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1. INTRODUCTION

Several European operational weather
agencies are considering upgrading their C-band radar
networks with polarimetric capabilities based on the
prospects of getting improved quantitative precipitation
estimates and the ability to discriminate hydrometeors.
Polarimetric variables are sensitive to particle
concentrations, shapes, sizes, and orientations. In
addition, recent studies (e.g., Zrnic et al. 2005) have
shown that common contaminants to traditional Zyx
products can be significantly mitigated through the use
of multiparameter observations. This study presents a
methodology to readily adapt and tune fuzzy logic
algorithms using polarimetric observations at C-band.
Because the design of the weighting functions is based
entirely on observations, this method may be applied in
the tropics or mid-latitudes at X-, C-, or S-band
wavelengths. The empirical approach of computing
membership functions is presented. The algorithm is
then applied to observations collected by the Meteo-
France C-band polarimetric radar with the primary
intention of discriminating between hydrometeors and
non-hydrometeors.

Typically, data quality algorithms are
formulated in a fuzzy logic sense. Fuzzy logic
algorithms differ from decision tree logic in that they
enable the incorporation of observations from multiple
parameters that may have non-mutually exclusive
conditions describing a given hydrometeor type. They
rely on weighting functions that are smooth, may
overlap, and can be multidimensional as in Straka et al.
(2000). The shape of these weighting or membership
functions controls the behavior and thus performance of
the precipitation-typing algorithm. The choice of these
functions is subjective varying from Beta functions (Liu
and Chandrasekar 2001) to more simple trapezoidal
functions. The ranges of values they cover are also
based on subjective knowledge, observations, or
simulations. An alternative approach is adopted in this
study where the membership functions are derived
directly from observations using Gaussian kernel
density estimation (Silverman 1986). The technique
requires an analyst to restrict the spatial and temporal
domains so that a desired hydrometeor type is isolated.
Membership functions are then derived automatically.
This empirical approach is believed to be advantageous
for the following reasons:
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- membership functions are specific to the
radar wavelength, beam propagation
characteristics at radar location, typical
scatterers (e.g., biological) encountered in
regime, scanning strategy, and volume
coverage pattern

- functions may be updated and tuned as
new observations of weather phenomena
become available

- methodology is easily extended to
accommodate multidimensional functions

- analysis of functions leads to a posteriori
understanding of backscatter and
propagation properties of hydrometeors

2. METHODOLOGY
a. Background

The Meteo-France C-band polarimetric radar,
located approximately 30 km to the southwest of Paris,
has been collecting observations in an operational
setting for over a year. The first task related to
hydrometeor identification is the simple partitioning
between hydrometeors and non-hydrometeors. The
methodology developed herein will ultimately be used
for discriminating between different hydrometeor
species (e.g., rain, melting snow, hail), but this initial
phase of work is aimed at improving data quality. The
choice of crisp inputs (input variables) and crisp outputs
(particle classes) is thus simplified for a limited
application. Moreover, the need for multi-dimensional
membership functions is not necessary for this study,
but the extension of the methodology to accommodate
these functions is straightforward.

b. Definition of crisp inputs (variables)

The Trappes radar is equipped with linear
polarization capabilities in that it transmits horizontally
and vertically polarized waves. The two receiving
channels, which have nearly identical waveguide runs,
operate in parallel and thus enable the simultaneous
reception of polarized signals. The relevant variables
collected are reflectivity at horizontal polarization (Zp),
differential reflectivity (Zpr), correlation coefficient
between horizontally and vertically polarized waves at 0
time lag (pnv(0)), and differential propagation phase
(®@pp). A detailed study has been undertaken in order to
identify, quantify, and correct for the effects of noise,



miscalibration, near-radome interference, and system
offset in initial ®pp measurements (Gourley et al.
2005a). In addition, an attenuation correction procedure
has been developed and implemented for the known
reductions in Zy and Zpr at C-band frequencies
(Gourley et al. 2005b). It was discovered that the
textures of several variables were quite different,
especially for discriminating between hydrometeors and
non-hydrometeors. For this reason, the root mean
squared error of all polarimetric variables is computed in
a 3x3 pixel window (corresponding to 1.5°x720m).
Lastly, Doppler radial velocities (v) and temperatures (T)
are available for detailed particle-typing studies.

All variables and their derivatives are stored on
a grid with a resolution of 240m x 0.5°. While the radar
collects data up to an elevation angle of 90°, this data
quality study primarily deals with observations at an
elevation angle of 1.5°. Data from low elevation scans
are available every 5 min.

c. Identification of hydrometeor and non-hydrometeor
classes

The relevant hydrometeor and non-
hydrometeor classes for this study are precipitation
(PPT), echoes from ground clutter and anomalous
propagation (AP/GC), chaff echoes (CHAFF), and
scatterers in clear air (CLEARAIR). The latter three
classes are contaminants to Zy products. AP/GC is a
commonly observed phenomenon that results from
power returns from natural and anthropogenic features
typically situated near the radar. Chaff, or synthetic
fibers released from military aircraft, isn’t observed as
frequently but can take the appearance as a fine line or
even as an intense cell on Zy images. Echoes from
clear air are not as well understood, but may be a result
of biological targets.

An expert analyst identifies a case where a
given class is obvious and prevalent. Additional
sources of information are utilized in order to
unambiguously identify the class of interest. For
example, in order to isolate AP/GC a case is chosen on
a sunny day where there are no precipitating echoes in
the vicinity. Next, the analyst defines the azimuths,
ranges, and altitudes at which the phenomenon is
occurring. For AP/GC, the search domain would be
restricted to elevation angles of 0.4° near the radar (i.e.,
ranges < 10 km) at all azimuths. It is important to note
that no thresholding on polarimetric variables is used in
this step. This enables the derived membership
functions to remain unconditional and objective.

d. Gaussian kernel density estimation

The distribution of each distinct input is
computed for the hydrometeor type using Gaussian
kernel density estimation (Silverman 1986). The kernel
density estimate is defined as:

f(x) =
o i1 (1),

where f(x) is an estimate of the data density, o is the

smoothing parameter or bandwidth, n is the total
number of data points, and X; is the M value. The
bandwidth controls the number of bumps or the
smoothness in the estimation of f(x). This parameter is
estimated usmg the so-called Silverman’s rule
(0=1.06*stdev* n” In effect, a Gaussian curve is
produced at each observatlon along the abscissa. The
width of these curves is determined by the value of o.
Next, linear superposition is used to sum up all the
curves in order to arrive at a continuous estimate of the
data density. This method has been extended to the
bivariate or multivariate case by using a multiplicative
kernel.

Examples of 1-D membership functions that
are particularly useful in segregating hydrometeors from
non-hydrometeors are shown in Figs. 1 and 2. The
distribution of pnyv(0) for PPT is relatively narrow near
large values (mode=0.97). CHAFF and CLEARAIR may
be adequately segregated from PPT using this
parameter alone, but it is noted that there is substantial
overlap between the PPT and AP/GC distributions.
Additional parameters are thus needed in order to
successfully identify scatterers caused by precipitation.
Observations of individual polarimetric images indicated
that non-weather phenomena have much greater spatial
heteorogeneity over small scales. To the human eye,
images of @pp, for example, appear noisy and granular.
The text(®dpp) conveys this information to the algorithm
as shown in Fig. 2. In this case, the distributions of PPT
and AP/GC are well separated. The PPT distribution is
much more narrow with a peak near low values of
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functions shown in Figs. 1 and 2 in addition to text(Zpr)
and text(pnv(0)) are used in the fuzzy logic algorithm for
hydrometeor vs. non-hydrometeor discrimination.
These variables were chosen subjectively through
experimentation.

e. Fuzzy logic system

The inference engine used in this study is
similar to the one described in Vivekanandan et al.
(1999). In summary, a probability for each of the four
classes (PPT, AP/GC, CHAFF, and CLEARAIR) is
computed at every grid point based on values of pnv(0),
text(®pp), text(Zpr), and text(pnv(0)). The probability of
a given class (e.g., PPT) for a given variable (e.g.,
prv(0)) is simply “looked up” using the predefined
membership functions. The final aggregated probability
is computed by adding each of the probabilities found
for each variable, where all the variables mentioned
above receive equal weight. Finally, the class at a given
grid point is determined by finding the maximum of the
aggregated probabilities that were computed for each
class.

3. RESULTS

Evaluating the performance of a precipitation
versus non-precipitation algorithm can be a daunting
task. In situ data sets are notoriously limited in their
spatial and temporal scales of coverage. Such data
sets were not available for this study. An alternative
approach is to discriminate hydrometeors from non-
hydrometeors for a large, independent data set and then
aggregate them over a long period of time. Derived
frequency maps reveal spatial patterns of the
aggregated classes, which can then be analyzed by a
radar expert to determine if the classes were correctly
identified.

A day is chosen for analysis (23 June 2005) in
which several non-hydrometeor scatterers were noted
near the radar. Later in the period, convective echoes
developed and moved directly across the radar. The
evaluation spans a 24-hour period for which 96
individual scans are available. The classes are derived
for each scan using the fuzzy logic system, and their
frequency of occurrence is computed over the event
duration. All non-hydrometeor classes are grouped
together to form the NON-PPT class.

a) NON-PPT _ b) PPT
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FIG. 3. Frequency of occurrence of a) non-
hydrometeors and b) hydrometeors over a 24-hour
period.

Fig. 3 shows a remarkable difference between
the aggregated class assignments to NON-PPT and
PPT. The NON-PPT frequency map has a very large
maximum centered on the radar, a region where clear
air echoes and ground clutter are common. Also, rays
emanating from the radar are noted to the northwest
and northeast of the radar. These artifacts are
associated with sunset and sunrise. The PPT frequency
map, on the other hand, reveals a pattern that is
spatially consistent with accumulated rainfall maps.

It is noted in Fig. 3a that there are very low but
nonzero frequencies of detecting NON-PPT echoes in
regimes dominated by high PPT frequencies. Individual
images were examined in order to better understand
this possible misclassification of precipitating echoes. It
was discovered that the outermost borders of
precipitating echoes were occasionally classified as
being CLEARAIR. The low values of pny(0) in these
regions suggests that signals were not necessarily from
CLEARAIR but were more likely from non-precipitating
clouds. In any case, the assignment of these
occurrences into the NON-PPT class has been
considered to be appropriate.

It might appear as though a frequency
minimum in Fig. 3b exists at the same location as the
maximum in Fig. 3a. If this were the case, then it could
be concluded that the algorithm has a less than
desirable probability of detecting precipitation.
However, closer examination reveals that the
precipitation frequency minimum is not located at the
center of the image where NON-PPT echoes are likely,
but is offset to the west. This minimum is believed to be



a real characteristic of the spatial
precipitation.

It is also interesting to investigate the
algorithm’s capability of discriminating between different
non-hydrometeor types. While the outcome of these
results is not as critical as the hydrometeor versus non-
hydrometeor discrimination, the identification of
biological targets, military and commercial aircraft, and
fixed targets may be beneficial to additional agencies
and scientific communities. Moreover, these results will
provide an expectation on how the fuzzy logic system
will perform in hydrometeor species discrimination (e.g.,
rain versus hail).

A brief analysis of the ability to segregate
between AP/GC and CLEARAIR echoes is undertaken.
Fig. 4a shows that the maxima in AP/GC frequencies
are located very near the radar, with some features
resembling anomalous propagation to the west. Close
inspection of the image reveals fixed structures that
appear routinely on Zy images. Echoes from
CLEARAIR contribute the most to the NONPPT class
(Fig. 4b). The spatial pattern of the frequencies near
the radar is consistent with expectations. As mentioned
previously, cloud echoes have been grouped in the
CLEARAIR class, which is not entirely appropriate.
Additional classes will be needed in order to isolate
these non-hydrometeor species more effectively. It was
also noted that several echoes from ground clutter were
often mistakenly placed in the CHAFF class. The
membership functions of the texture parameters overlap
significantly between these two classes (see Fig. 2).
There are other parameters that are more capable of
distinguishing between CHAFF and AP/GC. The
weights on the membership functions would need to be
adjusted, as they were optimized for hydrometeor
versus non-hydrometeor discrimination in this study.
Improved discrimination among non-hydrometeor
species is possible through more specific weighting of
the membership functions.

pattern of

4. SUMMARY AND CONCLUSIONS

A scheme has been developed to automatically
discriminate between hydrometeors and non-
hydrometeors. The unique aspects of this study are the
empirical derivation of the membership functions and
the evaluation methodology. Typically, the shapes of
the membership functions and the values they cover are
chosen manually based on simulations, disdrometer
measurements, in situ observations, and radar
measurements. The method proposed herein is
objective and is based on the radar measurements
alone. This permits the membership functions to be
adaptive and thus appropriate to the radar wavelength
and region for which the algorithm will be functioning.

A radar expert first identifies the species of
interest. This region is then isolated, and distributions
are created for the polarimetric variables using
Gaussian kernel density estimation. These functions
are then used directly in a fuzzy logic system as
membership functions. A judicious selection of variable
weights is required by a radar expert.
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FIG. 4. Frequency of occurrence of echoes from a)
anomalous propagation and ground clutter and b)
clear air over a 24-hour period.

The proposed scheme was tested on a 24-hour
case in which common contaminants were observed
near the radar at the beginning of the event. Later,
convection developed and moved through the area.
Frequency maps were derived for the occurrence of
precipitation and other non-hydrometeors. This
evaluation methodology is unique in that the spatial
patterns of the class frequencies are used to evaluate
the performance of the algorithm. This approach covers
an entire radar umbrella over a day without an extensive
need of in situ verification data sets. Results indicate
that the method has a high probability of detecting
precipitation with very few false alarms. The capability
of the algorithm to distinguish among non-hydrometeor
classes was also examined. The performance was
acceptable yet suboptimal due to the tuning of the
weighting functions for discrimination between
hydrometeors and non-hydrometeors. Future work will
investigate adapting the weighting of membership
functions, deriving Kpp membership functions, and
utilizing multidimensional functions to accommodate the
identification of different particle types (e.g., rain versus
hail) and non-hydrometeors (e.g., chaff versus ground
clutter).
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