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1. Introduction

A phased array weather radar has been constructed at
NSSL Norman Oklahoma, and this establishes the first
National Weather Radar Testbed equipped with the state-
of-the-art (solid-state) phased-array antenna (Forsyth et
al. 2005). An important and yet very challenging
research goal is to optimally design and utilize the
electronically-controlled agile beam scans for various
meteorological applications. This includes assimilating
phased array radar observations into mesoscale models
to improve numerical analyses and predictions of severe
storms and other hazardous weather conditions. This
paper reports our research progress in this direction.

2. Radar data and background fields

The phased array radar radial-velocity and reflectivity
data used in this study were collected during the period
from 2100 to 2200 UTC when a four-quadrant
electronic-scan strategy was tested on 2 June 2004.
During this period, a squall line moved southeastward
through the central Oklahoma area in the radial range
(140 km) of the phased array radar scans (Fig. 1). The
radar scanned roughly every two minutes per volume.
Total 26 volume scans were collected. Among these 26
volume scans, there is one volume scan that covers
only a single quadrant and this volume is not used. The
remaining 25 volume scans cover all the four quadrants
and are used in this study. Each volume scan has 7 tilts
with elevation angles of 0.75, 2.27, 3.78, 5.28, 6.78,
8.28 and 9.28 degree. On each tilt, the spatial resolu-
tions are 240 m in the radial direction and approxi-
mately 1.5° in the azimuthal direction.

The Coupled Ocean/Atmosphere Mesoscale
Prediction System (COAMPS, Hodur 1997) is used to
produce the background fields. The model is configured
with three nested domains centered over the state of
Oklahoma with resolutions of 54, 18 and 6 km for the
coarse, medium and fine grids, respectively, and 30
levels in the vertical. All other parameters are set to be
the same as COAMPS operational runs. The model
(control run) is initialized (cold start) at 0000 UTC 2
June 2004. After the first 12-hr model run, the conven-
tional observations are assimilated, and then another 12-
hr run is launched (warm start). The predicted wind
fields on the 6 km grid are used for radar radial-velocity
dealiasing in section 3, for error covariance estimation
in section 4, and for radar data assimilation in section 5.
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3. Phased array radar data quality control

The radar data quality control checks and corrects
velocity alias errors caused by the finite range of radar
velocity measurements limited by the Nyquest velocity.
Since the COAMPS background velocity is used as the
reference field, the dealiasing technique used here is a
simplification of the three-step dealiasing of Gong et al.
(2003, referred to as GWX). It performs only two steps:
reference check and continuity check. The reference
check is similar to that used in the first two steps of the
three-step dealiasing of GWX except that the reference
velocities are provided by COAMPS predictions instead
of the modified VAD and classic VAD. The continuity
check (buddy check) is similar to the third step described
in section 2d of GWX. For the phased array radar
velocity data used in this study, this simplified two-step
dealiasing is found to be effective (as shown Fig. 1) and
better than the operationally used technique.
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Fig. 1. Phased array radar observed radial velocity (a)
and dealieased radial velocity (b) at 21:47 UTC on 2
June 2004. The aliased velocity areas are highlighted by
yellow circles in (a).



After the dealiasing, an additional step of data quality
control is performed to remove outliers. A radial-
velocity measurement is considered to be an outlier if
the absolute value of its difference from the radial-
velocity averaged over its neighboring nine gates along
the radar beam is more than 1.25 times as large as the
nine-point radial-velocity standard deviation. Detected
and removed outliers are about 10% of the total amount
of the phased array velocity data, and the phased array
radar velocity data appear to be noisier than the WSR-
88D velocity measurements from the Oklahoma City
KTLX radar for the same squall line on 2 June 2004.
Finally, the precipitation terminal velocity is estimated
from radar observed reflectivity (Kessler 1969) and its
projection on the radar beam is removed from the radar
observed radia velocity.

4. Error covariance estimation

The background horizontal wind error is considered
as a random vector field. This random vector field is
assumed to be statistically homogeneous and isotropic
in the horizontal. The covariance of the radial-
component field of this random vector field has the
following non-isotropic form on the conic surface of
low-tilt radar scans (Xu and Gong 2003, referred to as
XG):

Cur(Xi, X)) = [C+(r)cosp. + C.(r)cosp+]/2, @)

where xj = (Xj, ¥j) denotes the location of the i-th point
relative to the radar (at the origin of the coordinates),
C+(r) = Cu(r) + Ce(r), C-(r) = Cyy(r) - Cee(r), B- = AB; -
ABj and B+ = AB; + AB;. Here, Cji(r) and Cy(r) are the
two diagonal terms in the canonical form of the vector
wind error covariance tensor [see ( 2.1)-(2.2) of XG],
while AB; and AB; are the angles that rotate vector x; -
X; to the directions of vectors x; and x;, respectively,
measured positive counterclockwise (see Fig. 1 of XG).
Note that Cjj(r) and Cy(r) are functions of r = [x; - x|
only and their function forms need to be estimated.

The non-isotropic error covariance function in (1)
suggests that the conventional statistic method of
innovation analysis (Xu and Wei 2001, referred to as
XW) can be modified to utilize radar wind innovation
(observation minus background) data. Based on (1), the
covariance of normalized radial-vel ocity innovation data
can be partitioned as follows:

[ od2Cyr forr>r,
<didj> = |
[ 0g®Cyr + Cerb) forr<r,, @

where <( )> denotes the ensemble mean of (), dj =
Vrdilodi, odi = <(Vrdi)?>Y2, vygj is the radial-velocity
innovation at the i-th observation point, o42 is the
averaged value of (ogj)? over all (qualified) observation
points, Cyr©P is the radar radial-velocity observation

error covariance, and r, is the range of observation error
correlation. The true mean of d; is assumed to be
negligibly small in (2) athough the computed <d;>
may nhot be small. The ensemble mean on the left-hand
side of (2) can be computed from the sampled time
series of djd; for each (i, j) pair of observation points.
The background error covariance Cyy is modeled by (1)
with C(r) and C_(r) expressed by the truncated spectral
expansionsin (4.1) of XW, but the range of background
error correlation is now set to D = 160 km based on the
overall distribution of the computed innovation
covariances. The range of observation error correlation
issettor, = 2 km based on the computed innovation
covariance structure near r = 0. Within the range of 0 <
r <r,, there are too few data points to resolve the
structure of CyOP, so only the variance ogp? =
C\,rOblr:o is estimated. The partition in (2) is similar to
that in Xu et al. (2003, XWN), but the innovation data
are normalized to improve their statistical homogeneity.
By subtracting their respective background fields
(provided by the COAMPS predictions as described in
section 2) from the 25 fields of quality-controlled radial-
velocity observations at the lowest tilt (0.75°), 25
innovation fields are generated and used to compute
<didj>in (2).

Ideally, the normalized innovation covariance on the
right-hand side of (2) should be computed for each
qualified pair of observation points (for which the
sampled time series djd; cover no less than 60% of the
total 25 time levels). This, however, will take too
much computer time to allow the intended real-time
application. (Note that there are often more than 10°
observation points and thus more than 0.5x1010 pairs
on the lowest tilt of radar scans). To solve this
problem, the innovation covariances are computed in
this paper not for all the qualified pairs (asin XWN) but
for thinned qualified pairs. The thinned pairs are those
on the same beams, two opposite beams, and on each of
the five selected circles (with r = 14.4, 19.2, 24.0, 28.8,
and 33.6 km).

For pairs of observation points on the same beam (or
two opposite beams), we have cosp. = 1 and cos+ = 1
(or cosp- = -1 and cosp+ = -1) and thus Cy,y = Cyi(r) [or
Cyr =-Cyi(r)] in (1). In this case, the normalized
innovation covariances are binned every 240 minr
along each beam for all the beams with cosp. and cosf .+
fixed. The binned innovation covariances are plotted in
Fig. 2a. For pairs on each selected circle, the normalized
innovation covariances are binned every beam width
(about 1.5 in the azimuth). In this case, r, B-, B+ and
thus Cyy in (1) are functions of the azimuthal separation
between points x; and x, along the selected circle.
Thus, Cy, can be also viewed as a function of r along
the selected circle, as shown by the two curves fitted to
their respective binned innovation covariances in Fig.



2b along the first two circles (with r = 14.4 and 19.2
km).
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Fig. 2. Binned innovation covariances (normalized by
0g? = 76.8 m? s2) for qualified pairs on the same beams
[marked by + signs in (a)], on two opposite beams
[marked by x signs in (a)], on the first selected circle
with r = 14.4 km [marked by + signs in (b)], and the
second selected circle with r = 24.0 km [marked by x
signs in (b)]. In each panel, the green (or purple) curve
is the estimated background error covariance function
that fits the + signs (or x signs).
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Fig. 3. Estimated background error covariance functions
scaled by 2042 (= 76.8 m2s2),

The estimated background error covariance functions
are scaled by 2042 and plotted in Fig. 3. Note that
C,(0) = 207 is the background vector wind error
variance, so o2 is the error variance for each component
(such as the radial component) of the background vector
wind. The vertical interception of 0.5042C(r) atr =0
in Fig. 3 estimates 02/04> = 0.9. The innovation
variance is 042 = 76.8 m2s2 (not shown) which is the
sum of 0% and Gyp2. This gives 62 = 70.4 m?s-2 and
Oob? = 6.4 m?s2 or, equivalently, o = 8.4 ms-! and
Oob = 2.5 msL. The estimated horizontal decorrelation
length scales are L = 43 km for Cg(r), Lot = 39 km for
Crot(r) and Lgjy = 53 km for Cqjy(r). Here, Cyo¢ and
Cgjv denote the error covariance functions for the
rotational and divergent parts, respectively, of the
background vector wind field, while Cy(r) = Crot(r) +
Cgiv(r) is the resolvable-scale part of C4(r) [see (4.4)-
(4.5) of XW]. The rotational and divergent wind error
variances are estimated, respectively, by Crot(0) = Opot?
=77 m?s2and Cgjv(0) = 04iy? = 63 m2s2 The
associated error standard deviations (Oyot = 8.8 ms™!' and
Odiv= 7.9 ms!) are quite large. The reason could be
due to the fact that the predicted squall line is dislocated
to the north of the observed one (by 30-40 km) and so
are the associated low-level horizontal shear and
convergence along the predicted squall line in the
background wind filed.

As r decreases into the range of r < r, (= 2 km), the
normalized innovation covariances (shown by + signs
in Fig. 2a) start to increase rapidly (can be seen from a
enlarged Fig. 2a but not shown here), indicating that the
observation errors are correlated between neighborhood
gates within the range of r < r,. The difference between
the + signs and the fitted (green) curve within the range
of 0 <r <r,in Fig. 2a reveals the gross structure of the

observation error covariance (Cll(’b).

5. Radar data assimilation

The previously developed three-and-half-dimensional
variational (3.5dVar) method (Xu et al. 2001a; Gu et al.
2001, referred to as GGX) is upgraded and used in this
section to assimilate the phased array radar data into the
COAMPS runs for the squall line case mentioned in
section 2. In each data assimilation cycle, the 3.5dVar
assimilates three consecutive radar volume scans to
produce incremental vector velocity fields on two time
levels (between the three volume scans) and then uses
the analyzed vector velocity fields to produce
incremental analyses of perturbation pressure and
potential temperature at the middle time level. The first
(or second) incremental vector velocity field is produced
at the middle time level between the first and second (or
second and third) volume scans by minimizing the
following cost function:

J=Jbk + Job + Jms + Jrm> 3)



where the four terms on the right-hand side are weak-
form constraints imposed, respectively, by the
observations (from the two volume scans but treated as
at the middle time level), by the mass continuity
equation (formulated at the middle time level), by the
radial-momentum equation (formulated at the middle
time level with the radial-velocity time tendency term
computed from the two volume scans), and by the
background field (at the middle time level).

In the upgraded 3.5dVar, the first three terms have
the same forms as those in GGX except but the weight
for Jop is determined not purely empirically but based
on the observation error estimated in section 4. In the
previous 3.5dVar, Jpk was formulated simply with a
scalar weight [see (2) of GGX] that ignored the
background error correlation. In the upgraded 3.5dVar,
the background term is formulated by

Jbk = [By V2|2 + [BV2x[2 + By V2w[2
=W+ X2+ w2 (4)

Here B,, B, and B5 denote the error covariance matrices
for the background streamfunction, velocity potential
and vertical velocity, respectively, while ¢, X and w
denote the state vectors of the grid fields of the
incremental streamfunction, velocity potential and
vertical velocity, respectively. In (4), the incremental
vector velocity is converted to (Y, X, w) and then to
(¥, X, W). Each horizontal grid field of (¥, X, W) is
expressed by an expansion of quadratic B-spline basis
functions on coarse finite-element meshes (Xu et al.
2001b), so the final control variables are the B-spline
coefficients of (¥, X, W). The recursive filter (Purser
et al. 2003) is used to mimic the background covariance
matrices and transform (¥, X, W) back to (W, X, w).
From the estimated background vector wind error
power spectra (not shown) in section 4, one can
estimate the streamfunction and velocity potential error
covariance functions [see (2.8) of XW]. However, as
these covariance functions are approximated by
Gaussian functions in the recursive filter, the variances
and horizontal decorrelation length scales can be
estimated by O'wz = OrotZLrotz and Lw = \/2Lr0t,
respectively, for the streamfunction, and by O‘XZ =
odiv2Ldiv? and L, = V2Lgjy, respectively, for the
velocity potential. Here, we simply set oygt = Ogiy = O
=84 ms?tand Lot =Lgjy =L = 6Ax = 42 km based
on those estimated in section 4. By using the mass
continuity equation, the error variance and horizontal
decorrelation length scale for the vertical velocity can be
estimated by UWZ = 20diV2DW2/LdiV2 and LW =
(V2IW3)Lgijy. Here, Dy is the vertical decorrelation
length scale for the vertical velocity and is set to Dy, =
Az (vertical grid spacing). The vertical decorrelation
length scales for the streamfunction and velocity
potential are set to Dy =Dy and D, = Dy/V3,
respectively. The above parameter values are used with

the recursive filter to model the three error covariance
matricesin (4). By using the standard conjugate gradient
algorithm, the costfunction J in (3) is minimized
efficiently in the space spanned by the B-spline
coefficients of (W, X, W). The estimated B-spline
coefficients are then transformed back to (¥, X, w) and
finally to the incremental vector velocity and added to
the background velocity on the COAMPS grid.

Once the vector velocity fields are updated at the
aforementioned two time levels (between the three
volume scans in each assimilation cycle), they are used
to produce incremental analyses of perturbation pressure
and potential temperature. These analyses minimize the
same cost functions as in GGX except that the
background terms are reformulated by replacing the
original scalar weights with their respective inverse
background error covariance matrices. Again, the error
covariance functions are approximated by Gaussian
functions. The recursive filter and B-spline expansions
are used to facilitate the computation in the same way
as described for the background term in (4). The
horizontal and vertical decorrelation length scales are set
toLp =Ly and Dp = Dy, respectively, for the
perturbation pressure, and to Ly =Lp and Dg = Dp/\/3,
respectively, for the perturbation potential temperature.

After the perturbation pressure and potential
temperature fields are updated by the above incremental
analyses, the model predicted water vapor mixing ratio
gy is adjusted based on the reflectivity difference
obtained by subtracting the model predicted positive-
only (in dBZ) reflectivity from the radar observed
positive-only (in dBZ) reflectivity (interpolated onto the
model grid). If the difference islarger than 10 dBZ and
the vertical velocity is non-negative (or negative), then
gy is adjusted to the saturated value (or 80% of the
saturated value). This adjustment is similar to that in
GGX except that it is based on the reflectivity difference
instead of radar observed reflectivity. Furthermore, if the
reflectivity difference is negative and below -5 dBZ, then
gy is adjusted to the value interpolated in x- and y-
directions from the nearest grid points where the
reflectivity difference> -5 dBZ. This negative
adjustment is new in the upgraded 3.5dVar and is found
to be effective in removing model incorrectly predicted
reflectivity (and associated clouds and precipitation). The
improvement is especially significant in the reflectivity
predictions as indicated by our comparison experiments
with and without the negative qy adjustment (not
shown).

By using the upgraded 3.5dVar, the first three
volume scans of the quality-controlled phased array data
are assimilated through a single cycle from 2108 to
2112 UTC, and then atest forecast run, called test-1, is
launched. Another test run, called test-3, is performed
by assimilating the first nine volume scans in three
cycles from 2108 to 2120 UTC. The reflectivity fields
(at 2200 UTC) predicted by the control run, test-1 run



and test-3 run are plotted at z = 3.1 km in Figs. 4a, 4b
and 4c, respectively. Verified against the (phased array
and KTLX) radar observed reflectivity (not shown), the
reflectivity field predicted by the test-1 run is more
accurate than predicted by the control run but not as
accurate as that predicted by the test-3 run.
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Fig. 4. Predicted reflectivity fields at 2200 UTC and z =
3 km by the control run (a), test-1 run (b) and test-3 run
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The model-produced (analyzed and predicted) radial-
velocity and reflectivity fields are interpolated to the
phased array radar observation points and compared with
their respective observed values. The rms differences
between the model-produced and observed radial-velocity
fields are plotted as functions of time in Fig. 5. As
shown, the rms difference is reduced by the analysis in
each assimilation cycle although the reductions produced
by the analyses in the second and third assimilation
cycles are relatively small and their impacts last only
about 30 minutes. The spatial correlation coefficients
between the model-produced and observed reflectivity
fields are plotted in Fig. 6. As shown, the correlation is
enhanced by the analysis in each assimilation cycle and
the impact produced by each analysis can last a
relatively long time (several hours).
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Fig. 5. The rms differences between the model-produced
and observed radial-velocity fields (averaged in the
observation space). The red, blue and green curves are
for the results obtained from the control run, test-1 run
and test-3 run, respectively.
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Fig. 6. As in Fig. 5 but for the spatial correlation
coefficients between the model-produced and observed
reflectivity fields in the observation space.



6. Summary

An initial effort has been made in assimilating
phased array radar data and the goal is to improve
numerical analyses and predictions of severe storms. To
achieve this goal, a comprehensive approach is being
taken to attack problems in three important aspects: (i)
phased array radar data quality control to meet the high-
quality standard required by data assimilation, (ii)
estimation of phased array radar radial-velocity
observation error variance and background wind error
covariance, and (iii) phased array radar data assimilation
using the estimated error statistics. This approach is
demonstrated in this paper for a squall line case. The
results show that using the COAMPS background can
simplify the three-step dealiasing although the phased
array radar data used in this paper appear to be noisier
than the KTLX data (for the same squall line case).
With the fast phased array radar scans, radial-velocity
innovation data can be accumulated rapidly, so the
unknown radar radial-velocity observation error variance
and background wind error covariance can be estimated
nearly real-time by using the statistical method and
thinning strategy developed in this paper. The estimated
error variance and covariance can be used by the 3.5dVar
(upgraded in this paper) with the COAMPS to improve
the numerical analyses and predictions of the squall line.

Acknowledgments. The authors are thankful to Kurt
Hondl, Richard Adams and Douglas Forsyth for their
help in obtaining the phased array radar data. The
research work was supported by the NOAA High
Performance Computing and Communications (HPCC)
program, by the FAA contract |A# DTFA03-01-X-9007
to NSSL, and by the ONR Grants N000140310822 and
N000140410312 to the University of Oklahoma.

References

Forsyth, D. E., J. F. Kimpel, D. S. Zrnic, R. Ferek, J.
F. Heimmer, T. J. McNellis, J. E. Crain, A. M.
Shapiro, R. J. Vogt, and W. Benner, 2005: The
national weather radar testbed (Phased-Array). 32nd
Conference on Radar Meteorology, 24-29 October
2005, Albuquerque, New Mexico, Amer. Meteor.
Soc., 12R.3.

Gong, J.,, L. Wang, and Q. Xu, 2003: A three-step
dealiasing method for Doppler velocity data quality
control. J. Atmos. & Oceanic Technology, 20, 1738-
1748.

Gu, W., H. Gu, and Q. Xu, 2001: Impact of single-
Doppler radar observations on numerical prediction of
7 May 1995 Oklahoma squall line. Fifth Symposium
on Integrated Observing Systems, 14-19 January
2001, Albuquerque, New Mexico, Amer. Meteor.
Soc., 139-142.

Hodur, R. M., 1997: The Naval Research Laboratory's
coupled ocean/atmosphere mesoscale prediction
system (COAMPS). Mon. Wea. Rev., 125, 1414-
1430.

Kesdler, E., 1969: On the distribution and continuity of
water substance in atmospheric circulation. Meteor.
Monogr., 10, No. 32, Amer. Meteor. Soc., 84 pp.

Purser, R. J., and W.-S Wu, D. F. Parrish, and N. M.
Roberts, 2003a: Numerical aspects of the application
of recursive filters to variational statistical analysis.
Part |: Spatially homogeneous and isotropic Gaussian
covariances. Mon. Wea. Rev., 131, 1524--1535.

Xu, Q., and J. Gong, 2003: Background error covariance
functions for Doppler radial-wind analysis. Quart. J.
Roy. Meteor. Soc., 129, 1703-1720.

Xu, Q., H. Gu and W. Gu, 2001a: A variational
method for Doppler radar data assimilation. Preprints,
Fifth Symposium on Integrated Observing Systems,
14-19 January 2001, Albuquerque, New Mexico,
Amer. Meteor. Soc., 118-121.

Xu, Q., H. Gu, and S. Yang, 2001b: Simple adjoint
method for three-dimensiona wind retrievals from
single-Doppler radar. Quart. J. Roy. Meteor. Soc.,
127, 1053-1067.

Xu, Q., L. Wang, and K. Nai, 2003: Error covariance
estimation for Doppler wind data assimilation.
Preprints, 31th Conference on Radar Meteorol ogy, 6—
12 August 2003, Seattle, Washington, Amer.
Meteor. Soc., 108-109.

Xu, Q., and L. Wei, 2001: Estimation of three-
dimensional error covariances. Part II: Analysis of
wind innovation vectors. Mon. Wea. Rev., 129,
2939-2954.





