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1 Introduction

Several requirements must be met before the credibility
of simulations performed with an atmospheric mesoscale
model can be established [1]. Among these requirements
we have the comparison with known analytic solutions
of the equations of motion. In this work we describe a
scheme that yields exact solutions of the bidimensional
deep continuity equation [1]

∇ · ρ0(r)U(r) = 0 . (1)

that satisfy the non-flow boundary condition at an arbi-
trary representation of terrain h(x),

U · n = 0 on z = h(x), (2)

where n is a vector normal to the lower surface of z =
h(x). The exact solutions of the problem (1,2) are use-
ful to study the reliability of a wide class of methods
used to estimate a wind field from the data provided by
a monitoring network, namely, the so-called mass con-
sistent models [2]. The exact solutions are obtained by
means of a suitable modification of the methods provided
by complex variable theory (see, e.g., [3,4]).

The primary problem to obtain the velocity field U(r)
is the solution of the so-called shallow continuity equation
[1]

∇ ·V(r) = 0 (3)

under the boundary condition

V · n = 0 on z = h(x). (4)
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In fact, let us suppose that V is known, then it satisfies

∇ · ρ0(r)
V(r)

ρ0(r)
= 0 .

and the boundary condition

V(r)

ρ0(r)
· n = 0 on z = h(x).

Hence the field

U =
V(r)

ρ0(r)

is a solution of equation (1) that satisfies the condition
(2). By completeness, in sections 2 and 3 we expose the
formal construction of V. Of course, other authors [5]
have used complex variable theory to obtain exact solu-
tions of the problem (3,4) but they only consider a compu-
tational region with a simple geometry because inherent
difficulties of the map-conforming do not permit to solve
(3,4) for an arbitrary topography h(x). In section 4 we
illustrate the problems posed by the map conforming to
obtain solutions of (3,4). These problems can be circum-
vented if the topography h(x) is estimated by means of
cubic splines [6], which are defined in section 4. In section
5 we describe the field V(r) obtained from the natural
spline corresponding to real terrain elevation data from
the data-base GTOPO30 [7]. It is shown that the map-
conforming and the splines generate an exact fieldV even
when the terrain elevation h(x) changes suddendly as x
increases. Histograms of the components of V = ui+wk
show that u and w have a very irregular behavior. Simi-
lar results are obtained with the components of the field
U = ρ−10 V where ρ0 is the density corresponding to an at-
mospheric reference state that is isothermic or adiabatic.
The fieldU is more interesting because its vorticity is not
trivial,

∇×U �= 0 ,
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a property that is exhibited by the behavior of the com-
ponents of U as a function of the height z.
There is no consensus about the correct representation

of the topography in atmospheric models. In general, the
terrain data are subject to a smoothing process. Cubic
splines can be used to smooth terrain elevation data and,
consequently, we can compute the fields V and U. In
section 5 we describe the smoothing splines and the cor-
responding fields V and U. The results show that the V
and U are critically dependent of h(x).

2 Formal construction of the field

V

In this section we give a summary of the theory of bidi-
mensional potential flow. Let x, y, z be the a cartesian co-
ordinate system with its origin on a spherical earth model,
the z axis out of the sphere and the plane xy is tangent
to the sphere at a point with latitude φ and longitude λ,
the corresponding unit vectors are i, j, k. If the field V
is irrotational,

∇×V = 0

there exists a function φ (the velocity potential) such that

V =∇φ. (5)

IfV satisfies (3) and (4), then φ has to satisfy the Laplace
equation

∇2φ = 0 (6)

and the boundary condition

∂φ

∂n
≡ ∇φ · n = 0 on z = h(x). (7)

The velocity field V can be obtained by solving (6) with
the boundary condition (7) without directly using the mo-
mentum equation

dV

dt
= −

1

ρ
∇p+ g

which can be used to obtain the pressure field. A second
function can be defined in such a way that the associated
velocity field automatically satisfies the equation (3). In
fact, the field V = iu+ kw with components

u =
∂ψ

∂z
w = −

∂ψ

∂x
(9)

satisfies (3) for any function ψ (the stream function). In
vectorial form V is given by

V = j×∇ψ . (10)

The irrotational condition ∇× (j×∇ψ)= 0 that ψ must
satisfy, takes the form ∇2ψ = 0. The function ψ has
useful properties that allow us to obtain the field V that
satisfies (3) and (4) with an arbitrary topography h(x).
Let r(η) = x(η)i+z(η)k be the equation of a curve where
ψ has a constant value ψ0,

ψ(x(η), z(η)) = ψ0,

then

∇ψ ·
dr(η)

dη
= 0

From (10) we get ∇ψ = −j×V and replacing in the last
equation we have

(−j×V) ·
dr(η)

dη
= (V×

dr(η)

dη
) · j = 0.

Since V and r(η) belong to the xz−plane, it follows that
V is parallel to the vector dr/dη; that is, V is tangent to
the curve r(η). Thus we have

u =
∂ψ

∂z
=
∂φ

∂x
w = −

∂ψ

∂x
=
∂φ

∂z
. (11)

The relationships between the derivatives of ψ and φ
are the so-called Cauchy-Riemann equations, which imply
that ψ and φ are the components of the function (called
the complex potential of V)

F (ξ) = φ(x, z) + iψ(x, z)

of the complex variable

ξ = x+ iz

in terms of which V is given by

V = V =
dF (ξ)

dξ
= u− iw . (12)

An important property of complex analytic functions
to obtain our velocity field V is that they keep the an-
gle between curves. In fact, let us consider an abstract
complex plane

ζ = x̄+ iz̄

and let

F̄ (ζ) = φ̄(x̄, z̄) + iψ̄(x̄, z̄)

be a complex potential so that

V̄ =
dF̄ (ζ)

dζ
= ū− iw̄
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defines a velocity field in the ζ plane with potential
φ̄ = Re F̄ (ζ) and stream function ψ̄ = Im F̄ (ζ). Let us
consider that there is a relationship between ξ and ζ,

ξ = G(ζ),

and let us denote the inverse transformation by G−1,

ζ = G−1(ξ).

The complex potential

F (ξ) = F̄ [G−1(ξ)] = φ(x, z) + iψ(x, z)

yields a velocity field V (12) in the xz−plane that is
the image of V̄ under the transformation G(ζ). Suppose
that G(ζ) is an analytic function of ζ, then G transforms
stream lines of the flow V̄ in the ζ−plane into stream
lines of the field V and analogously with the equipoten-
tial lines [4]. Thus, if G transforms a stream line of V̄ into
the curve z = h(x), the flow V automatically satisfies the
continuity equation (3) and the boundary condition (4).
In this way, the problem to compute our desired veloc-
ity field V consists in defining a field V̄ in the ζ−plane
with a stream line ψ̄ = ψ̄0 whose image under an analytic
function G(ζ) is the curve z = h(x).

Suppose that we know a field V̄ and a function G(ζ)
with the aforementioned properties. The desired field V
can be obtained from the stream function ψ(x, y) or the
potential φ(x, y) as follows. In principle, from the inverse
transformation G−1,

ζ = x̄+ iz̄ = G−1(ξ) = x̄(x, z) + iz̄(x, z) (13a)

we get the inverse transformation equations

x̄ = x̄(x, z), z̄ = z̄(x, z). (13b)

The substitution of these expressions in the equation

F (ξ) = F̄ [G−1(ξ)]

= φ(x, z) + iψ(x, z)

= φ̄(x̄, z̄) + iψ̄(x̄, z̄)

yields the relationship between φ, ψ and φ̄, ψ̄, namely,

φ(x, z) = φ̄[x̄(x, z), z̄(x, z)]

ψ(x, z) = ψ̄[x̄(x, z), z̄(x, z)]

and, therefore, the desired field V has the components

u =
∂ψ̄

∂z
=
∂φ̄

∂x
(14)

w = −
∂ψ̄

∂x
=
∂φ̄

∂z
.

The chain rule yields the equations

u =
∂φ

∂x
=
∂x̄

∂x

∂φ̄

∂x̄
+
∂z̄

∂x

∂φ̄

∂z̄

w =
∂φ

∂z
=
∂x̄

∂z

∂φ̄

∂x̄
+
∂z̄

∂z

∂φ̄

∂z̄

which, in terms of the components ū and w̄ of V̄ [eq.
(11)], take the form

u =
∂x̄

∂x
ū+

∂z̄

∂x
w̄

w =
∂x̄

∂z
ū+

∂z̄

∂z
w̄ .

The coefficients of ū and w̄ are the elements of the matrix

J
−1 =

(
∂x̄
∂x

∂x̄
∂z

∂z̄
∂x

∂z̄
∂z

)

which is the inverse of the Jacobian matrix

J =

(
∂x
∂x̄

∂x
∂z̄

∂z
∂x̄

∂z
∂z̄

)

associated to the direct transformation equations

x = x(x̄, z̄) = ReG(ζ) (15)

z = z(x̄, z̄) = ImG(ζ)

which are obtained from ξ = G(ζ). Thus we have

J
−1 =

(
∂x
∂x̄

∂x
∂z̄

∂z
∂x̄

∂z
∂z̄

)−1
=
1

J

(
∂z
∂z̄

−∂x
∂z̄

− ∂z
∂x̄

∂x
∂x̄

)
,

where J = det(J),

∂x̄

∂x
=

1

J

∂z

∂z̄
,

∂x̄

∂z
= −

1

J

∂x

∂z̄
∂z̄

∂x
=

−1

J

∂z

∂x̄
,

∂z̄

∂z
=
1

J

∂x

∂x̄

and (
u
w

)
=
1

J

(
∂z
∂z̄

− ∂z
∂x̄

−∂x
∂z̄

∂x
∂x̄

)(
ū
w̄

)
.

The elements of J−1 are not independent, since G(ζ) =
x(x̄, z̄) + iz(x̄, z̄) is analytic the Cauchy-Reimann equa-
tions are valid and yield

∂x

∂x̄
=

∂z

∂z̄
∂x

∂z̄
= −

∂z

∂x̄
.

Thus we get two equivalent expressions to obtain u,w
from ū, w̄, namely,

(
u
w

)
=

1

J

(
∂x
∂x̄

− ∂z
∂x̄

∂z
∂x̄

∂x
∂x̄

)(
ū
w̄

)
(16)

=
1

J

(
∂z
∂z̄

∂x
∂z̄

−∂x
∂z̄

∂z
∂z̄

)(
ū
w̄

)
.
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3 The case of a uniform flow V̄ in

the plane ζ

In this section we consider the simplest flow V̄ in the
complex plane ζ and an analytic function G(ζ) that trans-
forms a stream line of V̄ into a terrain curve z = h(x).
The flow in question is the uniform field

V̄ = V0 (ū = V0, w̄ = 0)

obtained from the potential

φ̄ = V0x̄.

The corresponding flow V under an arbitrary analytic
transformation G(ζ) is [eq. (16)]

u =
V0
J

∂z

∂z̄
(17)

w = −
V0
J

∂x

∂z̄
.

The real axis z̄ = 0 in the ζ−plane is a stream line of V̄ ,
and the simplest function G(ζ) that transforms such an
axis into the curve z = h(x) is

G(ζ) = ζ + ih(ζ). (18)

In fact, if ζ is replaced by ζ = x̄ we get

G(ζ) = x̄+ ih(x̄)

which is exactly the parametric form of the curve z = h(x)
with x = x̄. Let h1 and h2 be the real and imaginary parts
of h(ζ),

h(ζ) = h1(x̄, z̄) + ih2(x̄, z̄),

then the transformation equations defined by (15) are

x = x(x̄, z̄) = x̄− h2(x̄, z̄) (19)

z = z(x̄, z̄) = z̄ + h1(x̄, z̄).

4 Problems posed by conforming

map and splines

In principle any (analytic) representation of the terrain
h(ζ) can be used in the transformation G(ζ) = ζ + ih(ζ).
For instance, let us consider the topography

h(ζ) = sinπζ/a

where a is a positive real number. The corresponding
transformation equations (19) are

x = x(x̄, z̄) = x̄− cos (πx̄/a) sinh (πz̄/a) (20)

z = z(x̄, z̄) = z̄ + sin (πx̄/a) cosh (πz̄/a) .

The presence of the hyperbolic functions implies that a
region in the ζ−plane is substantially different in the
ξ−plane. Figure 1 shows that the image of the semiplane
{ζ : Im ζ ≥ 0} under the transformation ξ = sinπζ/a, is
a very small region of the ξ−plane (the physical space).
This implies that we cannot compute the desired field V
on an arbitrary region of the physical space. This exam-
ple also shows the convenience of computing the field V
using x̄ and z̄ as independent variables [eq. (16)], since
in general the inverse transformation (13a,b) cannot be
obtained in a closed and analytic form because of the non-
linearity of the direct transformation (19) as occurs with
(20).

 

Figure 1: Region in the ζ−plane and its image in the
ξ−plane with h(ζ) = sinπζ/a.

Since our primary objective is the calculation of a veloc-
ity field V that satisfies (3) and the boundary condition
(4) we can replace an arbitrary (but analytic) topogra-
phy h(x) by a simpler representation that eliminates the
inherent problem of the map conforming. In this section
h(x) is approximated by a natural spline S(x) which is
defined as follows. Let {xk}

n
k=0 be a set of points where

the terrain height h(xk) is known, then : (i) S(x) satisfies

S(xk) = h(xk) for k = 0, ..., n,

(ii) S(x) is a cubic polynomial on each interval [xk, xk+1],

S(x) = ak + bk(x− xk) + ck(x− xk)
2 + dk(x− xk)

3

for x ∈ [xk, xk+1],

(iii) S(x) and its derivatives S′(x), S′′(x) are continuous
on [x0, xn] and S

′′(x) satisfies

S′′(x0) = S′′(xn) = 0.
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There is a unique natural spline associated to an ana-
lytic function h(x) on the interval [x0, xn]. Since S(x)
is a cubic polynomial on each interval [xk, xk+1], we can
compute the flow

u =
V0
J

∂z(k)

∂z̄

w = −
V0
J

∂x(k)

∂z̄
for x ∈ [xk, xk+1],

where

x(k) = x̄− S2(x̄, z̄)

z(k) = z̄ + S1(x̄, z̄)

and
S(ζ = x̄+ iz̄) = S1(x̄, z̄) + i S2(x̄, z̄).

The continuity of S(x), S′(x) and S′′(x) guarantees
that the field V =ui+ wk, its first derivatives

∂u

∂x
,
∂u

∂z
,
∂w

∂x
,
∂w

∂z
,

and ∇·V are continuous on the interval [x0, xn]. This to-
gether with the fact that u, w satisfy the continuity equa-
tion (3) and the boundary condition (4) on each interval
[xk, xk+1], implies that the fieldV satisfies the same equa-
tions on the whole interval [x0, xn].

Remark. A clear advantage of the splines is that
they can be used to model real terrain elevation data
h(xk) which are known only on a discrete set of points
{xk, h(xk)} which constitute a digital terrain elevation
model.

5 Examples

The velocity fields considered below are calculated with
the datum u = 10 ms−1 and w = 0 at the point (x =
0, z = 10 km), which is used to define the magnitude V0
of the flow on the abstract complex plane ζ.

5.1 Flow V from a natural spline

In this section we consider the field V defined by the nat-
ural spline corresponding to the terrain data {xk, h(xk)}
of fig. 2 with −400 ≤ x ≤ 400 km, the data were obtained
from the base GTOPO30 [7]. The field V is a solution
of the shallow continuity equation (3) and the boundary
condition (4), with ρ constant, Hereafter, we describe the
part of the field on the region −10 ≤ x ≤ 10 km. Figures
3 and 4 show V(x, z) on lines with x = x0 = constant
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Figure 2: Topography used to compute a natural spline
S(x).
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Figure 3: Field V(x0, z) at points with x0 =constant.
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Figure 4: Field V(x, z0) at points with z0 =constant.
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Figure 5: Graph of z v.s. u (x0, z) at x0 = −10, 0, 10 km.
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Figure 6: Graph of z v.s. w (x0, z) at x0 = −10, 0, 10
km.

and z = z0 = constant, respectively. Each figure shows
the effect of the topography on V(x, z).

Figures 5 and 6 show the plot of z v.s. u (x0, z) and
w (x0, z), respectively, at x0 = −10, 0, 10 km. The graphs
allows us to see the continuity of u (x, z) and w (x, z) as
z increases from the topography z = h(x).

Figures 7 and 8 show the plot of x v.s. u (x, z0) and
w (x, z0), respectively, at z0 = 2, 10 km. The graphs
show that u (x, z) and w (x, z) have an irregular behav-
ior as x increases, a result that can be attributed to the
topography. The case of w (x, z0 = 2) is particularly in-
teresting since we observe that it behaves very irregularly.
In principle, the continuity of the spline and its first two
derivatives should produce smooth graphs of u (x, z0) and
w (x, z0), but the figures 7 and 8 allows us to see that the
fieldV (x, z) keeps the sudden changes of the topography.
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Figure 7: Graph of x v.s. u (x, z0) at z0 = 2, 10 km.
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Figure 8: Graph of x v.s. w (x, z0) at z0 = 2, 10 km.
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Figure 9: Graph of z v.s. ∇ ·V (x0, z) at x0 = −10, 10
km.
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Figure 10: Graph of x v.s. ∇ ·V (x, z0) at z0 = 2, 10 km.

In order to show that the continuity equation ∇ ·
V (x, z) = 0 is satisfied we plot the values ∇ ·V (x, z) at
points (x0, z) and (x, z0) in figures 9 and 10, respectively.
As expected, we see that∇ ·V (x, z) is, for practical pur-
poses, zero.

Let us now consider the boundary condition V · n = 0
on z = h(x). As expected, figure 11 shows that V · n is
essentially the zero of the computer machine. As above,
the irregular behavior is due to the irregularity of the
topography.

In order to appreciate the irregular behavior of the com-
ponents u (x, z0) and w (x, z0) as a function of x with
−10 ≤ x ≤ 10, we plotted some histograms. The histro-
gram of w (x, z0) with z0 = 2 km is plotted in figure
12, and we see that it behaves like a Gaussian distribu-
tion with < w >∼ 0. Figure 13 shows the histogram of
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1
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-14
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Figure 11: Graph of x v.s. V · n at (x, z = h(x)).
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Figure 12: Histogram of w (x, z0) for −10 ≤ x ≤ 10 and
z0 = 2 km.

w (x, z0 = 10 km), and we see that it behaves like a three-
modal distribution. Finally, figures 14 and 15 show the
histogram of u (x, z0) at z0 = 2 and 10 km, respectively.
The behavior of u at z0 = 2 km is irregular but with a
small dispersion, in contrast the behavior at z0 = 10 km is
significantly more irregular on a wider range of velocities.

5.2 Flow V from a smoothing spline

In this section we consider the field V defined by a
smoothing spline Sp(x) corresponding to the terrain data
{xk, h(xk)}

n
k=1 of fig. 2. The field V is a solution of the

shallow continuity equation (3) and the boundary condi-
tion (4), ρ = constant, and we describe the part of the
field on the region −10 ≤ x ≤ 10 km. The splines Sp(x)
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Figure 13: Histogram of w (x, z0) for −10 ≤ x ≤ 10 and
z0 = 10 km.
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Figure 14: Histogram of u (x, z0) for −10 ≤ x ≤ 10 and
z0 = 2 km.
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Figure 15: Histogram of u (x, z0) for −10 ≤ x ≤ 10 and
z0 = 2 km.

are obtained by minimizing the functional

F = p
n∑

k=1

|hk − Sp(xk)|
2 + (1− p)

∫ xn

x1

|D2Sp(t)|
2dt

Here, n is the number of terrain data and the integral
is over the smallest interval containing all the data xk.
Further, D2Sp(t) denotes the second derivative of Sp(x).
The smoothing parameter is p, it determines the relative
weight on the contradictory demands of having be smooth
v.s. having be close to the data. For p = 0, we get the
least-squares straight line fit to the data, while, at the
other extreme, p = 1 yields the natural spline. As p
moves from 0 to 1, the smoothing spline changes from
one extreme to the other.

We begin with the field Vp=0.1(x, z) from the smoother
spline Sp(t) with p = 0.1. Figures 16 and 17 show
Vp=0.1(x, z) on lines with x = x0 = constant and z =
z0 = constant, respectively. Figures 18 and 19 show
the plot of z v.s. u (x0, z) and w (x0, z), respectively,
at x0 = −10, 0, 10 km, where we see the continuity of
u (x, z) and w (x, z) as z increases from the topography
z = h(x). Figures 20, 21 show the plot of x v.s. u (x, z0)
and w (x, z0), respectively, at z0 = 2, 10 km. As expected,
u and w are smooth at z0 = 2 km but they become irreg-
ular as z0 increases. The irregularity can be seen in the
histograms plotted in figs. 22 to 25.
Figures 26 to 31 show the behavior ofVp=0.5(x, z) from

the smoothing spline Sp(t) with p = 0.5. Figures 26 and
27 show Vp=0.5(x, z) on lines with x = x0 and z = z0,
respectively. Figures 28 and 29 show the plot of z v.s.
u (x0, z) and w (x0, z), respectively, at x0 = −10, 0, 10
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Figure 16: Field Vp=0.1(x0, z) at points with
x0 =constant.
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Figure 17: Field Vp=0.1(x, z0) at points with
z0 =constant.
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Figure 18: Graph of z v.s. up=0.1 (x0, z) at x0 = −10, 0,
10 km.
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Figure 19: Graph of z v.s. wp=0.1 (x0, z) at x0 = −10, 0,
10 km.
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Figure 20: Graph of x v.s. wp=0.1 (x, z0) at z0 = 2, 10
km.
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Figure 21: Graph of x v.s. wp=0.1 (x, z0) at z0 = 2, 10
km.
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Figure 22: Histogram of wp=0.1 (x, z0) for −10 ≤ x ≤ 10
and z0 = 2 km.
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Figure 23: Histogram of wp=0.1 (x, z0) for −10 ≤ x ≤ 10
and z0 = 10 km.
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Figure 24: Histogram of up=0.1 (x, z0) for −10 ≤ x ≤ 10
and z0 = 2 km.
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Figure 25: Histogram of up=0.1 (x, z0) for −10 ≤ x ≤ 10
and z0 = 2 km.
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km, where we see the continuity of u (x, z) and w (x, z) as
z increases from z = h(x). Figures 30, 31 show the plot
of x v.s. u (x, z0) and w (x, z0), respectively, at z0 = 2, 10
km. Once again, u and w are smooth at z0 = 2 km but
they become irregular as z0 increases.
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Figure 26: Field Vp=0.5(x0, z) at points with
x0 =constant.
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Figure 27: Field Vp=0.5(x, z0) at points with
z0 =constant.

Figures 32 to 39 show the behavior ofVp=0.9(x, z) from
the smoothing spline Sp(t) with p = 0.9. Figures 32 and
33 show Vp=0.9(x, z) on lines with x = x0 and z = z0,
respectively. Figures 34 and 35 show the plot of z v.s.
u (x0, z) and w (x0, z), respectively, at x0 = −10, 0, 10
km, where we see the continuity of u (x, z) and w (x, z) as
z increases from z = h(x). The irregularity can be seen
in the histograms plotted in figs. 36 to 39.
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Figure 28: Graph of z v.s. up=0.1 (x0, z) at x0 = −10, 0,
10 km.
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Figure 29: Graph of z v.s. wp=0.5 (x0, z) at x0 = −10, 0,
10 km.
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Figure 30: Graph of x v.s. wp=0.5 (x, z0) at z0 = 2, 10
km.
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Figure 31: Graph of x v.s. wp=0.5 (x, z0) at z0 = 2, 10
km.
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Figure 32: Field Vp=0.9(x0, z) at points with
x0 =constant.
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Figure 33: Field Vp=0.9(x, z0) at points with
z0 =constant.
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Figure 34: FIG 34 Graph of z v.s. up=0.9 (x0, z) at x0 =
−10, 0, 10 km.
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Figure 35: Graph of z v.s. wp=0.9 (x0, z) at x0 = −10, 0,
10 km.
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Figure 36: Histogram of wp=0.9 (x, z0) for −10 ≤ x ≤ 10
and z0 = 2 km.
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Figure 37: Histogram of wp=0.9 (x, z0) for −10 ≤ x ≤ 10
and z0 = 10 km.
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Figure 38: Histogram of up=0.9 (x, z0) for −10 ≤ x ≤ 10
and z0 = 2 km.
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Figure 39: Histogram of up=0.9 (x, z0) for −10 ≤ x ≤ 10
and z0 = 10 km.

Figure 40 shows the fields Vp with p = 0.1, 0.5, 0.9, 1.0
where p = 1 corresponds to the natural spline. A com-
parison of the above results shows that "small" changes
on the topography (approximated by a spline) produce
significant changes in the field Vp=0.5. This is particu-
larly evident from the histograms. The most irregular
field is Vp=1.0. In principle we can expect that Vp tends
to Vp=1.0 as p → 1.0− but this limiting process is not
continuous since the natural spline Sp=1(x) is almost dis-
continuous (see fig. 2).
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Figure 40: Splines Sp(x) and the corresponding velocity
fields Vp for p = 0.1, 0.5, 0.9, 1.0.

Acknowledgments

One of us (M.A.N.) wishes to thank Ma. T. Nuñez by
her its invaluable support.

13



6 References

1. Pielke R. A., Mesoscale Meteorological Modeling

(Academic Press, New York); 2nd ed (2002)

2. C. F. Ratto, R. Festa, C. Romeo, O. A. Frumento and
M. Galluzzi, Environ. Software 9, 247-268 (1994).
D. P. Lalas and C. F. Ratto editors, Modeling of at-

mospheric fields (World Scientific, Singapore, 1996)

3. L.D. Landau and E.M. Lifshitz, Fluid Mechanics

(Pergamon Press, 1987).

4. M. R. Spiegel, Complex Variable (McGraw-Hill,
1971).

5. D. G. Ross, I. N. Smith, P. C. Manins and D. G. Fox,
J. Applied Met. 27, 675-686 (1988).

6. See, e.g., R. L. Burden and J. D. Fires, Numerical
Analysis (Brook/Cole, 2001).

7. GTOPO30 documentation, section 7, U. S. Geo-
logical Survey (1997). http:// www.scd.ucar.edu/
dss/datasests/ds758.0hmtl.

14


