. ( )rr
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is only a function of the spatial coordinates φ, φ0, θe = 

π/2 - θ0 where θ0 is the zenith angle and 
2

!
"  is the 

second central moment of the two-way power pattern 
for a circularly symmetrical beam.  

Weather radar process a number M of 
received signal samples to reduce the uncertainty in 
the estimates of spectral moments. Antenna motion 
(usually azimuth rotation), combined with processing 
M weather signal samples, produce an effective beam 
broadened in azimuth. To estimate the first and 
second moments using PPP, the correlation function 
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+mVmV ) 

of continuous weather signal samples  are summed, 
and the moments are  calculated from the summed 
correlation function at the output of an integrator 
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is the location of the resolution volume V6 during the 
reception of the 2nd weather signal sample of the mth 
contiguous pair.  

The correlation function ( )( )
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, for 
the mth sample pair at the input to the integrator,  
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is the expected correlation function of a pair weather 
signals echoed by hydrometeors having a cross 
section weighted by an antenna pattern that has 

shifted 
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The correlation coefficient at the receiver output is 
defined as 
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power samples. Substitution of Eq. (77), with Ts = 0, 
for the denominator of Eq. (78), produces 
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is a azimuthal weighting function and, for circularly 
symmetric radiation patterns, 
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(Doviak and Zrnic, 1993, Serction 5.3 errata) has 
been substituted for 
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Consider a finite-time, MTs, un-weighted 
block integration because both spectral and PPP 
algorithms in weather radars typically employ it. The 
impulse response is given by, 
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It can be shown that 
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It is noteworthy that, for a horizontally scanning 
radar, ( ) ( )rrHrrrH
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If we have multiple complex multipliers and 
integrators, at each output of them we obtain a 
correlation coefficient with the different lag time. For 
lag time mTs, by changing Ts to MTs  in Eq. (36), one 
has 
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under the condition that m < M. The normalized 
Doppler spectrum associated with radar rotation 
is 
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and the analytical expressions of the normalized 
Doppler spectrum for other mechanisms are just 
same as that given in section 3.  

Fourier transforming Eq. (38) and following 
the procedures used in section 3, we can show that 
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the mean velocity and the spectrum width obtained 
from a weighted normalized Doppler spectrum for a 
scanning radar are 
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It is easy to show that the first and second central 
moments associated with radar rotation are 
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and 
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which is not the function of space.and identical to the 
square root of Eq. (C.23) given by Doviak and Zrnic 
(1993).  

It is noteworthy that, without 2

!
"  Eq. (42) 

has the same form as Eq. (18). But, the spectrum 
width associated with each mechanism in Eq. (42) is 
weighted by  the effective beam pattern. Both σα and 

( )rrH
en
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,
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 are functions of α. If turbulence, 
hydrometers’ oscillation and/or wobbling and the 
terminal velocity distribution of hydrometers are 
locally homogeneous, Eq. (42) then reduces to 
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If we further assume that no shear exists in azimuth 
direction, Eq. (45) then reduces to the Eq. (5.67) 
given by Doviak and Zrinc (1993). But, if there is 

significant shear in the azimuth direction, ( )r
s

!2
!  will 

depend on both the scanning rate α and the azimuth 
shear kφ; that is, even without other mechanisms, we 
cannot separate the second central moment 

( ) ( ) ( )rrr
ssv

!!! 22

0

2
!!!

""
+= ,  into the sum of 

moments whereby each is associated separately with 
scan rate α and shear as in Eq. (5.67) of Doviak and 
Zrnic (1993). Furthermore the conditions for that 
equation being valid for a scanning radar are: 1. the 
backscatter sections of hydrometers are independent 
of turbulence; 2. the influence of both steady and 
turbulent flows on the weighting function 
( )

0
, rmTF
sk

!
 is negligible; 3. oscillation/wobbling of 

hydrometer is locally homogeneous; 4. turbulence is 
locally homogeneous; 5. the terminal velocity 
distribution of hydrometers is locally homogeneous; 6. 
there is no shear in azimuth direction. 

 It should be pointed out that we do not have 
the correlation coefficients with different lagtime in 
practice. With the PPP algorithm, WSR-88D only uses 
the correlation coefficient at lag time one. The 
squared radar observed spectrum width is the 
estimate of the second moment of the Doppler 
spectrum (i.e. the Fourier transform of Eq. (38)) under 
the condition that the Doppler spectrum is Gaussian 
distribution. 

 
5. The Effect of Effective Beam Width on 

Spectrum Width 
 It has been shown in section 4 that, for a 
scanning radar, if there exists azimuth shear then 

( )r
s

!2
!  will depend on both the scanning rate α and 
shear kφ. We cannot separate the contributions of 

shear and radar rotation from each other. ( )r
s

!2
!  is 

weighted by ( )rrH
en
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,
0

 which is related to the 
effective beam pattern. For WSR-88D, the effective 
beam width is about 1.4 times thestationary beam. 
Assuming a uniform reflectivity field and αMTs≤θ1, 
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where ( )
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effective beam pattern function. It is 
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The analytical expression of 2

e!" is given by 
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one way 3 dB beam width of the effective beam. If 
wind field is linear along azimuth direction and 
restricted in this direction, it can be shown that 

( ) 222
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2
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ees
rkr !!! "#" $
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 (52). 

For the stationary antenna, from Eq. (5.74) given by 
Doviak and Zrnic (1993), the spectrum width 
associated with a linear wind field in azimuth direction 
is kφr0cosθeσφ. So, the ratio of spectrum width 
between rotating and stationary antenna due to 
azimuth shear is 
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Because the effective beam width is usually larger 
than the one of the stationary beam, this result 
indicates that if azimuth shear is significant and radar 
antenna is scanning, the spectrum width due to this 

shear, i.e. ( )r
s

!2

!" , obtained using stationary beam 

pattern will underestimate the true value. In this case 
the effective beam pattern and Eq. (121) should be 
used.  
 

6. Summery and Conclusions 
 The Fourier transform of the autocorrelation 
coefficient of weather radar signal is a weighted 
normalized expected Doppler spectrum. By 
decomposing the radial velocity into steady, turbulent 
and the drop’s terminal velocities, all contributors are 
put in one single unified analytical theoretical frame. 
Without spectral broadening mechanisms other than 
shear and turbulence, the weighted normalized 
expected Doppler spectrum is equal to the probability 
density function of the total velocity weighted by the 
beam pattern, range weight and reflectivity. It has 
been shown that, for a stationary antenna radar, the 
square of the measured spectrum width is a weighted 
sum of squared spectrum width associated with each 
mechanism and two new terms that have heretofore 
been neglected in the literature. One is the power 
weighted integral of the spatial gradient of the mean 
terminal velocity across V6; another is a cross term 
depending on the cross product of the gradient of 
mean terminal velocity of hydrometers and wind. For 
a scanning radar, the square of the measured 
spectrum width is still a weighted sum of squared 
spectrum width associated with each mechanism 
(except the one associated with antenna rotation) and 
two new terms, but the effective beam pattern should 
be applied to replace the regular pattern in this case. 
If the spectrum related to the terminal velocity is 
homogeneous, or the reflectivity is uniform across the 
V6, the two new terms will disappear. The classic 
expression, the un-weighted sum of each mechanism, 
i.e. Eq. 5.67 given by Doviak and Zrnic (1993), is only 
valid under conditions: 1. the backscatter sections of 
hydrometers are independent of turbulence; 2. the 
influence of both steady and turbulent flows on the 
weighting function is negligible; 3. oscillation/wobbling 

of the hydrometer is locally homogeneous; 4. 
turbulence is locally homogeneous; 5. the Doppler 
spectrum associated with the terminal velocity of 
hydrometers or the reflectivity is locally 
homogeneous; 6. there is no shear in azimuth 
direction. If there exists shear in azimuth direction, the 
corresponding spectrum width for a scanning radar is 
larger than that for a stationary antenna radar. Using 
the formula associated with a stationary antenna will 
underestimate the contribution of the azimuth shear. 
The first central moment of the weighted normalized 
expected normalized Doppler spectrum is contributed 
by steady flow and mean terminal velocity, and does 
not contain fluctuations associated with turbulence. 
So, it is impossible to derive the spatial spectrum of 
turbulence on all scales from the mean velocity 
obtained from the expected spectrum. For 
homogeneous turbulence, the second central moment 
of the weighted normalized expected Doppler 
spectrum equals the variance of the turbulent velocity 
at a point. It contains the contributions from all scales 
of eddies without any attenuation. Energy partition 
theory cannot be derived from the expected Doppler 
spectrum.  
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