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1. Introduction.   
 
Most radar estimations of rainfall intensity 
and accumulations are still based on 
empirical relations between rainfall rate R   
(in mm/h) and reflectivity factor Z (in  
mm6m-3).  In many cases these Z-R relations 
are derived from drop size distributions 
(DSDs) measured by raindrop disdrometers.  
Regressions are fit to the scatter of (Z,R) 
points to determine the relation, which is 
almost always stated as Z = aRb.  The well-
known table by Battan (1973) lists dozens of 
examples of early Z-R equations from 
researchers in various parts of the world, 
with the implication that the equation 
differences are attributable to different types 
of rainfall processes.  Scores of additional 
relations have been published since then. 
 
However, recent studies by Ciach and 
Krawjewski (1999), Campos and Zawadzki 
(2000), and Tokay et al. (2001) point out 
that Z-R equations are method dependent.  
The same dataset may provide markedly 
different values of a and b when the 
regression is manipulated in different ways.  
These method-dependent Z-R differences  
might even be larger than those obtained 
from truly physically different rainfall 
regimes and may account for much of the 
abundant dispersion in Z-R equations 
reported in the literature.   
-------------------------- 
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In this study we further quantify the effect 
that several common regression processing 
options and DSD data refinements have on 
the Z-R relations.  We compare these 
method-dependent differences with Z-R 
differences obtained using the same 
procedures for two geographically and 
physically different storm types.  Our data 
are from a single drop-momentum-sensing 
disdrometer (JWD), originally described by 
Joss and Waldvogel (1967).  This JWD was 
operated on the prairie in Colorado and on 
the coastline in northern California.  The 
spring and summer rainfall sampled in 
Colorado was primarily from deep 
convective storms.  In contrast, the rain in 
California fell from shallow, stratiform 
winter storms.  In the California case, the 
disdrometer data only included raining 
periods when no melting-layer bright band 
was observed aloft by a collocated S-band 
profiling radar.  Storms during these periods 
contain no snowflakes or large ice crystals 
aloft and are usually characterized by 
shallow echo tops, an abundance of small 
drops, and few large drops (White et al 
2003). 
 
We examined the effects on the resulting Z-
R equations of three common processing 
options (and combinations of them) that 
represent essentially arbitrary choices for the 
analyst’s use of the (Z,R) points.  We also 
examined the effects of five refinements to 
the DSD data, some of which are unique to 
the JWD kind of disdrometer.  These 
methodology choices are shown in Table 1. 
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Table 1.  Method-Dependent Choices Investigated in this Study. 
 
Processing Options 
choice of: 

Comment 

Dependent variable R or Z 
Cutoff threshold R>0.1 mm/h, R> 1 mm/h, or Z > 15 dBZ
Regression type linear fit to log-R vs log-Z 

or power law fit to R vs Z 
Refinements 
use of: 

Comment 

Instrument-specific bin/size calibration* instead of nominal calibration 
Dead-time corrections (dtc) to DSD* Sheppard and Joe (1994) 
Time integration for DSDs  1 min or 10 min (with dtc) 
Altitude adjustments to drop fall speeds 
and momentum/diameter relations 

instead of sea-level values 

Non-Rayleigh Z values appropriate for  
X-band radar observations 

instead of Z = ∑nD6

 * = unique to JWD disdrometers 
 
 
2.  Common Processing Options.   
 
Although Z-R relations are traditionally 
stated as Z=f(R), the choice of dependent 
variable is arbitrary for disdrometer data.  
From a practical point of view, however, the 
equations are most often inverted to get 
R=f(Z), because radar observations of Z are 
available and their conversion to unknown 
values of R is desired.  Thus, R is a more 
practical choice for the dependent variable.  
The choice matters because standard 
regression fitting algorithms minimize the 
distance of the fit line from the points in the 
y-axis (dependent variable) direction and the 
results are different if the variables are 
reversed.  Lee and Zawadzki (2005) use a 
more sophisticated procedure, unavailable in 
most commercial regression software, which 
minimizes the perpendicular distance of the 
points to the regression line, thereby, 
avoiding the differences arising from the 
choice of dependent variable.   
 
Disdrometers such as the JWD are capable 
of recording tiny rain rates and reflectivities 

from a few individual drops, but these points 
have no practical value and are subject to 
large statistical and instrumental 
uncertainties.  Thus, it is common practice 
to exclude all points below some arbitrary 
lower cutoff threshold.  Using R > 0.1 
mm/h, for example, limits the data included 
in a regression fit approximately to drizzle 
and stronger rain.  Using R> 1 mm/h limits 
the data to light and stronger rain.  Using a Z 
threshold, such as Z > 15 dBZ, has the 
practical advantage of being directly 
applicable to a field of observed radar 
pixels.   Setting any of these thresholds too 
high, however, leaves a small population of 
relatively clustered points and results in a 
low correlation value and decreased 
confidence for the regression. 
 
Nearly all earlier Z-R equations were 
computed using simple linear least-squares-
fit regressions to the scatter of log-R and 
log-Z data points.  Modern software 
packages now make more sophisticated 
regressions convenient to use, such as a two-
parameter power law fit directly to the R and 
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and Z points.  But the linear and non-linear 
fits to exactly the same data produce 
different regression equations because of the 
nature of the fitting algorithms.  According 
to Campos and Zawadzki (2000), power law 
regression fits to R vs Z represent rain 
accumulations better and linear fits to log-R 
vs log-Z represent instantaneous rain rates 
better. 
 
3.  Available Refinements to the DSD 
data.   
 
The JWD disdrometer is manufactured by 
Distromet, LTD, in Basel, Switzerland, and 
is delivered with software that computes R 
and Z from the observed DSD for each 
sample time increment (typically 1 min).  
These “raw” Z and R values are computed 
assuming a nominal calibration of the D 
values for each of 20 size bins (spanning 
approximately 0.4 to 5.3 mm), interpolated 
from a finer-resolution set of 127 size bins.  
However, the manufacturer also provides a 
table of more precise calibration data 
specific to the individual disdrometer 
purchased.  In our case, these calibrated D 
values differed from the nominal values by 
0-2%, but most differed by less than 1%.  
The raw values also assume the impacting 
drops have momentums appropriate for their 
terminal velocities at sea level and that Z is 
for Rayleigh scattering conditions, such as 
would be appropriate for observing rain with 
S-band radar.  This may lead to errors for 
data collected at high altitudes where fall 
speeds are larger, and for applications using 
shorter wavelength radars, such as X, Ku, or 
Ka-band.   The JWD disdrometer employs a 
dead-time interval between recorded drops 
which excludes counting pulses from sensor 
ringing and helps avoid counting satellite 
splash drops.  However, the dead-time 
interval also causes the instrument to miss 
counting bona fide drops that hit the sensor 
in rapid succession.  Shepard and Joe (1994) 
show a dead-time correction (dtc) equation 
that partially corrects the recorded raw DSD 
for this factor.   For convenience, many 
analysts use the raw JWD data as is, off the 

shelf, without regard to the possible effects 
of these refinements.   
 
Disdrometer users must also select their 
recording interval; 1 minute is typically 
used.  However, longer sample 
accumulation times (applied during data 
collection or afterwards), such as 10-min 
intervals used by Hagen and Yuter (2003) 
have the advantage of reducing DSD 
statistical uncertainties and an inherent 
biasing of Z-R equations, by increasing the 
number of drops in each bin (Smith et al. 
1993).   In the method of Lee and Zawadzki 
(2005), 1-minute DSD data from several 
hours of rainfall are sorted and grouped 
together by their Z (or R) values and 10 or 
more of these discontinuous minutes of 
DSDs are subjected to a moving average to 
produce filtered DSDs.  The resulting (Z,R) 
points from the filtered DSD data exhibit 
greatly diminished scatter compared to the 
raw 1-minute data points. 
 
4.  Data and Methods.   
 
DSD data were collected with a JWD on the 
prairie near Erie, Colorado (1587 m MSL) 
from May to July 2004 as part of NASA’s 
Global Precipitation Measurement (GPM) 
program.  The same disdrometer also 
sampled winter rainfall on northern 
California’s coast at Bodega Bay (12 m 
MSL) as part of NOAA’s 
Hydrometeorology Testbed (HMT) program 
from December 2003 to March 2004.  All of 
the Colorado data from 18 stormy periods 
were used in this study.  Most were 
convective storms, but one period of light 
stratus rain was included.  The California 
data used in this study included only those 
rainy half-hour periods for which a 
collocated S-band profiler observed no 
bright band aloft, according to the objective 
criteria of White et al (2003).  As such, the 
Colorado data included far more short 
periods of intense rain from deep clouds, 
while the California data were characterized 
by generally lighter rain rates from 
shallower clouds.  
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5.  Storm-type/Location Difference. 
 
The DSD data from each location were 
initially processed with the following 
choices to produce a reference Z-R equation 
for comparison with those obtained at the 
same location using other method choices.  
The options selected for the reference 
equation were:  no data refinements (using 
the raw Distromet output file Z and R 
values), R as the dependent variable, 
threshold of R > 0.1 mm/h, 1-minute 
sampling, and linear regression.  The 
resulting reference equations are:   
 
 Z = 185R1.90  for GPM-Colorado,  
and 
 Z = 85R1.58   for HMT-California.   
 
The equations are indeed quite different, and 
because the same instrument and processing 
were used, we presume the difference 
reflects a true contrast in the disparate 
character of the precipitation sampled at 
these locations.  The data from both 
locations are shown in Figure 1 for the 
reference processing condition.  Although 
the points overlap extensively, there is 
noticeable separation of the two populations 
for reflectivities above about 25 dBZ, where 
the differences are quite pronounced.  At 35 
dBZ the predicted rainfall intensities differ 
by more than a factor of 2, with R= 4.5 
mm/h for the GPM-Colorado relation and 
9.9 mm/h for the HMT-California relation.  
The rms difference for the two equations is 
6.7 mm/h, using the full population of Z 
points from both datasets.  This number will 
be compared with the rms differences for the 
cases where processing options and data 
refinements are varied. 
 
6. Differences for Various Regression 
Processing Options 
 
Scatter plots and regressions for the GPM-
Colorado data are presented in this section 
for the several different processing and 
refinement methods.   The HMT-California 
data received exactly the same treatments, 
but the graphs are not shown.  The Colorado 

data for the reference case are plotted in 
Figure 2.  The threshold of R> 0.1 mm/h left 
3190 points of 1-minute samples for 
regression.  R was selected as the dependent 
variable and the regression is a linear fit to 
the log-R vs log-Z data.   As shown on the 
graph, the correlation coefficient, r, for the 
regression is 0.90.  The linear clustering of 
points along the left side of the plot below R 
= 2 mm/h are light rain and drizzle points 
from the only stratus case in the GPM-
Colorado dataset. 
 
Figure 3 shows the effect of raising the 
cutoff threshold to R > 1 mm/h and Figure 4 
shows the effect of setting the threshold at Z 
> 15 dBZ.  In Figure 5, Z was chosen as the 
dependent variable and the cutoff was again 
set at R > 0.1 mm/h.  Figure 6 shows the 
effect of using a 2-parameter power law 
regression fit to the R vs Z data with the 
cutoff again set at R > 0.1 mm/h.  The 
power law fit was computed with the 
commercial SigmaPlot graphics software for 
PCs and confirmed with the commercial 
Grapher and IDL software.  In Figure 7, the 
same kind of power law fit is shown for the 
regression of Z on R (Z as the dependent 
variable) with a markedly different result.  
In this case, the largest few R-value points 
have a dominating effect on the fit, and the 
resulting strange-looking Z-R equation 
differs greatly from all the other regressions. 
 
7. Differences for Various Refinements to 
the DSD Data.  
 
The effects of applying various refinements 
to the raw data of the Distromet output files 
are illustrated in Figures 8-12.  The data in 
Figure 8 were treated exactly the same as 
those in the reference situation (Fig. 2) 
except that Distromet’s diameter bin 
calibrations for this specific instrument were 
used instead of the nominal calibration.  The 
resulting difference in the regression from 
that of the reference is slight.   
 
The data in Figure 9 are the same as for the 
reference, except drop fall speeds and the 
diameter-momentum relation were adjusted 
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for the high altitude (~1600 m) of the 
Colorado site.  At altitude, lower air density 
allows a raindrop to fall faster than at sea 
level and to induce a larger voltage signal 
upon impacting the JWD sensor.  However, 
the resulting Z-R equation is only slightly 
affected by accounting for this factor.   
 
In Figure 10 the data are the same as in the 
reference, except the dead-time correction 
(dtc) algorithm of Sheppard and Joe (1994) 
was used to adjust the drop concentrations 
of the DSD.  The effect on the resulting 
regression is small in this case.  The same 
data are used in Figure 11 except that a 10-
minute integration or accumulation time is 
applied before the dtc (hence there are 
~1/10th as many points).  Here the difference 
from the reference is more noticeable, but 
still small.   
 
Data in Figure 12 were treated the same as 
for the reference, except the Z values of 
each point were recomputed from the 
observed DSD for non-Rayleigh conditions 
at X-band (assuming spherical drops).  The 
result differs only slightly from the reference 
case regression.  However, it should be 
noted that the non-Rayleigh adjustment to 
the Z values becomes increasingly 
significant when the DSDs contain greater 
proportions of large drops.  The differences 
are notable for DSDs with median diameters 
greater than about 2.5 mm (Matrosov et al. 
2005), as is often the case for heavy 
convective rainfall. 
 
Figure 13 shows the Z-R relations derived 
from exactly the same GPM-Colorado 
dataset using each of the various processing 
options and refinements.  The lines are 
plotted as R vs log-Z, to emphasize the very 
large span of retrieved R values, especially 
above 40 dBZ.  For example, the R values at 
50 dBZ range from about 20 to 100 mm/h, 
although only 2 of the 15 relations give R 
values above 40 mm/h. 
 
Exactly the same procedures were applied to 
the HMT data from the non-brightband 
winter rainfall on California’s coastline.  

The number of data points was quite similar 
for the two projects, but the HMT-California 
data were concentrated in lower 
reflectivities than the GPM-Colorado points.  
Results for both projects are summarized in 
Table 2, where the various processing 
options and refinements are indicated in the 
five columns on the right side.  Although 
many of the equations within each project 
appear very different from each other, in 
some cases the a and b values have partially 
offsetting effects.  The value of R derived 
from each regression at Z = 35 dBZ is 
shown in the table as an illustration of the 
magnitude of differences among the 
equations.  A root-mean-squared difference 
(rms difference or standard error) was also 
computed to assess the variations more 
thoroughly.  Each Z-R equation was paired 
with the same project’s reference equation, 
and pairs of R values were calculated using 
the dataset’s observed population of Z 
values (excluding points for which R< 0.1 
mm/h) as input.  The rms difference for 
these different method pairs are shown in 
Table 2.  For perspective, recall that the rms 
difference between the GPM and HMT 
reference equations was 6.7 mm/h. 
 
Table 2 shows that the individual effects of 
most of the DSD data refinements (lower 
portion of Table 2) on the Z-R equation 
were relatively small.  This is illustrated in 
the GPM data for example, by the values of 
R at Z=35 dBZ for the refinements, which 
range from 4.2 to 4.9 mm/h, compared to the 
4.5 mm/h reference-equation value.  This 
represents a variation of less than 10%.  For 
HMT, the corresponding variation among 
the refinements at 35 dBZ is 28%.  In 
contrast, the effect of several of the 
regression processing options was much 
greater.  For example, simply choosing Z 
rather than R as the dependent variable and 
using no other changes, produced R values 
at 35 dBZ of 6.5 mm/h for GPM (a 44% 
difference from the reference) and 14.0 
mm/h for HMT (a 41% difference from the 
reference).    
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The rms differences shown in Table 2 more 
adequately indicate the overall effects for 
the entire populations or observed Z values, 
than just considering a single reflectivity.  
For both datasets, the greatest rms 
departures from the reference occurred when 
using Z as the dependent variable and a 
cutoff threshold of Z > 15 dBZ.  In the GPM 
data, this 9.1 mm/h rms difference exceeded 
the 6.7 mm/h rms difference between the 
reference equations of the two very 
physically different Colorado and California 
datasets.  Thus, as suggested by Ciach and 
Krawjewski (1999) and others, arbitrary 
choices regarding data manipulation can 
indeed have effects on the Z-R equations 
that rival or exceed those of physically-
based differences between rain processes.  
The DSD data refinements were less 
influential in our cases, but were not always 
negligibly small.  Dead-time correction, for 
example, made one of the lager differences 
for the HMT dataset. 
 
8.  Discussion and Recommendations.    
 
Choices made in how to compute Z-R data 
regressions and whether to use or ignore 
various refinements to raw DSD data from 
disdrometers might seem innocuous.  
However, they can affect the Z-R relations 
to a surprisingly large degree, which in some 
cases is comparable to Z-R equation 
differences inherent in physically very 
different rainfall processes.  This is a 
sobering realization.  In addition to 
disdrometer instrumental sources of error, it 
adds to the well-known sources of 
uncertainty for radar reflectivity estimates of 
rainfall, such as radar calibration errors, 
storm-to-storm DSD variability, 
contamination of the rain signal by hail, 
snow, melting snow, or ground-clutter, etc.  
It provides further motivation for advancing 
rain estimation schemes beyond those based 
entirely on radar reflectivity.  However, the 
use of Z-R equations is unlikely to disappear 
soon.  Meanwhile new methods to reduce Z-
R uncertainties (e.g. Lee and Zawadzki 
2005) or to better define those uncertainties 
will be helpful.  Suggestions from our study 

are offered here for the benefit of future Z-R 
equation producers and users. 
 
Recommendations Regarding Regression 
Processing: 
 
1)  State the details of your method. 
Quite different Z-R relations can be derived 
from exactly the same data, depending on 
details of the method used.  By stating the 
processing details, comparisons of Z-R 
equations from different studies can be more 
fruitful.    
 
2)  Use R as the dependent variable. 
The choice of the dependent variable had a 
relatively large effect on the resulting Z-R 
equation for our data sets.  Although this 
choice is arbitrary when dealing with 
disdrometer data, it makes more sense from 
the viewpoint of practical radar applications 
to choose R as the dependent variable.   
 
3)  Use cut-off thresholds of Z. 
Excluding the very light rainfall (Z,R) points 
below an appropriate threshold will 
eliminate questionable points that may be 
contaminated by various sources of noise 
and have no hydrologic significance.  Again, 
it is more practical to use Z than R as the 
cut-off threshold when dealing with radar 
data, and we suggest doing the same for 
disdrometer data intended for radar 
applications.  The choice of the threshold 
parameter and its value usually had a 
moderately large effect on the resulting Z-R 
equation for our data sets.  However, the 
combination of using Z > 15 dBZ as the 
cutoff threshold along with selecting Z as 
the dependent variable (not recommended) 
produced very large Z-R equation 
differences for both of our datasets. 
 
4)  Use a linear regression to log-R vs log-Z. 
Power law fits are heavily weighted by the 
large-value (R,Z) data points.  As such, they 
may represent accumulations better than rain 
intensities, but they can be highly skewed by 
a few such points, which may be of 
questionable accuracy, far from the main 
population.  This was the case for our GPM
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Table 2.  Z-R Equations from Disdrometer Data for Two Projects Using Various Processing Options and Data Refinements 
 
GPM - Colorado    HMT (NBB only) - California            Method Conditions 
----------------------------------------------- --------------------------------------- ----------------------------------------------------- 
   R    R at     R     R at   Dep.   Regr. Time  
 Equation rms dif   35 dBZ Equation rms dif    35 dBZ Refin. Var. Threshold Type Accum 
   (mm/h)   (mm/h)              (mm/h)    (mm/h) 
 ___________ ______   ______ __________ ______   _______ ____ ___ __________ _____ _____ 
Reference: 
1. Z = 185R1.90 0    4.5  Z = 85 R1.58 0    9.9  none R R>0.1 mm/h linear 1 min 
Regression Processing Options: 
2. Z =    97R2.21 0.71     4.8  Z =   44R2.07 0.89    7.9  none R R> 1 mm/h linear 1 min  
3. Z = 209R1.74 1.04    4.8  Z =  78R1.67 0.29    9.2  none R Z>15 dBZ linear 1 min 
4. Z = 174R1.55 4.81     6.5  Z =  85R1.37 1.73  14.0  none Z R>0.1 mm/h linear 1 min 
5. Z = 160R1.70 2.47     5.8  Z =  75R1.50 0.92  12.1  none Z R>1 mm/h linear 1 min 
6. Z = 234R1.35 9.13     6.9  Z = 100R1.24 2.80  16.2  none Z Z>15 dBZ linear 1 min 
7. Z = 142R1.86 1.05     5.3  Z =  57R1.83 0.49    9.0  none R R>0.1 mm/h power 1 min 
8. Z = 128R1.89 1.10     5.5  Z =  46R1.93 0.61    9.0  none R R>1 mm/h power 1 min 
9. Z =    5R2.63 5.49   11.6  Z =  77R1.58 0.27  10.5  none Z R>0.1 mm/h power 1 min 
10. Z =    5R2.63 5.49   11.6  Z =  77R1.58 0.27  10.5  none Z R>1 mm/h power 1 min 
Refinements to DSD Data: 
11. Z = 170R1.88 0.36    4.7  Z = 79R1.56 0.32  10.6  calib R R>0.1 mm/h linear 1 min 
12. Z = 170R1.91 0.15     4.6   n/a  ----         ---  alt R R>0.1 mm/h linear 1 min  
13. Z = 152R1.92 0.38     4.9  Z =  70R1.50 1.16  12.7  dtc R R>0.1 mm/h linear 1 min 
14. Z = 186R1.99 0.57     4.2  Z =  81R1.59 0.08  10.0  dtc R R>0.1 mm/h linear 10 min 
15. Z = 181R1.88 0.20    4.6  Z =  86R1.54 0.22  10.4  xband R R>0.1 mm/h linear 1 min 
 
 
  calib = using instrument-specific calibration  xband = using non-Rayleigh reflectivities for X-band 
  alt = using altitude corrections   dtc = using dead time correction 
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dataset when Z was selected as the 
dependent variable.  The resulting very 
unusual Z-R equations fit the GPM high-
value points well but fit the vastly more 
common light to moderate rainfall data 
points poorly.  Traditional linear fits to log-
R vs log-Z are at less risk of being skewed 
by a minority of points. 
 
Results Regarding DSD Refinements: 
 
Most of the adjustments to the standard raw 
Distromet ASCII output files had relatively 
little effect on the Z-R equations for our two 
data sets.  In the Colorado dataset, all of the 
regression-processing options (items 2-4 
above) were more influential than any of 
these refinements.  The following 
refinements had trivial or minor impacts on 
the resulting Z-R equations for both 
datasets:  a) using the specific instrument 
calibration, b)  adjusting drop fall speeds 
and momentums for 1600-m altitude, and c) 
adjusting reflectivities for non-Rayleigh 
conditions appropriate for X-band radar 
observations.  Whereas, applying these 
refinements makes sense, their trivial effects 
in our cases suggest they may not be worth 
the extra effort involved.  However, non-
Rayleigh effects would certainly be more 
significant in heavier (large-drop) rain 
regimes and for shorter wavelengths, and 
should be included in those situations.   
 
Dead-time correction adjustments to the 
DSDs showed mixed results for the Z-R 
relations from our datasets.  The effect was 
minimal for the Colorado data, but relatively 
large effect for the California non-
brightband rain.  Thus, the importance of 
including this refinement is not clearly 
revealed by this study.    
 

Increasing the sample time integration from 
1 to 10 minutes also had rather minor effect 
for our datasets.  In contrast, other studies 
have emphasized the utility of averaging in 
time, in R, or randomly.  The filtering 
method of Lee and Zawadzki (2005) 
impressively reduced their Z-R scatter by 
averaging 10 or more of the raw 1-minute 
DSDs, sorted according to their Z values, for 
long rainfall datasets.   However, in dealing 
with short-lived convective rain, such as 
most of the Colorado dataset, 10 minutes is 
on the same order as the typical storm rain 
duration at a point, and the appropriateness 
of time averaging schemes must be 
questioned.   
 
The results presented here may not be 
representative of other disdrometer datasets.  
They are offered only as illustrative 
examples of the magnitude of the effects of 
various Z-R regression processing options 
and the application of refinements to raw 
DSD data from disdrometers.  Furthermore, 
our recommendations relate only to the 
derivation of Z-R equations and may not be 
appropriate for other applications, such as 
characterization of DSD features and 
relations among other rainfall parameters.   
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Figure 1.  Scatter diagram and Z-R regressions for the GPM04-Colorado rainfall (black) 
and for the HMT04-Claifornia non-brightband rainfall (red).  Each point represents 1 
minute of disdrometer data.  The number of points (n) and the correlation coefficient (r) 
of the regressions are shown on the graph. 
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Figure 2.  Scatter diagram and regression for the GPM04-Colorado disdrometer data for 
the case of no refinements, R as the dependent variable, a cutoff threshold of R > 0.1 
mm/h, linear regression to log-R vs log-Z, and 1-minute accumulations of disdrometer 
data for each point.  This is the reference case for the GPM04 dataset. 
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Figure 3.  As in Figure 2, except the cut-off threshold is R > 1 mm/h. 
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Figure 4.  Same as in Figure 2, except the cut-off threshold is Z > 15 dBZ. 
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Figure 5.  Same as in Figure 2, except Z is the dependent variable. 
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Figure 6.  Same as in Figure 2, except the regression is a power law fit to R vs Z. 
 

15



 
Figure 7.  Same as in Figure 2, except Z is the dependent variable and the regression is a 
power law fit to Z vs R. 
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Figure 8.  Same as in Figure 2, except the DSD data use the instrument-specific bin-drop 
diameter calibration instead of the nominal calibration. 
 

17



 
Figure 9.  Same as in Figure 2, except the DSD data have been adjusted for the drop fall 
speed and momentum-diameter relations for the 1600 m MSL altitude of the Colorado 
site. 
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Figure 10.  Same as in Figure 2, except the DSD data have been adjusted for dead time 
corrections. 
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Figure 11.  Same as in Figure 2, except the DSD data have been accumulated for 10 
minutes with dead time corrections applied.  Each point represents 10 minutes of 
disdrometer data. 
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Figure 12.  Same as in Figure 2, except the reflectivity factors computed from the DSD 
have been adjusted for the non-Rayleigh scattering conditions for observations with X-
band wavelength radars. 
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Figure 13.  Graph of R vs Z showing the regressions derived from the same GPM04 
dataset using various regression processing options and DSD refinements described in the 
text and shown on previous figures.  The solid black line is for the reference situation 
shown in Figure 2. 
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