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1. INTRODUCTION

Multidimensional analyses of cloud inhomogeneities
or of atmospheric turbulence characteristics long repre-
sented an almost unaffordable task. Aircraft penetrations,
with in situ instrumentation alone, lack to offer a com-
prehensive set of observations, being limited to one di-
mensional samplings and temporally constrained by the
small time scales of the cloud. Ground-based remote
sensing can partially fill in a broader picture. X- or S-
band radar ground installations have been used since
the 1960s to study the dynamical structure of clouds, in-
cluding convective ones. The potential of W-band mil-
limeter wavelength radars has also been demonstrated
(Lhermitte 1987, 1988; Kollias et al. 2001). The high sen-
sitivity of 95 GHz radars with respect to cloud droplets
and their high spatial resolution allow for a more thor-
ough view of the cloud environment in terms of both small
scale structural features and mean dynamic properties.
Multiple-Doppler radar techniques have also been pro-
posed to study the kinematics of atmospheric phenom-
ena, from stratiform clouds (Heymsfield 1979), to convec-
tive clouds (Lhermitte 1975; Ray et al. 1975; Kropfli and
Miller 1976; Ray et al. 1980; Knupp and Cotton 1982; Sun
and Crook 1998; Gao et al. 2004), to clear-air boundary
layers (Kropfli and Hildebrand 1980; Atkins et al. 1995).
Ground-based remote sensing, though capable of pro-
viding high temporal resolution samples of the target vol-
ume, suffers from several limiting factors. Foremost, sci-
entific observations are restricted to phenomena occur-
ring in the area covered by the radars. Secondly, their
scanning outcome is usually lessened in the vertical di-
rection. Thirdly, the interpretation of in situ data in the
context of the radar retrieved cloud structure is hampered
by the general temporal and spatial offsets.

The design and development of an airborne meteo-
rological radar was first advocated by Lhermitte (1971).
When coupled with an airborne platform, the merging of
in situ observations with radar data yields a multifaceted
insight of the cloud physics. On one hand, mobile plat-
forms offer the ability to gather data in multiple regions
of meteorological interest, rather than in one location dic-
tated by a fixed radar. On the other hand, the radar re-
trieved reflectivity and velocity fields complete a picture
that would, otherwise, only rely on the cloud thermody-
namic characteristics at flight level.

First tests on the feasibility of airborne pseudo-dual-
Doppler analyses performed via a vertically scanning
single-beam radar, and comparisons with a ground-
based dual-Doppler network are given by Jorgensen et al.
(1983); Ray et al. (1985); Hildebrand and Mueller (1985).
For these configurations, the lengthy time needed to col-
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lect data by orienting a single antenna beam along mul-
tiple directions impairs the resolution and the retrieved
velocity accuracy. Dual-scanning beam airborne radars
have been proposed (Jorgensen et al. 1983, 1996; Hilde-
brand et al. 1996), where the reduced time lag between
illuminations of same spatial volumes is on the order of a
minute or more and the spatial resolution in the hundreds
of meters. An alternative solution is an aircraft-based
fixed dual-beam (dual-antenna) Doppler radar. A first de-
scription of such a configuration for an X-band radar, with
a discussion of the potential analysis errors, is given in
Heymsfield et al. (1996). A similar set-up is presented
in Damiani et al. (2004) for a W-band device. For such
type of configurations the aircraft provides the necessary
motion to scan the same sample volume along two fixed
beam directions, with a short time lag between the two
illuminations. A typical time interval of 10 s (at ranges
≤3 km) reduces the target evolution and advection ef-
fects. From the analysis of two independent radial ve-
locity components, an estimate of the target velocity in
the plane determined by the beams can be inferred. This
leads to the retrieval of a 2-D kinematic field.

Besides the advantages in terms of data collection
time, the airborne fixed multi-beam radar installation of-
fers a simplified and cost-effective design with respect to
a single or dual scanning-beam one. It further yields an
along-flight-track resolution of 30-40 m which is at least
an order of magnitude higher than that of the currently
used scanning configurations, and it is prone to less un-
certainty in the beam pointing angles and thus on the fi-
nal retrieved velocity. Furthermore, if the beams scan a
vertical plane, an immediate retrieval of vertical air motion
can be achieved by removing the aircraft (AC) motion and
particle fall-speed, without the necessity of integrating the
continuity equation. The two-antenna set-up can further
be used to estimate reflectivity attenuation via the ’stere-
oradar’ or ’dual-beam’ approach and to retrieve cloud mi-
crophysical characteristics of clouds (Guyot and Testud
1999; Lopez et al. 2000).

In this paper, we offer a technique to merge and an-
alyze airborne fixed-dual-beam Doppler radar data in ei-
ther vertical or horizontal planes of scans. The technique
has been recently applied to the Wyoming Cloud Radar
(WCR) installation aboard the University of Wyoming
KingAir (UWKA), with first scientific results documented
in Geerts et al. (2004) for the investigation of a clear-
air boundary layer density current, and in Damiani et al.
(2004, 2005) for cumulus cloud studies.

The WCR is a 3.2 mm wavelength (95 GHz) Doppler
radar (Pazmany et al. 1994). Details of its multi-beam
UWKA installation are given in Section 2. Sections 3 - 4.1
illustrate how the data from the two beams are re-gridded
onto a Cartesian mesh advecting with the mean wind
speed, and how the grid parameters can be customized
to accurately follow the AC trajectory. The grid resolution
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FIG. 1. WCR dual-Doppler antenna beam configurations aboard
the UWKA.

can be adjusted to account for the range-degrading radar
beam resolution or to enhance the details in specific ar-
eas of the scanned region.

Sections 4.2 - 4.4 describe the velocity inverse decom-
position problem to be solved for every grid cell; it con-
sists of a system of equations carrying the information
on the measured radial velocities, solved via a weighted
least-squares method. In order to avoid contamination of
the velocities by out-of-plane wind components, an esti-
mate of the ambient wind needs to be introduced in the
calculation algorithm. The data weighting functions are
based on the relative geometry of the data points and the
grid cell centroids, on the entity of the beam out-of-plane
components, and on the data signal-to-noise ratio (SNR).

The technique error sources are discussed in Sec-
tion 5; they include random errors due to the spread of
the Doppler spectrum, systematic errors due to uncer-
tainties in the beam pointing directions, AC motion, ambi-
ent mean wind, and interpolation approach.

In Section 6, two case studies related to horizontal and
vertical cumulus cloud scans are presented together with
an upper bound estimate of their dual-Doppler analysis
errors. Conclusions are summarized in Section 7. A de-
scription of an IDL R© based software package implement-
ing the technique is available at http://www-das.
uwyo.edu/wcr/idl/wcrdddoc.pdf .

2. AIRBORNE MULTI-BEAM RADAR AND DUAL-
DOPPLER CONCEPT

Table 1 reports the principal specifications of the WCR.
Fig. 1 shows a schematic of the dual-beam antenna con-
figurations available on board the UWKA. Four anten-
nas are mounted on the aircraft: two look down along the
vertical plane normal to that of the wings; the other two
scan a starboard horizontal plane. The first pair (nadir
and nadir-forward antennas) allows for the retrieval of the
scatterer velocity in the vertical plane aligned with the air-
craft track (VPDD, Vertical Plane Dual-Doppler); the sec-
ond (side and side-forward antennas) can be used to re-
trieve the horizontal 2-D velocity field (HBDD, Horizontal
Beam Dual-Doppler).

In Fig. 2, the basic concept of the airborne dual-
Doppler is illustrated. The return signals associated
with two fixed radar beams (antennas) are combined to
provide two independent measurements of the scatterer

WCR Operational Param-
eters

Value(s) and/or Range

Frequency 94.92 GHz (λ =3.16 mm)
Nominal Peak Power 1.6 kW (1% duty cycle)
Nominal Pulse Length 100, 250, 500 ns
Pulse Repetit. Frequency
(PRF)

1-20 kHz

Receivers
- dynamic range
- bandwidth

2
>70 dB
10, 5, 2 MHz

Antennas
- aperture
- beamwidth
- gain
- polarization (linear)

4; 5 fixed beam positions
0.30, 0.30, 0.38, 0.46 m
0.8, 0.8, 0.6, 0.5◦

45, 46, 48, 50 dB
one dual (H,V), three
single

Doppler Velocity
- pulse-pair processor
- FFT spectrum

±15.8 m s-1 @ 20 kHz
PRF
32 or 64 spectral lines

Volume Resolution
- 250 ns, 0.3 m an-

tenna
37 x 12 x 15 m @ 1 km
37 x 36 x 39 m @ 3 km

Minimum Detectable Signal -30 dBZ
(250 ns, 500 averaged pulses,
0.3 m antenna, @1 km)

(1 std. dev. above mean noise)

Table 1. Wyoming Cloud Radar Parameters.

mean velocity in a given illuminated volume. Due to the
stochastic nature of the target and the sources of the
measurement errors, more than just two radar illumina-
tions will be used, making the problem overdetermined,
even though the directions of scan will remain nearly de-
pendent on the main two. Each data point is charac-
terized by the pair (prof ,r), where prof is the indexed
radar return from M radar pulses, and r is the rangegate
number related to the sampled distance along the range.
A typical WCR profile dwell time is 25 to 30 ms and the
number of rangegates is between 50 and 150, with sam-
pling interval from 15 to 45 m.

The mathematical problem consists of retrieving the
velocity vector that decomposes along the measured ra-
dial components (cf. Section 4.4). The sought velocity is
a 3-D vector, but only two independent components are
effectively measured. Thence, one may hope to resolve
with sufficient accuracy just the projection of the velocity
on the plane determined by the beam directions. How-
ever, an estimate of the so-called ’cross-plane’ compo-
nent is necessary. The attitude of the aircraft can, in fact,
yield an erroneous reading of the in-plane velocity due to
the contamination of the radial velocities by the across-
plane wind when the beams are forced out-of-plane. For
this purpose an assumed horizontal wind vector (usually
based on in situ measurements in the vicinity of the ob-
served clouds) is also employed.

This methodology is feasible as long as the volume
scanned by one of the beams is observed by the other
after a time interval shorter than the characteristic evolu-
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FIG. 2. Dual-Doppler main concept: a given scatterer volume is
illuminated by the two beams at short distance in time. ~v1 and~v2

are the Doppler mean radial velocities; ~vxp denotes the ’cross-
plane’ component, i.e.: the non-measured component of the
velocity, normal to the plane of the beams. ~vπ is the retrieved
scatterer velocity in the plane of the beams.

tion time-scale of the scatterer volume. At typical aircraft
(AC ) airspeeds greater than 90 m s-1 and at typical WCR
maximum ranges (∼3 km) the time-lag is on the order of
15 s; at minimum ranges it is on the order of 1 s.

The choice of the beam geometry is dictated by the re-
quirement of obtaining accurate dual-Doppler retrievals
and by the platform structural constraints. Under the
boundaries imposed by the latter, the angle between the
beam directions is calculated as a trade-off between two
requisites. On one hand, the scanning directions should
be kept as far apart as possible to maximize the vector
independence. In the literature, e.g., Hildebrand et al.
(1996), it is suggested that the directions from which two
or more radial velocities are measured should differ by
30◦ or more; this number is also based on the classic
dual-Doppler approach requiring the integration of the
mass budget equation in a 3-D volume (Doviak and Zr-
nic 1993). On the other hand, the time lag between illu-
minations, proportional to the angle between the beams,
should be kept small to reduce the target evolution ef-
fects. For the UWKA installation the antenna beams
form angles near 30◦ (see Fig. 1). Moreover, one of the
beams is mounted perpendicular to the AC normal direc-
tion of motion. This layout is recommended because it
reduces the AC motion contribution into the radial velocity
measurement (also decoupling the AC attitude deviations
from straight and level flight), and it allows for a direct re-
trieval of vertical velocities (nadir antenna beam).

The steps necessary for the dual-Doppler analysis of a
selected flight segment are:

1. Synchronize the data from the radar and AC data
system.

2. Apply calibration and threshold to the reflectivity
data (optional).

3. Correct radial Doppler velocities for Aircraft motion,

via Inertial Navigation System (INS ) and Global Po-
sitioning System (GPS ) data.

4. Unfold aliased Doppler velocity.

5. Transform every data point from both beams to a
common coordinate system.

6. Construct a Cartesian grid (mesh) onto which the
data coming from the two beams will be interpolated.
The grid advects with the estimated mean wind ve-
locity.

7. Weight average the data from each beam in the
vicinity of every grid point.

8. Solve the dual-Doppler velocity inverse decomposi-
tion problem.

In the following sections, some of these steps are ex-
plored in detail.

3. GRID CONSTRUCTION

The data coming from the two beams need be interpo-
lated onto a common Cartesian grid, so to ensure the cor-
rect spatial mutual placement of the target features, and
to allow for the solution of a velocity inverse decomposi-
tion problem for every grid cell. The grid can be thought
to be translating with a mean wind or storm motion, so
that the advection effects due to the time lag between il-
luminations are reduced (cf. Section 5.8).

The gridding and data point interpolation affect the
quality of the retrieved velocities, hence special attention
is dedicated to guarantee that the maximum number of
points partake in the analysis. The flight pattern and the
AC attitude influence the spatial orientation of the radar
beams and the data point position. A constant head-
ing flight, as for instance in straight-track boundary layer
missions, would originate a different distribution of data
points (radar scanned surface) when compared to a more
complex flight trajectory where the three-dimensionality
could be relevant.

On these premises, the dual-Doppler procedure was
developed following two gridding layouts according to the
type of flight pattern adopted. The first type, where the AC
track can be approximated by a straight line, is hereafter
referred to as ’straight-leg’ . The second type, referred to
as ‘curtain-leg’ , describes a more generic flight track and
radar scanned surfaces (see Fig. 3).

In Fig. 4, the principal elements of the grid layout are
illustrated. The grid will be constructed starting from
the identification of its corner points. The resulting cell
boundaries will be used to discern whether or not a data
point belongs to the generic (i, j)-th cell. The technique
also makes use of grid center points (referred to as grid
points) for data weighting purposes and for the assign-
ment of the final retrieved velocity. They are determined
from the centroids of the cells. A curvilinear 2-D refer-
ence system (O; ξ, η) tied to the principal directions of
the grid is also shown in Fig. 4. Cell rows and columns
are along the ξ and η direction, respectively. In case of
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FIG. 3. The two different type of flight-legs considered in the
dual-Doppler technique and the resulting scanned surfaces; a)
straight-leg; b) curtain-leg. Indicated are also the WBRRS
frames of reference.

FIG. 4. Typical grid arrangement and definitions of rows,
columns, corner, center points, and the (ξ,η,ζ) reference sys-
tem. The illustration refers to VPDD.

a straight-leg grid the (ξ,η) directions are constant. For
both straight and curtain-leg cases the third dimension of
the grid, along ζ, is implicit and does not play a role until
the beam points get assigned to the cells. Hereafter we
will refer to this dimension as grid swath. A limit can be
imposed on the maximum allowed swath to remove dis-
tant data points from the desired scanning plane.

Further reference systems adopted in the dual-Doppler
technique will be described below. Their purpose is mul-
tifold: from the geometric characterization and interpo-
lation of the beam data points, to the establishment of
an air- (i.e., wind-) relative frame of reference; from the
assessment of a local ’solution plane’ determined by the
beam directions, to the correct introduction of the external
wind information within each cell. In this paper, we will be
generally using a VPDD configuration for illustration pur-
poses without loss of generality; the extension to HBDD
is straightforward.
UFRS. The first reference system is the ground

(Earth’s) reference system identified as UFRS (Un-
rotated Fixed Reference System) with x,y,z along
East, North, vertical (Up). It may be thought as an-
chored to the Earth’s surface directly below the initial
position of interest of the AC center of mass (G).

ACRS. The Aircraft Reference System has origin in G,
and the x-axis along the AC fuselage, the y-axis

along the right wing and the z-axis pointing down.
The AC attitude is referred to the ground reference
system via the Eulerian angles ψ, θ, φ (i.e., AC
heading, pitch and roll angles): they represent the
transformation angles from UFRS to ACRS. To-
gether with their time variation rates, they are used
to determine the in-flight beam directions and to re-
move the aircraft motion from the measured radial
Doppler velocities.

WBRRS. The Wind Based Rotated Reference System,
WBRRS is the technique principal coordinate sys-
tem, accounting for the mean advection of the tar-
get. In case of straight-leg, the WBRRS x-axis is
aligned with the AC track mean course heading, z
points down and y to the right of the track. For the
curtain-leg cases, x is due East, z points down and
y is determined according to the left hand rule. The
origin moves with the assumed advection velocity.
The latter can be an a-priori known constant, or the
AC flight-level measured mean wind vector; it can
also be locally adjusted for the measured wind at
each data point, or set equal to the average veloc-
ity coming from the mean radar Doppler field. The
latter estimate derives from averaging the recorded
Doppler field and performing the velocity inverse de-
composition retrieval on it (cf. Section 4.4).

The adopted advection velocity is subtracted from
the AC ground speed (determined by INS and GPS)
in order to achieve a good estimate of the AC air-
relative velocity vector. The construction of the grid
is based on the resulting AC track, i.e., relative to
WBRRS. Scans of atmospheric features, within
clouds for instance, will then be correctly placed in
mutual relationship, both geometrically and physi-
cally. Successively, a model of frozen turbulence
may be applied: the target is expected to advect with
the assumed mean velocity and the analysis can
be focused on the kinematics relative to the mean
field. We will refer to global WBRRS to denote the
WBRRS for the whole grid.

For the curtain-leg layout it is convenient to further
define a local (one per each grid column) WBRRS,
as the orientation and geometry of the cells may
vary from one to another. The origin of the lo-
cal WBRRS is in the upper-left corner point of the
generic cell, and moving with the assumed advec-
tion velocity. The x-axis is aligned along two consec-
utive grid corner points (ξ direction). The orientation
of the remaining axes is set according to the charac-
teristics of the flight and of the scanned surface. If
the AC bank angle is limited (≤5◦), as in a slow coor-
dinated turn, the scanned surfaces may be approxi-
mated by a horizontal (for HBDD) or an upright verti-
cal surface (for VPDD). In this case, the y and z axes
can be placed on a horizontal and a vertical plane
respectively. If the scanned surface is more com-
plex, the final orientation of the reference system is
determined by imposing that the average direction
between two consecutive corner-point columns (see
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FIG. 5. Local Wind Based and Rotated Reference System (lo-
cal WBRRS ) for a curtain-leg VPDD. ~vw is the grid advection
velocity.

Fig. 5) be contained in the final WBRRS xz (VPDD)
or xy (HBDD) plane.

A (3 × 3) rotation matrix (RM2) (or an array of
such matrices for curtain-leg cases) is defined as
transformation matrix between UFRS and WBRRS
(local WBRRS for curtain-leg cases). All the data,
from distances and wind data to Doppler velocities,
can then be mapped from the grid to the ground ref-
erence system. The grid points are also assigned
latitude and longitude coordinates in order to refer
the grid to a ground location. The grid origin can be
adjusted to discard areas of the initial domain that,
due to the fixed dual-beam geometry, are illuminated
by only one beam.

3.1 Straight-leg Grid

Time integration of the AC air-relative velocity leads to
the determination of the total length of the track (Λ) and
of the mean course heading (defining the grid ξ direction)
with respect to WBRRS. The length of the track, and the
desired grid breadth (Ω) along η, are then divided accord-
ing to a chosen number of cells Nξ and Nη respectively,
and to the desired spacing ratios (HSR, VSR ). The (i, j)-
th cell dimensions ∆ξi and ∆ηj along ξ and η, depend
on the (0, 0)-th cell size (∆ξ0, ∆η0) as follows:{

∆ξi = (HSR)i ·∆ξ0
∆ηj = (VSR)j ·∆η0

(1)

The size of the (0, 0)-th cell is determined according to
Eq. (2): 

∆ξ0 =
Λ∑Nξ

k=0 HSRk

∆η0 =
Ω∑Nη

l=0 VSRl

(2)

The spacing ratios can be used to optimize the mesh
density. From Eq. (1) it is straightforward to derive
the WBRRS coordinates of the grid points. The ori-
gin O(0, 0, 0) is identified with the upper-leftmost cor-
ner point. It is representative of the first position of the

FIG. 6. Example of calculation of beam point coordinates.−−→
OP =

−→
OG +

−→
GA + r~b. r is the range from the radar, G is

the AC center of mass, A denotes the beam antenna position,
and~b is the beam unit vector.

straight-pointing-beam antenna. The grid terminates with
the last position of the straight-pointing beam antenna.

The radar data point (hereafter ’beam point’) coordi-
nates can be computed with respect to the WBRRS as
illustrated in Fig. 6. For each beam, the pair (prof ,r)
identifies a point in space representative of a scatterer
volume. Its coordinates can be calculated with simple
vector geometry from the knowledge of the AC antenna
positions and the beam unit vectors (~b).

3.2 Curtain-leg Grid

Analogously to the straight-leg case, AC INS and an-
tenna positions are devised by time integration of the AC
air-relative velocity. It is convenient to associate to the
track 3-D spatial positions a curvilinear coordinate, s, i.e.,
the track length.

In order to derive the grid first row (closest to the AC)
corner points, the track can be divided into arcs or chords
(segments), see Fig. 7. Their length depends on the num-
ber of cells along ξ, on the stretching ratio HSR, and on
the total length of the track. By adopting the segment
subdivision the grid is regularized; however, with the arc
(curvilinear) one, the number of radar profiles per grid
cell, and therefore beam points, is kept near to uniform
(or proportional to the cell size if HSR > 1).

In case of curvilinear subdivision of the track, the arc
length (∆̃ξi) is determined by the first of Eq. (1), and each
corner point along the track can thus be assigned an s co-
ordinate. To obtain their WBRRS coordinates, the avail-
able straight-pointing beam antenna positions along the
AC track, with their respective s, can be re-interpolated
onto the newly calculated corner point s values.

If the track is divided into straight segments, their
length (∆ξi) is still computed according to Eq. (1), but
the corner point coordinates are calculated solving Eq. (3)
following the geometry illustrated in Fig. 7.

∆ξ2i = ‖
−−→
PQ̃‖2 + ∆2 − 2‖

−−→
PQ̃‖∆

−−→
PQ̃ � ês (3)

In Eq. (3), P is the established (i− 1)-th corner point (for
i =1 it is the origin O), ∆ is the unknown displacement
along the ês direction of Q̃ (the straight-pointing beam
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FIG. 7. The two options available to subdivide the track length
for the grid first-row corner-point retrieval. Upper panel: chord
subdivision option; bottom panel: arc subdivision option. P , Q
are grid corner points; + symbols denote straight-pointing beam
data points

point that minimizes the norm ‖
−−→
PQ̃ − ∆ξi‖) needed to

determine the next grid corner point Q; ∆ξi is the length
of the i-th segment. Once the first-row corner points are
calculated, they can be assigned a new s coordinate by
simple re-interpolation.

The next step is to define all the other corner points
in the normal-to-track direction (η). They are calculated
following either the local straight-pointing beam direc-
tion or an Earth’s strictly vertical (VPDD, WBRRS z-axis)
or horizontal one (HBDD, WBRRS y-axis). To find the
straight-pointing beam directions at the grid first-row cor-
ner points, an interpolation using the coordinate s and the
beam unit vectors, known for all the recorded antenna po-
sitions, is employed. The η points are then easily deter-
mined by using the second of Eq. (1).

The coordinates of the beam points are calculated
analogously to the straight-leg case.

4. VELOCITY RETRIEVAL

4.1 Beam Point Assignment

Once the grid is built, the beam points must be as-
signed to the grid cells in order to determine the veloc-
ity retrieval equations for each grid cell. Two different
methodologies, though following the same principal, are
applied for the straight and curtain-leg cases respectively.
We will also assume that the allowed grid swath is limited
to SWTH meters.

1) STRAIGHT-LEG CASES

The procedure is straightforward if a regularly spaced
grid is adopted (i.e., if HSR = VSR = 1). The in-
dices (i,j) of the cell to which a generic beam point
P (x, y, z) ∈ WBRRS (with |z| < SWTH

2 ) belongs, can

be calculated using Eq. (4):

i = floor
(

x

∆ξ0

)
, j = floor

(
y

∆η0

)
(4)

where ’floor’ is the closest lesser integer of the argument.
In Eq. (4), and in the previous swath inequality, a VPDD
case is assumed; for HBDD y and z need be swapped.

For HSR,VSR 6=1, using Eq. (2), Eq. (4) rewrites:
i = ceil

{
log (1− x/∆ξ0(1− HSR))

log HSR
− 1

}
j = ceil

{
log (1− y/∆η0(1− VSR))

log VSR
− 1

} (5)

2) CURTAIN-LEG CASES

In the curtain-leg case, the assignment of beam
points becomes more complicated due to the grid three-
dimensionality. The search for the (i, j)-th cell contain-
ing the generic beam point P (prof, r), associated with
a curvilinear coordinate s, starts by calculating first esti-
mates of the indices according to Eq. (6) for HSR, VSR
=1. The more complex equations for non-unitary spacing
ratios are omitted for sake of brevity.

ist = floor
{

s

∆ξ0

}
, jst = floor

{
r

∆η0

}
isl = floor

{
s+ r sin ι

∆ξ0

}
, jsl = floor

{
r cos ι
∆η0

}
(6)

In Eq. (6) the subscripts ’st’, ’sl’ denote the relationships
to adopt for straight-, slanted-pointing beam points; ι is
the angle formed by the main beam directions.

The beam point coordinates are then checked against
the boundaries of the found cell, based on the distance
vector

−−→
OP in the local WBRRS, and on the parameters

SWTH, ∆ξi, and ∆ηj . Due to the potential skewness of
the cells, ’cracks’ between them may exist. To minimize
the loss of data points due to cracks, a limited overlap
between contiguous cells can be allowed. If the point ap-
pears not to lie within the first located (i, j)-th cell, the
search continues in the neighboring cells according to the
interval defined by [i− toli; j − tolj ]× [i+ toli; j + tolj ],
where toli, tolj are index tolerances. Their values can
be assigned based on the maximum deviation of the AC
attitude angles from their mean as in Eq. (7) for VPDD
cases. The expressions for HBDD ones are analogous.

toli = ceil
{
rmax(sin (max |θ − θ̄|) cos (max |ψ − ψ̄|)

+ sin (max |φ− φ̄|) sin (max |ψ − ψ̄|))∆ξ−1
0

}
tolj = ceil

{
rmax

(
1− cos (max |θ − θ̄|)

· cos (max |φ− φ̄|)
)
∆η−1

0

}
(7)

In the above equations the overbar denotes the flight-leg
average, ψ̄ is calculated in WBRRS, and rmax is the far-
thest rangegate from the AC; the ’ceil’ function rounds up
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the argument to the next closest integer and ’max’ returns
the maximum of the argument.

4.2 Velocity Correction, Unfolding and External Wind
Guess

The AC motion has to be removed from the Doppler ra-
dial velocities so to attain the actual velocities (in UFRS)
of the scatterers along the beam unit vectors. If the
scatterer velocity exceeds the maximum Nyquist velocity
(vnyq), however, it will alias and fold within (−vnyq; vnyq].
Recentering the Nyquist interval about the mean wind
speed along the radial direction often resolves the alias-
ing. It is assumed that the prescribed wind value does not
change along the range, and that any folding is caused by
the mean wind only. Under this hypothesis, even multiple
folding can be resolved. The unfolding may not be suc-
cessful if the folded velocities are affected by other phe-
nomena, e.g., perturbations to the velocity field exceed-
ing the unambiguous range such as strong shear, etc.

As mentioned in Section 2, an external estimate of the
winds is necessary to derive a value of the cross-plane
component. Beside the possibility of assigning a con-
stant wind vector or the locally AC-measured winds or
the Doppler retrieved average wind (consistent with what
is chosen for the grid advection velocity, cf. Section 3), if
the analysis is of the VPDD type, a vertical profile (sound-
ing) of the wind velocity components in UFRS can be
used. The sounding can come from an external source or
can be defined following a turbulent boundary layer pro-
file (e.g., log-law or Ekman’s profile) by imposing that the
flight level wind conditions be satisfied. The information
about the ground elevation, necessary to devise the wind
vertical profiles, can be determined from the records of
the AC altimeter (altitude MSL) and those from the on-
board radar altimeter, or from the radar nadir beam if the
surface echo is available.

4.3 Data Point Weighting

The beam points belonging to the (i, j)-th cell are as-
signed weights according to one or two criteria based
on the Inverse Distance Weighting (IDW), the Cressman
Weighting Function (CSW) (Cressman 1959), the Expo-
nential Weighting Function (EXW) (Mohr et al. 1986), and
the Beam Skewness Weighting (BSW) method. In addi-
tion, data points can be weighted based on their returned
power SNR level (Doviak and Zrnic 1993). The standard
deviation of the mean Doppler velocity is a function of the
SNR. For high SNR its minimum is bound by the spread
of the spectrum due to the platform motion. At low SNR it
saturates to the level of the receiver noise.
IDW. In the Inverse Distance Weighting, the weights are

assigned to the beam points according to their dis-
tances from the centroid of the grid cell they belong
to:

gk =
1

(1 + dk)cidw
(8)

In Eq.(8), gk is the weight for the k-th beam point,
dk its distance from the cell centroid, and cidw the
exponent of the IDW method, usually equal to 2.

EXW. The Exponential Weighting is expressed by:

gk = exp
(

ln (cexw)
d2
k

ROI2

)
(9)

where cexw is the value of the weight to be assigned
to the k-th data point located at a distance dk equal
to the radius of influence ROI. Mohr et al. (1986)
show that the ideal value for cgw in the generalized
Gaussian weighting function (gk = exp[−d2

k/c
2
gw])

can be determined by cgw = 1.366∆, where ∆ is
the spacing between input data. Assuming cexw =
0.1 in Eq. (9) translates into an optimal value for ROI
comparable to the coarsest spatial resolution in any
grid direction. The radius of influence is usually set
equal to the mean cell size, (∆ξi + ∆ηj)/2.

CSW. The mathematical expression for the Cressman
weighting is given by:

gk =

{
ROI2−d2k
ROI2+d2k

if dk ≤ ROI,

0 if dk > ROI.
(10)

BSW. The Beam Skewness Weighting is based on the
component normal to the sought scanning plane of
the beam unit vector associated with the beam point.
In case of straight-leg, the desired scanning plane
is either vertical (VPDD, WBRRS xz) or horizontal
(HBDD, WBRRS xy). For curtain-leg cases, the ref-
erence plane is determined by the local WBRRS xz
(VPDD) or xy (HBDD) plane. Eq. (8) can then be
used to calculate the weights interpreting dk as the
absolute value of the component of the beam-unit-
vector normal to the reference plane.

4.4 Velocity Inverse Decomposition Problem

The velocity ~v associated with the mean motion of the
scatterers in the (i, j)-th cell is calculated by solving the
following linear system of equations:

~v �~bk = vk, k = 1 . . .m (11)

where ’�’ indicates a dot-product, ~bk are the beam unit
vectors associated with the m beam points lying within
the grid (i, j)-th cell, and vk are the corresponding
Doppler radial velocities (corrected for AC motion). In
system (11) the weights gk have been implicitly included
in the variables, so that each k-th equation needs to be
thought as multiplied by the relative weight gk.
vx, vy , and vz are the unknown velocity components

along the axes of WBRRS. However, ~v is the mean ve-
locity calculated with respect to UFRS. At a later stage,
as already stated, it may be convenient to remove the
mean wind (advection) velocity in order to investigate the
air-relative kinematic field. System (11) re-writes in matrix
format:

b11 b12 b13
b21 b22 b23

...
...

...
bm1 bm2 bm3


{
vx
vy
vz

}
=


v1

v2
...

vm

 (12)
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The number of points in each cell, m, may be less, equal
or greater than three (i.e., the number of unknowns). It
follows that the matrix [B] , first matrix in Eq. (12), could
have a gamut of rank values with upper bound equal to
min (m, 3). Thus the system [B]~v = v, that can be
interpreted as mapping function F between the hyper-
spaces S(~v) ∈ R3 and S(v) ∈ Rm, might result under-
or overdetermined. In addition, if the matrix rank is less
than min (m, 3) the matrix and the system in Eq. (12) are
said to be rank deficient.

Due to the nature of the information collected, the sys-
tem should be characterized by an effective rank less
than three. Errors in the [B] entries might yield a ma-
trix rank greater than what it should effectively be. Small
deviations in the aircraft attitude angles, for instance, can
cause limited non-collinearity among the beam directions.
It is to be expected, however, that all the data points will
carry velocity information along various radial directions
not strongly independent from just two. The latter are as-
sociated with the installation slanted and straight-pointing
beam unit vectors. Hence, the possibility of finding a well-
conditioned full rank-3 system is minimal. In most cases
the rank will be two, being one if data from one of the two
beams are missing or discarded.

The space of the solution, or the range of F , SR(v),
is the subspace of S(v) which can be mapped by [B], of
dimension equal to the rank of [B]. If [B] is rank deficient,
the subspace of S(~v) mapped by [B] into [0] (∈ Rm) is
called null-space (S0(~v)), and has dimension equal to 3−
rank [B].

System (12) can be solved in a least-squares sense by
minimizing the residual norm, ‖µ‖ = ‖[B]~v − v‖. This
can be accomplished by finding the so-called pseudo-
inverse matrix [B+]. It can be proven that if [B+] satis-
fies the Moore-Penrose conditions (Golub and Van Loan
1989), then the least-squares solution is ~vLS = [B+]v. In
case of underdetermined or rank-deficient systems there
are an infinite number of solutions. Uniqueness can be
regained by searching for the solution of minimum norm.

A powerful method for solving the described type
of system is the singular value decomposition method
(SVD) (Golub and Van Loan 1989). An (m × 3) matrix
[B] can be decomposed via SVD as follows:

[B] = [U ][W ][V ]T (13)

where [U ] is an (m×3) orthogonal matrix, [W ] is (3×3)
diagonal matrix of singular values and [V ] is a (3×3) or-
thonormal matrix. The SVD readily provides the condition
number κsvd of the rectangular matrix [B]:

κsvd([B]) =
ςmax([B])
ςmin([B])

(14)

where ςmax([B]) and ςmin([B]) are the maximum and min-
imum singular values of [B]. Eq. (14) is strictly valid for
full-rank matrices. In this case, the sensitivity of the least-
squares solution and of its residual to perturbations (er-
rors) in the data ([B] and v) is of the order of κ2

svd and
κsvd respectively (Golub and Van Loan 1989). The larger

the matrix condition number the more ill-conditioned the
problem. The smallest singular value denotes the 2-norm
distance of [B] from the set of all rank-deficient matri-
ces. If κsvd is infinity then [B] is singular (rank deficient)
and the uncertainties associated with the least-squares
solution are hardly predictable for it being not even a con-
tinuous function of the data (Golub and Van Loan 1989).
If the system is underdetermined, the uncertainty in the
solution due to errors in the data is of order κsvd.

The pseudo-inverse matrix [B+] can be expressed via
SVD decomposition as follows:

[B+] =
(
[U ][W ][V ]T

)−1 = [V ][W ]−1[U ]T (15)

with [W ]−1 being a diagonal matrix [W ]−1 = diag
[

1
ςii

]
,

where ςii are the singular values of [B], and wii = 1/ςii
is replaced by 0 if ςii = 0.

In order to improve the condition-status of the matrix,
a cutoff value is adopted by rejecting those singular val-
ues below a prescribed threshold (usually based on the
ratio to the maximum singular value < 0.01), thus replac-
ing their reciprocals with 0 in [W ]−1. Such an event is
expected to occur in the positions corresponding to the
cross-plane component of the velocity. In other words, a
very low singular value is expected associated with the
second (third) component of the velocity not lying in the
expected VPDD (HBDD) scanning plane. An important
property of the SVD decomposition is that the columns of
[U ], whose same-numbered elements wii are non-zero,
represent an orthonormal set of basis vectors spanning
SR(v), i.e., the range. The sum of squares (square of
the residual norm) can then be expressed as (Golub and
Van Loan 1989):

µTµ = vT v−
k̂∑
j=1

([U ]T v)2j (16)

If the first k̂ components (principal components) corre-
sponding to the largest singular values are, in fact, those
responsible for reducing the sum of squares, the problem
has a solution safely computed by leaving out the remain-
ing components (i.e., those corresponding to small singu-
lar values, conditionally set to 0). If this were not the case,
or in other words if v were best approximated by columns
of [U ] corresponding to small singular values, then the
problem would be ill-conditioned.

The SVD solution of the linear system in (12) can then
write:

~v =
(
[V ][W ]−1[U ]T

)
v (17)

If the system is overdetermined then the solution has
the property of minimizing the residual in the least-
squares sense. In the case of an underdetermined or
rank-deficient system, it minimizes the residual and has
the minimum norm among all possible minimizers (Golub
and Van Loan 1989).

The columns of [V ], whose same-numbered elements
wii are zero, constitute an orthonormal set of basis vec-
tors spanning S0(~v), i.e., the null-space. The null-space,
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in the dual-Doppler analysis with rank=2, can be repre-
sented by a unit vector, i.e., the normal to the solution
plane. The latter identifies, from a geometrical point of
view, the best-fit, in the least-squares sense, of all the
planes determined by the beam unit vector pairs. Mathe-
matically it is SR(v).

Adding an arbitrary linear combination of the null space
basis to the solution will still satisfy the least-squares
problem (12). This can be advantageously used to add
the external wind information to the solution and obtain
a three-dimensional wind calculation for every grid cell.
More importantly, the external information upon the winds
allows for the quantification of the cross-plane compo-
nent. By accounting for the latter, the eventual error com-
mitted by transferring the calculated velocity vector from
the solution plane onto the reference plane (for instance
a vertical one in case of VPDD) is minimized.

The availability of the null-space basis allows to cal-
culate how far the plane of reference is from the actual
solution plane. An analysis of the angles determined by
the normals to the cited planes can aid in the assessment
of the performance of the dual-Doppler retrieval.

5. SOURCES OF ERROR IN THE ANALYSIS

There is a number of error sources in a multiple
Doppler analysis, especially if based on an airborne plat-
form. The errors depend on the radar characteristics,
its processor design and on the data collection process.
Specific aspects of the atmospheric nature of the tar-
get further affect the errors, from the broadening of the
Doppler power spectrum to the temporal uncertainties
due to the target advection in the time interval between
scans. In this section, we address the main sources of
error thus to offer confidence intervals depending on the
target under investigation and the environmental condi-
tions.

The absolute velocity ~vaP of a scatterer occupying a
point (volume) P in space can be decomposed as:

~vaP = ~vrelP + ~vtrP = ~vrelP + ~vG + ~ω ∧
−→
GP (18)

where ~vrelP is the scatterer velocity relative to the moving
platform frame (i.e., ACRS) and ~vtrP is its velocity if con-
sidered fixed with respect to that frame; ~vG is the velocity
of the AC center of mass (G); the velocity due to the mo-
tion about G is given as cross-product of the frame rota-

tional velocity ~ω and distance vector
−→
GP . By decompos-

ing Eq. (18) along a beam direction ~b, the radial velocity
(v) is obtained:

v = ~vaP �~b = ~vrelP �~b+ ~vtrP �~b (19)

The uncertainties affecting v are due to: errors in the
beam pointing angles (~b), errors in the calculated AC
ground velocity (INS/GPS system errors) affecting ~vtrP ,

and errors in the radar retrieval of ~vrelP �~b.
Beside those directly affecting the measured radial ve-

locities, other error sources will affect the dual-Doppler
derived 2-D velocity vector. They include uncertainties in

the assumption of the wind ’cross-plane component’, tar-
get advection and evolution effects, grid orientation and
target visualization distortion. All are discussed in the fol-
lowing sections.

5.1 Errors in the platform motion affecting the grid

The knowledge of the aircraft position and velocity vec-
tor is subject to instrumental errors. Although care is
taken to remove Schuler oscillations in the INS, and a
baro-inertial loop algorithm is employed to reduce the un-
certainty in the ground vertical velocity, errors in the AC
position and its velocity with respect to the Earth’s coordi-
nate system need be considered. In Table 2, the accuracy
of the basic UWKA instrumental suite is reported (cf. ,
Brown (1993) and http://flights.uwyo.edu/
bulletin1.html ).

The AC position error is relevant in case the data have
to be compared to ground radar data. The error in the
AC ground velocity is more important as it propagates
into the grid construction, the Doppler velocity correction
(AC motion removal), and into the estimate of the wind in
proximity of the target.

The air velocity is calculated by means of a gust probe,
i.e., a differential 5-hole pitot tube mounted on the forward
AC boom (Brown 1993), and of the data provided by the
INS and GPS. The measurement accuracy is estimated
to be affected by a random error of 0.4 m s-1 and a sys-
tematic error of usually less than 0.4 m s-1. Since the grid
is built following the aircraft in an air-relative frame, the
error translates into the calculation errors of the UWKA
air-relative velocity and thus into the orientation of the
grid and into a distorted visualization of the target struc-
tures. The same error arises from an incorrect choice of
the advection velocity for the grid. In addition, if shear
is present, the target may not move at the same speed
everywhere, thence the grid will distort the target proper-
ties at least in some sectors. This is difficult to quantify
since a knowledge of the environmental conditions is of-
ten incomplete. A way to reduce the errors in case of
significant shear is to adopt the curtain-leg grid construc-
tion and imposing a variable advection velocity, function
of the position along the track.

Conservatively assuming an error for the AC ground
velocity and air velocity on the order of 1 m s-1, the error
in the horizontal components of the air-relative AC veloc-
ity is approximated by

√
2 m s-1. This causes a distortion

of the grid cells proportional to the ratio of the estimated
to the actual velocity. For the typical UWKA air speed of
∼90 m s-1 the distortion is on the order of 2%. The asso-
ciated relative error in the gradient of a generic quantity
along ξ can be calculated to be lower than 2.2%.

The relative error in the estimated grid orientation
writes:

εrel
ξ =

arctan vACx+εvACx

vACy+εvACy

arctan vACx

vACy

− 1 (20)

where vACx, vACy are the east, north component of the
AC air-relative velocity and εvACx

, εvACy
their errors. The

effective absolute error is less than 1.5◦ for typical flight
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Parameter Instrument Random
Error

Bias 95% un-
certainty

Pressure Altitude Rosemount HADS 0.25 mbar — 0.5 mbar
Lat./long. (INS) Honeywell Laseref SM 0.8 mm h-1 — 1.66 mm h-1

Lat./long. (GPS) Trimble 2000 12 m — 25 m
Ground velocity Honeywell Laseref SM 0.343 m s-1 — 0.685 m s-1

Vertical velocity Honeywell Laseref SM 0.0762 m s-1— 0.152 m s-1

Pitch/Roll angle Honeywell Laseref SM 0.025◦ 0.1◦ 0.111◦

Yaw angle Honeywell Laseref SM 0.1◦ 0.071◦ 0.212◦

Sideslip radome air motion syst. 0.0253◦ 0.0872◦ 0.096◦

Table 2. Instrument uncertainty for the UWKA basic instruments. The uncertainty is calculated as the root-sum-square of the bias
and random error at the 95% (2 std.dev.) confidence level.

speeds.

These are minor uncertainties and should not prevent
a good application of the analysis technique.

5.2 Errors in the Radial Velocity Due to Uncertainties
in the Platform Motion and Beam Pointing Angles

As stated, errors in the INS/GPS-measured ground ve-
locity further affect the calculation of the corrected (ab-
solute) Doppler radial velocity. The INS/GPS system, in
fact, retrieves ~vtrP (cf. Eq. (19)), thus the errors from the
latter directly propagate into v.

The beam unit vectors are determined via a proce-
dure that minimizes the ground echo mean Doppler ve-
locity and its standard deviation, which ideally should be
null. Obviously, the INS/GPS errors will interfere with this
calculation. Uncertainties in the beam unit vectors also
arise from problems inherent in the ground echo identi-
fication, due to the receiver finite filter response, beam
filling effects and potential asynchronization between AC
and radar data. Beside the way the beam retrieval proce-
dure is carried out, random errors may also arise due to
aircraft frame bending and twist. These effects should be
of less concern in a compact airframe such as the non-
slender UWKA one.

On the basis of a series of calibration flights, we claim
a maximum standard deviation in the directional cosines
< 0.01, corresponding to the angle errors reported in Ta-
ble 3 for the UWKA installation. Following Fig. 5.2, we
can calculate the radial velocity error, εv,1, due to a wrong
assumption of the beam unit vector and platform motion.

The actual radial velocity along the assumed beam unit
vector,~ba, is: vba

= v
cos δb

− kv,x r δb, where v is the true

absolute scatterer velocity along~b, kv,x the shear across

the beam of the radial velocity along~ba; r is the range of
the scatterer, and δb the angle between~ba and the actual
beam direction~b.

The error εv,1 can then be expressed as the difference

vtr = ~vACRS �~b

ṽtr = (~vACRS + ~εvACRS) �~ba

v = vrel + vtr

ṽ = vrel + ṽtr

FIG. 8. Radial velocity error contributions by AC motion and
beam direction uncertainties. ~b and ~ba are the actual and as-
sumed beam orientations respectively, δb the angle between
them. ~εvACRS is the error in the platform ground velocity ~vACRS

(including the contribution due to the rotation about the AC G);
r is the target range. More in text.

between vba and the assumed radial velocity (ṽ) along~ba:

εv,1 = vba
− ṽ = vrel

[
1− 1

cos δb

]
+

(~vACRS + ~εvACRS) �~ba −
~vACRS �~b
cos δb

+ kv,x r δb (21)

Assuming δb → 0 , Eq. (21) can be approximated at the
first order by:

εv,1 =
[
~vACRS � (~ba −~b) + ~εvACRS �~ba

]
+ kv,x r δb (22)

The terms in the brackets represent the errors associ-
ated with the misrepresentation of the platform motion
contribution, whilst the term containing kv,x is the error
due to the spatial misplacement of the scatterer velocity.
Eq. (22) is a weak function of the attitude of the aircraft
and thus of the cross-wind component and vertical veloc-
ity of the aircraft, with variations in the errors less than
0.1 m s-1 for typical flight envelopes. In Table 4, ranges
for the bracketed term in Eq. (22) are offered for a situa-
tion with horizontal air-speed equal to 90 m s-1, a vertical
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antenna arccos (b � êx) arccos (b � êy) arccos (b � êz) δbmax

(units: degree) mean std. dev. mean std. dev. mean std. dev.

nadir 93.180 0.058 89.890 0.391 3.204 0.077 1.114
dwn-fwd 63.845 0.087 89.649 0.526 26.164 0.090 2.992
side 90.700 0.091 0.783 0.236 89.818 0.358 0.960
side-fwd 53.716 0.324 36.337 0.317 88.618 1.031 6.337

Table 3. UWKA WCR antenna beam mean and standard deviation angles with respect to ACRS axes. δb max are maximum departure
angles from the actual beam unit vectors.

nadir nadir-fwd side side-fwd

εv,1 range (m s-1) 0.565-0.768 0.286-0.993 0.669-0.767 0.368-1.373

Table 4. Radial velocity errors due to misrepresentation of the AC motion along the beam direction. Adopted assumptions in text.

velocity of about 6 m s-1, a cross-wind of 10 m s-1, and
~εvACRS with components along the ACRS axes of magni-
tude equal to

√
3/3. The results are based on the uncer-

tainties given in Table 3.

5.3 Beam Reciprocal Misalignment

Under certain flight conditions the dual-Doppler beams
may not be oriented in the plane described by the air-
craft track and the normal to it. If a sideslip angle β ex-
ists, for instance, the nadir and nadir-forward beam would
not belong to the vertical plane of the air-relative track.
The sideslip is usually limited as the aircraft flies a La-
grangian trajectory. An analogous error would occur for
the HBDD beams in case an unusual angle of attack α
were maintained for an extended period of time. The lat-
eral pointing antennas are mounted so to scan a horizon-
tal plane in straight and leveled flight with the usual trim
pitch of the UWKA (∼3.5◦ for the typical cruise speed
and take-off weight). Situations in which a departure from
the trim condition might occur include pilot’s decisions to
force certain aircraft attitudes to keep a recommended
air-speed (different from the cruise one) or to keep a pre-
scribed ground track. Transient responses to gusts and
the potential presence of shear should also be taken into
account. Auto-pilot or stability-augmentation-systems are
generally employed reducing both the overshoot and the
time to steady-state for the motion oscillations following
gust disturbances.

For typical research flights we have measured sideslip
(angle of attack change) standard deviations on the order
of 0.5◦ (1◦) and maximum deviations from trim conditions
(i.e., β̄ =0◦, ᾱ =3.5◦) on the order of 3.5◦ (2◦). The trans-
verse distance between data points with respect to the
reference plane of scan is given by ∆β = rbslx sinβ,
where bslx is the direction cosine of the slanted-pointing
beam along the ACRS x-axis (the change in α replaces
β for HBDD). For a range of r =3 km the transverse
distances associated with the reported standard devi-
ation (maximum) of the aerodynamic flow angles are:
∆β ≈11.5 m (81 m) and ∆α ≈31 m (62 m). Assuming
a cross-track radial velocity gradient on the order of kv

=0.005 s-1, the maximum values for the error in the as-
sumed slanted-pointing beam velocity due to the data

point displacement, εv,2, is ∼0.4 m s-1 and ∼0.3 m s-1

for the nadir-forward and side-forward antennas respec-
tively.

The grid swath may be chosen small enough to natu-
rally exclude from the analysis the points affected by such
errors. However, at large ranges the radar resolution is
degraded due to the larger beam resolution volume (at
3 km range the characteristic transverse size is ∼40 m
for a 0.76◦ half-power beamwidth). Thence, the above
calculated displacement effect is somewhat mitigated as
the Doppler velocity is weighted over a larger volume. It is
then reasonable to initially choose a swath large enough
to contain these points and to allow a coarser grid resolu-
tion at larger ranges to account for this and other effects
(cf. Section 5.8).

If wind shear perpendicular to the reference plane is
present, even in the case of null sideslip (or null α′),
a virtual offset between the surfaces described by the
two beams exists. Assuming again kv as the vertical
(or horizontal for HBDD) shear magnitude, the effective
sideslip (or angle of attack deviation) is approximated by

βeff = β + arctan
(
kv r
vAC

)
, where vAC is the AC airspeed

(with α′ replacing β for HBDD). For kv '0.005 s-1, vAC

=90 m s-1 and r =3 km, the contribution to the effective
sideslip from the ambient shear is ∼9.5◦. The error in
the slanted-pointing beam Doppler velocity could thus be
substantial if the shear in the radial velocity along the grid
transverse direction were significant.

The importance of selecting an appropriate value for
the grid swath becomes evident. Not only does it deter-
mine the number of points accepted in the grid cell, but
it plays a role in the grid filtering of the target features as
well. Too small a swath would cause very few point to
participate in the inverse decomposition solution system,
producing errors related to the scarcity of the samples
within the grid cell. Contrarily, too large a swath might in-
troduce errors because of the shear across the grid plane,
i.e., the three-dimensionality of the flow might affect the
results in the sought 2-D field. It is then a trade-off be-
tween a finer resolution and a coarser one characterized
by reduced errors, which needs to be assessed based on
an a-priori knowledge of the background flow properties.
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5.4 Errors due to the Estimate of the Cross-Plane
Component

Errors in the estimate of the mean ambient wind prop-
agate from those of the INS/GPS and gust-probe instru-
ments. These errors will contaminate the ’cross-plane
component’ of the wind velocity, which is necessary for
an accurate dual-Doppler 2-D retrieval (cf. Section 4.4).
Unaccounted significant shear in this component across
the grid can further affect the results. Generally, the er-
rors are expected to be larger for VPDD analyses than for
HBDD ones due to the nature of the atmospheric shear.

An estimate of these errors in the final kinematic field
can be attained assuming an error for the assumed wind
velocity and an angle between solution and reference
planes (cf. Section 4.4). The departure from the refer-
ence plane can be approximated based on the standard
deviations of the AC attitude angles for a typical dual-
Doppler flight leg. Referring to a straight and level flight
attitude, the angle γerr between the reference and the ac-
tual plane of scan writes for VPDD and HBDD as:{

γVPDD
err = arccos (cosσφ cosσψ)

γHBDD
err = arccos (cosσθ cosσφ)

(23)

If σθ = σφ = σψ =3◦ (standard deviations in pitch, roll
and yaw), Eq. (23) yields: γerr =4.24◦. Defining ~εw as the
error in the external estimate of the wind (including the
effects of unaccounted shear throughout the grid domain
and errors in the ambient wind measurement), its compo-
nent along the normal (~nLS) to the solution plane (i.e., the
cross-plane component) writes:

~εw � ~nLS = εVPDD
xp =

−εwx
cosσφ sinσψ + εwy

cosσφ cosσψ + εwz
sinσφ

~εw � ~nLS = εHBDD
xp =

= εwx
(sinσθ cosσψ + cosσθ sinσφ sinσψ) +

+ εwy (sinσθ sinσψ − cosσθ sinσφ cosσψ)+
+ εwz

cosσθ cosσφ
(24)

Decomposing the errors in Eq. (24) along ξ and η direc-
tions, one obtains:

εVPDD
xpξ

= εVPDD
xp cosσφ sinσψ

εVPDD
xpη

= εVPDD
xp sinσφ

εHBDD
xpξ

= εHBDD
xp (sinσθ cosσψ + cosσθ sinσφ sinσψ)

εHBDD
xpη

= εHBDD
xp (sinσθ sinσψ − cosσθ sinσφ cosσψ)

(25)
Adopting the above values for the attitude standard devi-
ations, and ‖~εw‖ =5 m s-1, the errors amount to: εxpξ

'
εxpη

' 0.17 and 0.18 m s-1 for VPDD and HBDD respec-
tively. For σφ '5◦, the errors along the η direction would
become ∼0.28 and 0.29 m s-1, for VPDD and HBDD re-
spectively.

Note that εxpξ
and εxpη

would sum to the errors deriving
from the estimate of the mean translational wind, in case

the final 2-D kinematic field is then calculated relative to
the moving frame, i.e., in a storm-relative reference.

5.5 Liquid water Attenuation, Side-Lobe and Trans-
mitter Leakage Effects

If shear in the radial velocity is significant within the
pulse volume, attenuation of reflectivity due to liquid wa-
ter content can produce an altered measurement of the
mean Doppler velocity. Uncertainties on the order of
1 m s-1 for an airborne X-band radar have been reported
(Hildebrand and Mueller 1985). These effects are hardly
generalized as they depend on the radar configuration
and the beam shape, but at W-band attenuation is cer-
tainly important (Lopez et al. 2000; Vali and Haimov
2001). Considering a simplified scenario with backscat-
tering cross-section per unit volume (i.e., reflectivity),
%(r), decreasing function of the range r, and assuming
an attenuation factor K%(r) ( dB km-1), the radial velocity
measured at range r =r̂ is given by:

ṽ(r̂) =

∫ r2
r1
%̃(r)v(r)dr∫ r2
r1
%̃(r)dr

(26)

where v(r) = v(r1) + kv(r − r1) is the radial velocity
assumed to undergo a linear shear (kv, s-1) in the radial
direction, %̃(r) is the ’attenuated’ reflectivity profile along
the range, and r1, r2 are the minimum, maximum radial
distance within the pulse volume. The original backscat-
tering coefficient can be expressed as a function of the
range and of a gradient k% (m-2): %(r) = %(r1) + k% (r−
r1). Assuming a linear increase of the liquid water con-
tent with the range, the attenuation coefficient becomes:
K%(r) = K%0 [1 + klwc(r − r1)], where K%0 is the value
of the attenuation coefficient at r =r1, and klwc is the rate
of the (dimensionless, i.e., per g m-3) liquid water con-
tent along the radial directions in m-1 The attenuated
volumetric backscattering cross-section profile can then

write: %̃(r) = %(r) 10
−K%0 (r−r1)

10

“
1+

klwc(r−r1)
2

”
.

The radial velocity measured in absence of attenua-
tion can be obtained using Eq. (26) by setting K% ≡0.
By subtracting the attenuation affected velocity from the
latter, and carrying out the extensive algebra yields the
error in the radial velocity. A further simplified model to
estimate the maximum effect of attenuation consists of
concentrating the scatterers in two point locations across
the pulse volume, i.e., at r1 and r2.

εv,3 =
∣∣ %1(%1 + k%rs)kvrs(q − 1)
2%2

1(q + 1) + %1k%rs(3q + 1) + (rsk%)2q

∣∣
(27)

where rs = r2 − r1 is the rangegate spacing, q =
10

−K%0rs
10 (1+

klwcrs
2 ). Note that due to the chosen %̃(r)

function, weighting the velocities more at closer than far-
ther ranges with respect to %(r), the 2-point approxima-
tion is a conservative estimate of the error that would be
calculated using the integral forms in Eq. (26).
εv,3 is a function of the gate size weakly dependent

on the reflectivity at range r̂. If the liquid water content,
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true reflectivity (%) and radial velocity are assumed to vary
linearly along the range with rates equal to .002 gm-2,
-40 dB km-1, and 0.5 s-1 respectively, the maximum ab-
solute error in the radial velocity is less than 0.15 m s-1 for
rangegate sizes <80 m and reflectivity between -40 and
40 dBZ. The variable rates are conservative estimates
even for extreme cumulus convection regimes.

Attenuation effects may play a further role in the beam
point SNR-weighting within the grid cell. At typical grid
resolutions on the order of the rangegate size, however,
the effect will again be negligible.

Side-lobe effects can also contribute to radial velocity
errors in case large gradients in reflectivity and velocity
are present. An approximate expression for the absolute
error is given by:

εv,4 =
∣∣kv,x r δl(%+ k%,xr δl) 10−Kl/10

%+ 10−Kl/10(%+ k%,xr δl)

∣∣ (28)

In Eq. (28) Kl, δl are the side-lobe power and orientation
angle relative to the main lobe (respectively Kl ≈-20 dB
and δl ≈2◦ for the WCR antennas); the reflectivity and
radial velocity are thought to vary linearly in the across-
beam direction with gradients k%,x and kv,x respectively,
and % is the main lobe reflectivity at range r. It can be
derived by calculating the difference between the mea-
sured radial velocity (affected by sidelobing) and the one
that would be measured in absence of side-lobes. The
former is calculated, at a first order approximation, as the
reflectivity-weighted velocity between those relative to the
main and first sidelobe.

Even for the extreme simultaneous occurrence of a
0.005 s-1 shear and a 0.04 dBZm-1 reflectivity gradient,
the errors are below 0.3 m s-1 for ranges ≤ 3 km and
SNR ≥ −5 dB, and below 0.2 m s-1 for SNR ≥ 0 dB.

5.6 Random Errors related to the Finite Resolution
Volume

For weather targets, attention must be paid to the ef-
fects of the pulse-volume filtering. The adopted radial ve-
locity, is the mean of the Doppler power density spec-
trum associated with the distribution of the radial veloc-
ities of the scatterers within the pulse volume (Doviak
and Zrnic 1993). This translates into the convolution of
the reflectivity-weighted velocities with the beam illumi-
nation function (Srivastava and Atlas 1974; Doviak and
Zrnic 1993). The beam illumination function acts as a
three-dimensional filter on the radial velocity field. It can
be approximated by the product of a rectangular filter in
the beam direction, and two Gaussian filters in the di-
rections perpendicular to the latter. The random motion
of the scatterers within the pulse volume increases the
Doppler spectrum width. A reliable estimate of the first
moment can only be obtained by averaging multiple sam-
ples. This, combined with the spatial displacement of the
beam due to the platform motion, produces a further fil-
tering in space and time.

The reduction in the error of the estimate of the mean
Doppler, for large SNR and narrow spectrum widths, can

be expressed (Doviak and Zrnic 1993), as:

σ2
v ≈

λPRFσd
8
√
πMpp

(29)

where PRF is the pulse repetition frequency, σd is the
Doppler spectrum standard deviation and Mpp the num-
ber of independent pulse-pairs. Processes that con-
tribute to the Doppler spectrum variance are wind shear
(σ2
s ), turbulence (σ2

t ), particle fall-speed distribution (σ2
f ),

and spectrum broadening due to platform motion (σ2
p)

(Nathanson 1969; Jorgensen et al. 1983; Doviak and Zr-
nic 1993). These processes can be considered indepen-
dent of one another, thence the total variance can be ex-
pressed as the sum of the individual contributions:

σ2
d = σ2

s + σ2
f + σ2

p + σ2
t (30)

The contribution to the beam broadening due to the
aircraft is a function of the aircraft air-speed, the beam
orientation (ε1) with respect to the aircraft velocity vector
~vAC, and the radar two-way half-power beamwidth (θ2)
(Jorgensen et al. 1983):

σ2
p = (0.42 vAC θ2 sin ε1)

2 (31)

For the typical WCR/UWKA ∼90 m s-1 airspeed and
∼0.76◦ beamwidth angle, σ2

p is on the order of
∼0.16-0.25 m2s-2.

The variance of the radial velocity solely due to the hy-
drometeor size distribution (nd(D)dD) within the pulse
volume may be written as:

σ2
f =

∫∞
0
nd(D)D6(vt(D)− ṽt)2dD∫∞

0
nd(D)D6dD

cos2(ε2)

ṽt =

∫∞
0
nd(D)D6vt(D)dD∫∞
0
nd(D)D6dD

(32)
where D is the particle diameter and vt(D) its terminal
velocity; ṽt is the reflectivity weighted average terminal
velocity of the ensemble and ε2 the angle between the
beam and the vertical direction. Eq. (32) assumes that
the reflectivity (and nd(D)) is homogeneous within the
pulse volume, so that the beam illumination function does
not play a role.

Terminal velocities for cloud droplets at standard atmo-
spheric conditions only range from 0.003 to 0.074 m s-1

(for a 10-50 µm diameter droplet, Khvorostyanov and
Curry (2002); Rogers and Yau (1989)). For comparison,
the fall speed of a 100 µm drizzle drop is ∼0.4 m s-1.
These values scale with altitude according to the square
of the density ratio between standard sea-level air den-
sity and density at the cloud altitude. For instance, at
500 mbar this translates into a ∼30% faster terminal
velocity. Cloud droplets can thus by large be consid-
ered passive tracers for turbulence in the atmosphere,
and σ2

f can be negligible being on the order of a few

cm2s-2(Kollias et al. 2001).
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FIG. 9. Assumed log-normal distribution for cloud and drizzle
size droplets. The total reflectivity-weighted terminal velocity
and Doppler spectrum standard deviation are given at the top
of the plot. The contributions from the individual distributions
are indicated near the two curves. A vertically pointing beam is
assumed.

Figure 9 presents two log-normal spectra describing
the size distributions of cloud and drizzle droplets in a
typical strato-cumulus cloud. The Doppler spectrum vari-
ance due to the terminal velocity of the particles from
those distributions is on the order of 0.36 m2s-2. A more
convective cumulus cloud might have a narrower cloud
droplet distribution, but, at low temperatures, may also
contain ice crystals with opposite effects on the Doppler
spectrum width. The proposed value for σf is then still
acceptable except in presence of large graupel or hail.
The spectrum variance for small ice crystals to large
snowflakes is on the order of 0.04-0.2 m2s-2 (Lhermitte
1971). In presence of hail, σf , almost entirely due to the
largest hydrometeor contribution, may be on the order of
1-4.5 m s-1 (Lhermitte 1971). For rain drops σf ≈1 m s-1

is generally adopted (Lhermitte 1971; Doviak and Zrnic
1993).

The shear contribution to the Doppler spectrum width,
for a quasi-axisymmetric beam shape, can be calculated
(Doviak and Zrnic 1993) as:

σ2
s =

θ22
16 ln 2

r2(k2
ϑ + k2

ϕ) + (0.35rskr)2 (33)

where kϑ, kϕ, kr are radial velocity shears along the
three orthogonal directions (r,ϑ,ϕ) of the spherical ref-
erence frame within the beam pulse volume at range
r; θ2 is the radar two-way half-power beamwidth, and
rs is the range resolution. Adopting a maximum range
of 3 km, θ2 = 0.76◦, rs '45 m, and a uniform shear of
0.05 s-1, Eq. (33) yields σs '1.33 m2s-2. For a 0.1 s-1

shear σ2
s =5.3 m2s-2. For fair weather cumuli, where

variations in vertical velocities of about 2 m s-1 may oc-
cur within the resolution volume, σ2

s can reach 1.6 m2s-2

(Kollias et al. 2001).
The Doppler spectrum variance due to turbulence, σ2

t ,
can be calculated (Eq. (34)) as the integral of the turbulent

energy spectrum Σt(k̃) = Atε
2/3k̃−5/3, where: At is a

universal constant (between 1.53 and 1.68 (Gossard and
Strauch 1983, p.262)), ε is the eddy dissipation rate, and
k̃ = 2π/l is the wavenumber related to the length scale
l.

σ2
t =

∫ 2π/lλ

2π/lv

Σt(k̃)dk̃ =
3At
2

(
ε

2π
)2/3(l2/3v − l2/3λ )

(34)

Eq. (34) supposes that the length scales lλ and lv are
contained in the inertial subrange, which in the lower at-
mosphere includes eddy sizes from a few centimeters to
hundreds of meters. It is common practice to accept the
Kolmogorov length scale as the lower bound for the in-
ertial subrange. The inner scale of the inertial subrange
identifiable by the radar is, however, limited to lλ = λ/2,
i.e., half the radar wavelength. Similarly, for the outer
scale probed by the radar, lv , the pulse volume charac-
teristic size, including the large eddies advected across
the pulse volume during the scan dwell time, can be as-
sumed.

For our purposes, an estimate of σ2
t can be obtained by

using Eq. (34) and assigning typical measured values of
ε. The highest values of dissipation rate in severe storms
are on the order of 1 m2s-3 (Doviak and Zrnic 1993). For
moderate storms ε =0.06 m2s-3, with the largest values
usually observed at the interface between updrafts and
downdrafts (Frisch and Strauch 1976; Doviak and Zrnic
1993; Kollias et al. 2001). Fair weather cumuli present
dissipation rates of about 0.02 m2s-3 (Kollias et al. 2001).
For the cases presented in Section 6, it is reasonable
to estimate the upper bound of ε at 0.06 m2s-3. For lλ
=0.0015 m (> lk), lv =45 m, At =1.6, Eq. (34) yields
σ2
t =1.4 m2s-2. In the literature, the reported maximum

values of σ2
t for cumuli are about 1.44 m2s-2 (Kollias et al.

2001), and 0.1-20.25 m2s-2 for light to strong precipitation
systems (Lhermitte 1971).

Using Eq. (30) and the estimated values for the various
contributions, σ2

d is then given by :

σ2
d = (1.33÷ 5.3) + (0.36÷ 20) cos2 ε2+

(0.16÷ 0.25) sin2 ε1 + (1.4÷ 20)m2s-2 (35)

where we may identify a lower (upper) bound for a con-
vective cloud in absence (presence) of strong precipita-
tion, function of the orientation of the beam with respect
to the vertical and to the AC motion direction. Values are
given in Table 5.

5.7 Uncertainties due to Low SNR

Equation (29) is valid for high signal-to-noise ratios. A
more general expression for the variance of the mean
Doppler, under the hypothesis of a large number of inde-
pendent samples, is (Doviak and Zrnic 1993, Eq.(6.21)):

σv SNR = λ2(32π2Mppρ̂
2t2pp)

−1
[(

1 + SNR−1
)2 − ρ̂2

]
(36)
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variances nadir down-fwd side side-fwd
(units: m2s-2) weak severe weak severe weak severe weak severe

σ2
s 1.33 5.3 1.33 5.3 1.33 5.3 1.33 5.3
σ2
f 0.36 20.25 0.29 16.36 0 0
σ2
p 0.25 0.20 0.25 0.16
σ2
t 1.4 20 1.4 20 1.4 20 1.4 20
σ2
d 3.34 46.05 3.22 42.11 2.98 25.80 2.89 25.71
σ2

v 0.27 1.01 0.27 0.96 0.26 0.75 0.25 0.75

Table 5. Contributions to the Doppler spectrum variance and final error in the mean Doppler (cf. Eq. (29) - (30) for the WCR/UWKA
antenna installation. Mpp =30 and PRF =20 kHz assumed.
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FIG. 10. Theoretical (solid line) and data-derived standard de-
viations of the mean Doppler as a function of the SNR. For the
theoretical one: Mpp = 30 and σd ≈1.8 m s-1. Crosses: side-
straight beam; stars: side-forward beam. The data belong to an
HBDD analysis of a Cu performed on July 20, 2003.

where Mpp is the number of independent pulse-pairs,
ρ̂ = ρ̂(tpp) is the signal sample correlation coefficient at
lag tpp which is the intra-pulse-pair time interval. Eq. (36)
can be utilized to devise a weighting function to limit er-
rors among the points belonging to a given cell, which
may be affected by different SNR as mentioned in Sec-
tion 4.3. In Fig. 10, the theoretical expression in Eq. (36)
is plotted together with an empirical one for σv SNR based
on HBDD straight and slanted-pointing beam data. The
curves asymptotically tend to σd/

√
MI for high SNR.

For low SNR, the empirical curves tend to the standard
deviation of a noise uniform distribution ∈ [−vnyq; vnyq).
The discrepancy with the theoretical trend is due to the
Eq. (36) missing the detectability issue of a real system.
Furthermore, the data-derived curve is an average for the
whole data-set, whereas the theoretical one refers to a
single target. The two are, nevertheless, in good agree-
ment and thus they can be used to weight (and cut-off)
the data points.

5.8 Uncertainties due to the Temporal Evolution be-
tween Illuminations

A further source of uncertainty in the dual-Doppler

analysis comes from the target advection and the ’intrin-
sic’ evolution (i.e., the field variation observed in a refer-
ence moving with the storm) in the time interval between
the two beam illuminations. A rigorous treatment of the
problem is offered in Chong et al. (1983) and Gal-Chen
(1982), together with correction algorithms to limit errors
from advection effects and to link the intrinsic temporal
variation to the scale of the motion.

For the geometry of the UWKA/WCR installation, the
time lag between the two radiations is modest, increasing
with the range roughly from 0.9 s at 150 m to 19 s at 3 km
from the AC. This time interval is an order of magnitude
less than that of a classic ground-based or airborne dual-
Doppler realization (cf. Hildebrand and Mueller (1985);
Ray and Jorgensen (1988)). The errors are partially re-
duced in an airborne execution since the aircraft is usually
flown so to attain a Lagrangian observation of the target.

The technique presented here advects the grid accord-
ing to an estimate of the mean wind from flight level
records or from another source estimating the storm mo-
tion. Significant errors are thus limited only to the pres-
ence of unaccounted shear or to the effects caused by
the characteristic time evolution of the features of scales
captured by the grid resolution. Typical time scales for ed-
dies in cumulus convection, for instance, are on the order
of minutes. Smaller scale turbulence cannot be captured
with this type of analysis. An error of 5 m s-1 in the mean
wind estimate can translate at large ranges (>2 km) into
one grid-spacing error, i.e., the distance traveled by the
scatterers in the time interval between scans. Since the
grid cannot resolve features at scales less than twice the
grid spacing, this error is usually acceptable. A degrading
grid resolution with the range can be employed to offset
it.

Vertical scatterer velocities are generally (except for
severe storms) <10 m s-1. Assuming a null grid vertical
advection (i.e., an average null air vertical velocity) should
not produce errors larger than those in the horizontal if
the grid resolution were stretched along the range; if the
grid spacing were kept constant, it might again give rise
to one grid-spacing error.

The resulting velocity error εv,5 can be expressed as
∆ kv, where ∆ is the grid spacing (or the unaccounted
displacement of the scatterer volume) and kv the lo-
cal gradient of the slanted-pointing beam radial veloc-
ity, along either the vertical or horizontal direction. For
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r =3 km, ∆ =45 m, and kv =0.005 s-1, the error amounts
to 0.22 m s-1. Note that at closer ranges the error is even
less and it is partially mitigated by the participation in the
velocity calculation of several points within each grid cell.

The errors due to temporal field variation should be
regarded as a lower cut-off for the resolvable kinematic
scales. Furthermore, a coarser resolution may be envi-
sioned for some cases in order to curb errors via data
smoothing.

5.9 Propagation of the Error from the Radial Velocities
to the Retrieved Velocity Vector

The errors in the radial velocities translate into pertur-
bations of the matrix [B] and the known vector v in the
system (12). In the solution of the velocity inverse de-
composition problem these errors propagate into the re-
trieved velocity vector, with sensitivity depending on the
condition number as mentioned in Section 4.4. If [E] is
the perturbation matrix representing the errors in [B], and
εv the array representing the errors in the known vector v,
it can be proven that if ~vLS + εLS is a solution of the sys-
tem ([B] + [E])(~vLS + εLS) = v + εv, then the following
bound (Lawson and Hanson 1974) for the error εLS in the
solution of the least-squares problem exists:

‖εLS‖
‖~vLS‖

≤ κ

1− κααα
[(2+κ

‖µ‖
‖[B]‖‖~v‖

)ααα+
‖εv‖

‖[B]‖‖~v‖
] (37)

where κ = ‖[B]‖‖[B+]‖ is the generalized matrix con-
dition number, ααα = ‖[E]‖/‖[B]‖, and [E] is assumed to
satisfy the inequality ‖[E]‖‖[B+]‖ < 1.

A simplified expression for the upper bound of the final
velocity error, as a function of that in the individual radial
velocities, is given in what follows.

Denoting εv i the generic error in the radial velocity vi,
including those due to the wrong assumption of the beam
pointing directions~bi, and ~v and ~va the retrieved and ac-
tual velocity vector respectively, it can write:

~v �~bk = vk + εvk, k = 1 . . .m (38)

where m data points participate in the velocity inverse
decomposition problem. Noting that ~va �~bk = vk, Eq. (38)
yields:

[B]~εv = εv (39)

where [B] is the matrix of the beam direction cosines (cf.
Section 4.4) and ~εv is the error in the final velocity vector.
The same least-squares solution applied to the velocity
retrieval can be used to solve Eq. (39), thus the following
writes:

‖~εv‖ ≤ ‖[B+]‖ ‖εv‖ (40)

where [B+] is defined in Eq. (15).

In Table 6, two estimates for ‖~εv‖
‖~vLS‖ are offered based on

Eq. (37) and on the simplified Eq. (40), whose assessed
terms are also given in the Table. A generic (20 × 3)
matrix [B], equally subdivided in data coming from 10
straight- and 10 slanted-pointing beam unit vectors, is as-
sumed. The retrieved velocity vector magnitude is esti-
mated in 10 m s-1, and the [E] matrix is based on the

standard deviations of the beam direction cosines (cf. Ta-
ble 3). The residual norm is taken equal to 0.1 m s-1. The
norm of the radial velocity array v is estimated consider-
ing the actual velocity at 45◦ with respect to the straight-
pointing beam. The εv generic element is assumed equal
to 0.5 m s-1, or 0.75 m s-1 for Eq. (40) where the errors of
the beam unit vectors are also included in this term.

If [E] = [0], including the effects of the beam unit vec-
tors in the εv vector, Eq. (37) yields relative errors less
than 20%.

Note that, from Table 6, the error appears larger for
VPDD than for HBDD. This is caused by the larger con-
dition status of the matrix [B] for the former, where the
beam directions are slightly closer to being collinear (cf.
Fig. 1) than the respective ones for HBDD. Nonetheless,
for what said in the previous sections, the HBDD analysis
is prone to larger errors in the radial velocities (due to the
beam direction estimates for example). Moreover, VPDD
analyses are usually affected by errors smaller than those
assumed in Table 6, yielding final uncertainties in the re-
trieved velocity smaller than the HBDD counterpart.

The error in the velocity components, and thus on the
velocity direction, is derivable from that in the magnitude
via vector decomposition. In the assumed case, the com-
ponents are affected by about 70% of the calculated mag-
nitude error.

6. CASE STUDIES

In the following two sections, results of two dual-
Doppler analyses are briefly outlined showing the ca-
pabilities of the proposed technique. The cases are
from cumulus cloud investigations during the HiCu03
field experiment (http://www-das.uwyo.edu/
wcr/projects/hicu03/hicu03.html ). The
kinematic fields are to be considered relative to a frame
translating with the mean ambient wind measured at flight
level. The straight-pointing beam reflectivity, interpolated
onto the grid, has been chosen to display in the back-
ground of the figures.

6.1 VPDD

Fig. 11 presents results of a VPDD analysis for an
emerging tower in a well developed congestus. The cloud
base altitude was about 4900-5000 m (standard atmo-
sphere pressure altitude).

In the central portion of the cloud the echoes are weak,
with the highest values visible at the top and along the
sides. The updraft is carrying very small water droplets
while larger hydrometeors form higher up and precipitate
along the sides of the cloud. The fine resolution allows
to capture the kinematics of small features and entrain-
ment episodes: at the very top of the cloud, for instance,
dry ambient air is engulfed by the overturning motion of
a 200 m wide turret. Inside the cloud, the larger scale
vorticity can be interpreted as a tilted vortex-ring struc-
ture (Damiani et al. 2004, 2005) associated with the cen-
tral updraft: a clockwise circulation is visible centered at
5300 m along the track and at an altitude of 6100 m; a
counterclockwise vortex is centered at 4600 m along the
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‖[B]‖ ‖[E]‖ ‖[B+]‖ ‖~v‖ ‖v‖ ‖εv‖ ‖µ‖ ‖εLS‖
‖~vLS‖

units – – – m s-1 m s-1 m s-1 m s-1 [%]
VPDD 4.33 0.04 0.88 10.00 26.77 2.24(3.35) 0.1 27(30)
HBDD 4.24 0.06 0.70 10.00 26.77 2.24(3.35) 0.1 26(24)

Table 6. Estimates of the terms appearing in Eq. (37) (and Eq. (40) in parentheses) for the upper bound of the error in the velocity
vector. More in text.

FIG. 11. VPDD analysis for a cumulus cloud investigated on July 31, 2003. Time 191600 UTC. Grid orientation is 75◦. Grid resolution
33*46 m2. Data have been weighted and thresholded based on the SNR and the Inverse Distance Weighting function.

track and 6600 m altitude. The weak echo to the left of
the latter structure is likely the consequence of a previous
entrainment episode associated with vortex-driven dry air
engulfment (see the deep dent in the cloud left boundary).

The mean and standard deviation of the residual-
vector norm are ∼0.14 m s-1 and ∼0.28 m s-1 respec-
tively. The largest values are found along the edges of
the cloud, but within most of the cloud domain the resid-
ual is less then 0.1 m s-1, about one order of magnitude
below the uncertainties in the matrix [B] and vector v.
The highest residual norm corresponds to cells associ-
ated with low SNR and with solution system ranks less
than 2.

In Fig. 12, the upper bound for the velocity magnitude
error (absolute value) is plotted for each grid cell accord-
ing to Eq. (37) and to the actual values of the norms of
the matrices and vectors [B], [B+], ~v, v, µ, and the best
estimates for the norm of εv. The total error in the ra-
dial velocity was calculated as the root-square-sum of all
the error contributions. Uncertainties on the beam di-
rection cosines were based on the lower values of Ta-
ble 4. The contribution to the error from the Doppler
spectrum width (cf. Section 5.6) was estimated from the
autocovariance-process-derived Doppler spectrum stan-
dard deviation (Doviak and Zrnic 1993).

Time evolution/advection effects were evaluated ac-
cording to the discussion in Section 5.8. The beam-point
unaccounted displacements were calculated based on
the UWKA airspeed and assuming the error in the advec-
tion/evolution velocity equal to the locally retrieved veloc-

ity, relative to the assumed mean wind. The radial veloc-
ity gradients were estimated from the measured slanted-
pointing beam Doppler velocities, and, for displacements
larger than one grid spacing, they were bounded to a
more realistic 0.005 s-1. The beam reciprocal misalign-
ment was evaluated based on the in-flight measured
σ(β) '0.53◦, and on a gradient of the radial velocity
along the normal to the grid plane of 0.005 s-1.

Further errors (up to 0.5 m s-1 for the type of cloud
under investigation) could be introduced if the velocity
were to be considered as air and not scatterer veloc-
ity. Furthermore, an unaccounted ambient vertical shear
could produce bias errors in the subtracted mean ambi-
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FIG. 12. Upper bound of the error in the retrieved velocity mag-
nitude, according to Eq. (37) and assuming all the errors in the
array εv.
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FIG. 14. HBDD analysis for a cumulus congestus investigated on July 12, 2003. Time 193530 UTC. Heading is 330◦. Grid resolution
35*46 m2. Data have been weighted and thresholded based on the SNR and the Exponential Weighting function (cexw =0.1, ROI
=35 m).

ent wind, amounting to about 3 m s-1 at ranges beyond
say 1 km. These effects are difficult to evaluate without a
near-by sounding and an accurate knowledge of the mi-
crophysical composition of the cloud. Sidelobe effects are
deemed negligible as well as the errors deriving from the
mis-accounting of the wind cross-plane component (since
the flight attitude was characterized by σψ ' σθ ' σφ '
1.5◦).

The error upper bounds for the components of the ve-
locity vector (and thus for its direction) can be calculated
by decomposing the error in the magnitude along the ξ
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FIG. 13. Distribution of the total and individual contributions to
the error upper bound of Fig. 12 for the grid domain shown in
this section.

and η directions, starting from the locally retrieved veloc-
ity one. They are on the order of the magnitude error.

In Fig. 13, the frequency distribution of the total and
partial error bounds is presented. The mean and stan-
dard deviation of the total error bound are 1.78 m s-1

and 1.73 m s-1 respectively, and the 90% percentile is
2.36 m s-1. The largest contributions come from: the
uncertainty in the beam unit vectors, the spread of the
Doppler power spectrum and the unaccounted advec-
tion/evolution effects.

6.2 HBDD

On July 12, 2003 a series of congesti with high bases
(approximate altitude 5300 m) were investigated.

In the case shown in Fig. 14, the HBDD retrieved ve-
locity field is interested by a pair of large-scale (∼500 m)
counter-rotating vortices. Horizontal plane entrainment is
visible at the edges of the cloud. The reflectivity contours
show that weak echo branches extend from the edges to-
wards the interior of the cloud wrapping around the major
vortices. The generation of vertical vorticity (in absence
of ambient shear in the horizontal plane) is not clear. Po-
tential mechanisms include tilting of horizontal vorticity
and slanted ascent of vortex rings (of the type depicted
in Fig. 11). Maximum values of the calculated vertical
vorticity (not shown) are in excess of 0.05 s-1.

The mean residual vector norm for this analysis is
0.12 m s-1 with a standard deviation of 0.15 m s-1. The
upper bound of the error in the retrieved velocity, accord-
ing to Eq. (37), is shown in Fig. 15. Analogous assump-
tions to those for the VPDD case in Section 6.1 were
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FIG. 15. Upper bound of the error in the retrieved velocity mag-
nitude, according to Eq. (37) and assuming all the errors in the
array εv.

used. The beam reciprocal misalignment was evaluated
from the flight-measured σ(α) '0.94◦, and a gradient of
the radial velocity, along the normal to the grid plane, of
0.005 s-1. The mean value for the error upper bound is
1.85 m s-1 with standard deviation equal to 1.33 m s-1,
and the 90% percentile is 2.89 m s-1.

From the frequency distribution of the error (not
shown), it can be inferred that the largest contributions
still come from the mis-representation of the AC mo-
tion along the beam directions, Doppler power spectrum
width, and the mis-accounted advection/evolution effects.
Compared to the VPDD case, the errors are larger mainly
due to the larger uncertainties in the beam directions.

In Fig. 16, the same case is analyzed with a curtain-
leg grid. A larger swath was adopted to include slanted-
pointing beam points along the cloud edges farther from
the AC, which would have been cut-off otherwise. The
median value for the point-swath is ∼25 m; at far ranges,
however, beam points reach distances of ∼150 m from
the grid plane. Since the swath is measured perpendic-
ular to the local plane of the cells, its value is now larger
than in the case of straight-leg (<90 m), where the hor-
izontal plane grid smooths out this effect. Such a large
swath is caused by the sharp roll-variations of the AC
at the points indicated by the arrows in the Figure. The
side-forward-pointing beam is projected higher than the
plane swept by the side-pointing one in correspondence
of the region in the circle marked in Fig. 16. As a con-
sequence, the kinematic feature within the circle can be
interpreted as real only if a continuity of the same amount
as the swath in the normal-to-grid direction is accepted.
If a 0.005 s-1 shear perpendicular to the grid existed, the
uncertainty error in that region would increase by about
0.75 m s-1.

This example clarifies how the curtain-grid methodol-
ogy can be used to identify suspicious regions and to
evaluate further errors in the velocities and in the inter-
pretation of kinematic structures.

7. CONCLUSIONS

We have described a new approach for the realization
of an airborne dual-Doppler analysis via a re-gridding pro-
cedure of fixed-beam data and a velocity inverse decom-
position algorithm. The resolution of the grid is in the or-
der of 30-50 m.

The problem reduces to solve a linear system of equa-
tions, mostly overdetermined but rank deficient, for every
grid cell, via a weighted least-squares method. To retrieve
the 2-D velocity vector in the plane of scan, a guess of the
cross-plane component is also necessary. Contamination
from horizontal wind into VPDD-retrieved vertical motion
can otherwise be important in cases where the aircraft at-
titude significantly deviates from straight and level flight.
In case of HBDD scans these errors are contained as the
vertical air speed is usually less than, or at least not as
uniform as, the horizontal wind.

The overall accuracy of the retrieved velocity fields is
on the order of 1-2 m s-1, in absence of further smooth-
ing or of iterative integration of the mass continuity equa-
tion. The technique, in fact, produces smooth velocity
fields even though each cell data point is uniquely and in-
dependently calculated. Forcing the 2-D continuity, as for
instance in Weiss and Bluestein (2002), could constitute
a further error source rather than be beneficial in certain
cases. The three-dimensionality of cumulus cloud flow
is, for instance, a strong impediment to the application
of the mass budget in a 2-D plane. In transects across
quasi-2-D density currents, however, the continuity equa-
tion could be used to smooth the field even further.

The uncertainty in the final velocity vector depends on
a number of causes. They were described and the er-
rors quantified with reference to particular weather target
characteristics. Error sources include uncertainties asso-
ciated with: the specific radar and its processing system,
SNR effects on the Doppler spectrum width, the knowl-
edge of the platform motion, the antenna beam point-
ing angles and potential reciprocal misalignment due to
aircraft attitude variations, the external wind information,
the temporal variation of the target between beam scans,
interpolation effects, scatterer terminal velocity, and the
weather target properties (shear, scatterers distribution
etc. . . ).

The technique was successfully applied to the UWKA-
WCR installation. Two case studies have been offered for
cumulus clouds. The error upper bound was quantified,
with the largest contribution coming from the beam direc-
tion ambiguity, the Doppler power spectrum broadening,
and the temporal evolution effects. To reduce the first, a
specific set of flight maneuvers could be devised in order
to reduce the standard deviation of the beam pointing an-
gles. The Doppler spectrum could be made narrower by
increasing the number of independent sample averages
by trading-off the along-track resolution. The third error
source may not be avoidable in some cases; the grid res-
olution could be degraded in order to partially overcome
time evolution effects via data smoothing, although this
will reduce the small-scale capturing capabilities of the
technique and data-filtering may become necessary to
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FIG. 16. As in Fig. 14 but with the curtain-leg gridding. Aspect ratio is 1:1:1 along x,y,z.

avoid potential aliasing.
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