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In the following section, the shallow-water 

model is described, along with the methodology 
used for this investigation. Section 3 provides 
results from these simulations for a single set of 
initial jet parameters, and in section 4, discussion 
and future work are presented. 

1. INTRODUCTION 
 

 The nature of balance in the atmosphere is of 
central importance to the dynamics of both the 
troposphere and the stratosphere, and unbalanced 
motions such as inertia-gravity waves play a 
significant role in many aspects of atmospheric 
behavior. In light of the importance of upper-
tropospheric jets for the generation of inertia-
gravity waves (IGWs) in the atmosphere, this 
study examines the evolution of unstable 
barotropic jets to assess the nature and evolution 
of balance in these features. This issue is explored 
using the simplest non-trivial dynamical framework 
in which balanced and unbalanced flows can 
coexist, namely the one-layer shallow-water 
equations. 

 
2.  MODEL AND DIAGNOSTIC CALCULATIONS 
 

A one-layer shallow-water equation model in 
Cartesian f plane geometry is used to simulate 
the life cycles of the instabilities to the basic-state 
zonal profile 
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In this study, numerical simulations of initially 
balanced zonal jets on an f plane are 
investigated for evidence of the breakdown of 
balance and the generation of inertia-gravity 
waves during the life cycles of the instabilities to 
these jets. The presence of unbalanced flow is 
typically inferred via various quantities that provide 
indirect measures of imbalance, such as the 
existence of strong ageostrophy, large Rossby 
and/or Lagrangian Rossby numbers, and large 
values of horizontal divergence and its material 
derivative. Nevertheless, these quantities are 
based on specific balance constraints (i.e., 
quasigeostrophy, semigeostrophy, or nonlinear 
balance), and it should be noted that assessment 
of balance based on the inaccuracy of these 
constraints allows for the possibility that the 
unbalanced flow so identified includes higher-
order balanced motions not accounted for in the 
system under consideration in addition to inertia-
gravity waves.  We choose to start with a balanced 
initial state and allow it to evolve, estimating 
possible unbalanced dynamical quantities using a 
second-order potential vorticity inversion. In strong 
jets, the Rossby and Froude numbers are not 
small compared to unity, therefore the applicability 
of traditional diagnosis is unclear.  

 
where Uo is the maximum jet speed, and yo is the 
initial width of the jet.  Initially, random 
perturbations of infinitesimal amplitude are added 
to the basic-state jet, and the model is run to grow 
an unstable wave. The time t = 0 in the simulation 
shown here corresponds to the time at which the 
maximum meridional wind is 1.5 m s-1. The 
boundary conditions in x are periodic and in y are 
solid wall with a damping layer to prevent 
reflection of waves back into the domain. A 
coordinate transformation is used in the y direction 
so that the boundaries are far from the jet region. 
The domain length is equal to one wavelength of 
the unstable mode. Associated with this jet profile, 
it is possible to define a Rossby and Froude 
number: 
 

              RoJ =
Uo

foyo
, FrJ =

Uo

gho
,               (2) 

 
where is the depth of the layer,oh g is the 

acceleration due to gravity, and is the Coriolis 
parameter. The latitude is set to 40

of
o N for these 

simulations. In addition, it may be useful to 
consider local values of Ro and Fr, defined by 
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where ζ is the relative vorticity.  
    Vt = k × ∇ψ t ,          (12) We also define a parameter, γ , 

  
where V = (u,v)  is the horizontal wind vector, ∇  
is the horizontal gradient operator, k is the vertical 
unit vector, δ = (∂u /∂x + ∂v /∂y) is the horizontal 
divergence, ψ  is the streamfunction, χ  is the 
velocity potential, and subscript  denotes terms 
and variables that are evaluated using diagnostic 
estimates of the corresponding time derivatives 

t

∂V /∂t and ∂ζ /∂t . Together, with suitable 
boundary conditions and the relations 
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where maxδ is the maximum horizontal divergence 

in the domain, and maxζ is the maximum relative 
vorticity in the domain. This parameter provides a 
crude estimate of the validity of nonlinear balance 
following the ad hoc scale analysis of Haltiner and 
Williams (1980), and its relevance may be verified 
a posteriori by evaluation of terms in the nonlinear 
balance equation. 

 
                  ζ = ∇2ψ      and     δ = ∇2χ ,         (13) 
 

The second-order potential vorticity (PV) 
inversion for the f plane shallow-water equations 
is based upon the methods described by McIntyre 
and Norton (2000) and Mohebalhojeh and Dritchel 
(2002). The invertibility principle of potential 
vorticity (Hoskins et al. 1985) stems from the fact 
that the PV (Q) is a balanced and materially 
conserved property, 

the system (Eqs. (7)-(13)) can be solved iteratively 
for the balanced height, vorticity, divergence, and 
winds from the knowledge of the potential vorticity 
field, . Q
 
3. RESULTS 
 
 The simulation shown here is for values of 
Uo = 60 m s-1, ho = 750 m, and yo = 450 km. The 
initial RoJ and FrJ for this simulation are 1.33 and 
0.70, respectively. Examining the evolution of the 
wave, it is important to note that the evolution of 
the maximum local Rossby and Froude numbers 
varies only slightly and remains O(1) throughout 
the entire simulation because the jet speed does 
not vary greatly throughout the simulation (Fig.1). 
From a formal scaling perspective (e.g., Spall and 
McWilliams, 1992), it is required that either Ro or 
Fr be small for nonlinear balance to be valid. None 
of the conditions are met here for this strong jet. 
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where 
 

     Q =
ζ + fo
H + h

,                     (6) 

 
is the shallow-water PV. The relative vorticity, ζ , 
is defined as (∂v /∂x −∂u /∂y), and h is the free 
surface deviation from a constant mean depth, H . 
Through a combination of asymptotic and heuristic 
arguments, a second-order potential vorticity 
inversion is formulized to solve for balanced 
dynamical quantities. The PV inversion equation 
set is 

 Next, the evolution of the diagnostic 
parameter, γ, is shown in Figure 2. It is apparent 
that γ remains less than O(10-1) for the duration of 
the simulation, so that the maximum horizontal 
divergence is not very large compared to the 
maximum relative vorticity. This implies to a good 
approximation that nonlinear balance should 
remain valid throughout the entire simulation. This 
immediately differs with regard to formal scale 
analyses previously noted, and further study in 
terms of higher-order balance relations is needed 
to confirm this implication.  

 
          g∇2h = foζ + 2J(u,v) −V ⋅ ∇δ −δ2     (7) 
 
(gH∇2 − fo

2)δ = −g∇2(V ⋅ ∇h + hδ) +

fo(V ⋅ ∇ζ + ζδ) − [2J(u,v) −V ⋅ ∇δ −δ 2]t
   (8) 

 In order to gain further insight into the 
evolution of balance given large Rossby and 
Froude numbers, a second-order potential vorticity 
inversion is performed to calculate the balanced 
and unbalanced divergence for this wave to 
determine if there is substantial evidence of 
unbalanced flow and possible IGW generation. For 

 
ζ = (H + h)Q− fo            (9) 

 
                     ζ t = −V ⋅ ∇ζ − ( fo + ζ )δ           (10) 
 

                   V = k × ∇ψ + ∇χ           (11) 



simulation t = 80 h, the wind and potential vorticity 
fields are shown in Fig. 3 showing the instability of 
the jet and wave structure. At finite amplitude, a 
sinuous mode resembling a Von Karman vortex 
street develops with alternating positive and 
negative vortices indicating the cyclonic and 
anticyclonic vorticity in the field as the barotropic 
wave grows in amplitude. The growth rate of this 
wave is 1 × 10-5 s-1, which corresponds to an e-
folding time of approximately 34 hours.  

 
 
 
 
 
 
 
 
 
 
 The total divergence and unbalanced 

divergence fields at t = 80 h are also indicated in 
Fig. 4. The unbalanced divergence field resulting 
from the potential vorticity inversion is O(10-1) 
compared to the total divergence at this time. 
Furthermore, integration of the model at this point 
does not reveal any imbalances greater than O(10-

1) when compared to the total divergence. The 
structure of the unbalanced divergence field 
clearly indicates the absolute maximum 
unbalanced divergence occurs downstream from 
the jet streak in the wind field in the region of 
highly curved flow and strongest parcel 
deceleartions which are consistent with previous 
numerical and observational studies (e.g., 
Uccellini and Koch (1987) and Koch and 
O’Handley (1997)). Hence, the magnitude of the 
imbalance is very small, and IGW formation is 
unlikely to occur, even though clear structures of 
unbalanced divergence are readily apparent. The 
growth rate (O(10-5))  indicates that the possible 
slow evolution of the wave may prevent large 
imbalances. This is consistent with previous 
analyses and shows that the evolution of a 
barotropic wave utilizing the shallow-water 
equations remains balanced to a high degree, 
even though Rossby and Froude numbers are 
O(1) in strong jets.  
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Figure 2. Time series of the ratio of maximum 
    horizontal divergence to relative vorticity during  
    the barotropic wave growth. 
 
4. DISCUSSION AND FUTURE RESEARCH 
 

The results of the diagnostic parameters and 
potential vorticity inversion throughout the 
simulation reveal that nonlinear balance should 
remain valid for strong jets, even though the 
Rossby and Froude numbers are O(1) throughout 
the simulation. Even though the presence of 
unbalanced flow, either in numerical simulations or 
in atmospheric data, is typically inferred via 
various diagnostic quantities, it is possible that 
these quantities are based on specific balance 
constraints (i.e., nonlinear balance, 
quasigeostrophy, semigeostrophy). It should be 
noted that an assessment of balance based on 
these constraints will not be an exact 
representation of the unbalanced flow.  

Also, there are a few limiting factors to the 
generation of IGWs in the shallow-water model. In 
addition to the slow growth rate, there is a 
possibility, in the shallow-water system, that there 
is a constraint on the growth of the mean-square 
divergence that may limit the potential for gravity 
wave generation and/or amplification. Also, 
possible effects of the time Asselin filter and 
damping coefficient used in the model may damp 
possible IGWs to quite an extent. Implementation 
of an initially unbalanced simulation initiated 
continuous IGW propagation from the jet region, 
and in this model, the IGWs generally were not 
affected to a great extent as they radiated from the 
jet region.   
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Future studies of the evolution of unbalanced 
flow from initially balanced jets may include  

 
Figure 1. Time series of local Rossby number 
(blue) and local Froude number (pink).  

  



  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
Figure 3. Wind speed (contour interval. 5 m s-1)                 

 
Figure 4. Horizontal divergence (contour interval 
 1 × 10-6 s-1) (top) and unbalanced divergence    (top) and potential vorticity (contour interval 
 contour interval 2.5 × 10-7 s-1) (bottom) for t =80 h.     2 × 10-8 s-1) (bottom) for t = 80 h.  
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identification of inertia-gravity waves, both in the 
vicinity of the jet and in the far field following Ford 
(1994). Researching the potential impacts on the 
present study due to the addition of such factors 
as topography, beta-effect, and baroclinicity also 
should provide insight on the generation of 
unbalanced flow and IGWs. Nevertheless, the 
barotropic shallow-water model is the simplest 
non-trivial dynamical framework in which balanced 
and unbalanced flow can coexist; therefore, it is 
sensible to begin with this model and expand the 
study to more complicated regimes. In other 
words, a hierarchical approach should be taken by 
building upon simpler dynamical frameworks. 
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