1 Introduction

Several requirements must be met before the credibility of simulations performed with an atmospheric mesoscale model can be established [1]. Among these requirements we have the comparison with known analytic solutions of the equations of motion. In this work we describe a scheme that yields exact solutions of the bidimensional deep continuity equation [1]

\[\nabla \cdot \rho_0(r) U(r) = 0 \]

that satisfy the non-flow boundary condition at an arbitrary representation of terrain \(h(x) \),

\[U \cdot n = 0 \quad \text{on} \quad z = h(x) \]

where \(n \) is a vector normal to the lower surface of \(z = h(x) \). The exact solutions of the problem (1,2) are useful to study the reliability of a wide class of methods used to estimate a wind field from the data provided by a monitoring network, namely, the so-called mass consistent models [2]. The exact solutions are obtained by means of a suitable modification of the methods provided by complex variable theory (see, e.g., [3,4]).

The primary problem to obtain the velocity field \(U(r) \) is the solution of the so-called shallow continuity equation [1]

\[\nabla \cdot V(r) = 0 \]

under the boundary condition

\[V \cdot n = 0 \quad \text{on} \quad z = h(x) \]

In fact, let us suppose that \(V \) is known, then it satisfies

\[\nabla \cdot \rho_0(r) \frac{V(r)}{\rho_0(r)} = 0 \]

and the boundary condition

\[\frac{V(r)}{\rho_0(r)} \cdot n = 0 \quad \text{on} \quad z = h(x). \]

Hence the field

\[U = \frac{V(r)}{\rho_0(r)} \]

is a solution of equation (1) that satisfies the condition (2). By completeness, in sections 2 and 3 we expose the formal construction of \(V \). Of course, other authors [5] have used complex variable theory to obtain exact solutions of the problem (3,4) but they only consider a computational region with a simple geometry because inherent difficulties of the map-conforming do not permit to solve (3,4) for an arbitrary topography \(h(x) \). In section 4 we illustrate the problems posed by the map conforming to obtain solutions of (3,4). These problems can be circumvented if the topography \(h(x) \) is estimated by means of cubic splines [6], which are defined in section 4. In section 5 we describe the field \(V(r) \) obtained from the natural spline corresponding to real terrain elevation data from the data-base GTOPO30 [7]. It is shown that the map-conforming and the splines generate an exact field \(V \) even when the terrain elevation \(h(x) \) changes suddenly as \(x \) increases. Histograms of the components of \(V = u_i + u_k \) show that \(u \) and \(w \) have a very irregular behavior. Similar results are obtained with the components of the field \(U = \rho_0^{-1} V \) where \(\rho_0 \) is the density corresponding to an atmospheric reference state that is isothermic or adiabatic. The field \(U \) is more interesting because its vorticity is not trivial,

\[\nabla \times U \neq 0 . \]
a property that is exhibited by the behavior of the components of \mathbf{U} as a function of the height z.

There is no consensus about the correct representation of the topography in atmospheric models. In general, the terrain data are subject to a smoothing process. Cubic splines can be used to smooth terrain elevation data and, consequently, we can compute the fields \mathbf{V} and \mathbf{U}. In section 5 we describe the smoothing splines and the corresponding fields \mathbf{V} and \mathbf{U}. The results show that the \mathbf{V} and \mathbf{U} are critically dependent of $h(x)$.

\section{Formal construction of the field \mathbf{V}}

In this section we give a summary of the theory of bidimensional potential flow. Let x, y, z be the a cartesian coordinate system with its origin on a spherical earth model, the z axis out of the sphere and the plane xy is tangent to the sphere at a point with latitude ϕ and longitude λ, the corresponding unit vectors are \mathbf{i}, \mathbf{j}, \mathbf{k}. If the field \mathbf{V} is irrotational,

$$\nabla \times \mathbf{V} = 0$$

there exists a function ϕ (the velocity potential) such that

$$\mathbf{V} = \nabla \phi.$$ \hspace{1cm} (5)

If \mathbf{V} satisfies (3) and (4), then ϕ has to satisfy the Laplace equation

$$\nabla^2 \phi = 0$$ \hspace{1cm} (6)

and the boundary condition

$$\frac{\partial \phi}{\partial n} \equiv \nabla \phi \cdot \mathbf{n} = 0 \quad \text{on} \quad z = h(x).$$ \hspace{1cm} (7)

The velocity field \mathbf{V} can be obtained by solving (6) with the boundary condition (7) without directly using the momentum equation

$$\frac{d\mathbf{V}}{dt} = -\frac{1}{\rho} \nabla p + \mathbf{g}$$

which can be used to obtain the pressure field. A second function can be defined in such a way that the associated velocity field automatically satisfies the equation (3). In fact, the field $\mathbf{V} = \mathbf{i}u + \mathbf{k}w$ with components

$$u = \frac{\partial \psi}{\partial z} \quad w = -\frac{\partial \psi}{\partial x}$$ \hspace{1cm} (9)

satisfies (3) for any function ψ (the stream function). In vectorial form \mathbf{V} is given by

$$\mathbf{V} = \mathbf{j} \times \nabla \psi.$$ \hspace{1cm} (10)

The irrotational condition $\nabla \times (\mathbf{j} \times \nabla \psi) = 0$ that ψ must satisfy, takes the form $\nabla^2 \psi = 0$. The function ψ has useful properties that allow us to obtain the field \mathbf{V} that satisfies (3) and (4) with an arbitrary topography $h(x)$. Let $\mathbf{r}(\eta) = x(\eta) \mathbf{i} + z(\eta) \mathbf{k}$ be the equation of a curve where ψ has a constant value ψ_0,

$$\psi(x(\eta), z(\eta)) = \psi_0,$$

then

$$\nabla \psi \cdot \frac{d\mathbf{r}(\eta)}{d\eta} = 0$$

From (10) we get $\nabla \psi = -\mathbf{j} \times \mathbf{V}$ and replacing in the last equation we have

$$(-\mathbf{j} \times \mathbf{V}) \cdot \frac{d\mathbf{r}(\eta)}{d\eta} = (\mathbf{V} \times \frac{d\mathbf{r}(\eta)}{d\eta}) \cdot \mathbf{j} = 0.$$ \hspace{1cm} (11)

Since \mathbf{V} and $\mathbf{r}(\eta)$ belong to the $xz-$plane, it follows that \mathbf{V} is parallel to the vector $d\mathbf{r}/d\eta$; that is, \mathbf{V} is tangent to the curve $\mathbf{r}(\eta)$. Thus we have

$$u = \frac{\partial \psi}{\partial z} = \frac{\partial \phi}{\partial x} \quad w = -\frac{\partial \psi}{\partial x} = \frac{\partial \phi}{\partial z}.$$ \hspace{1cm} (11)

The relationships between the derivatives of ψ and ϕ are the so-called Cauchy-Riemann equations, which imply that ψ and ϕ are the components of the function (called the complex potential of \mathbf{V})

$$F(\xi) = \phi(x, z) + i\psi(x, z)$$

of the complex variable

$$\xi = x + iz$$

in terms of which \mathbf{V} is given by

$$\mathbf{V} = \mathbf{V} = \frac{dF(\xi)}{d\xi} = u - iw.$$ \hspace{1cm} (12)

An important property of complex analytic functions to obtain our velocity field \mathbf{V} is that they keep the angle between curves. In fact, let us consider an abstract complex plane

$$\zeta = \bar{x} + i\bar{z}$$

and let

$$\bar{F}(\zeta) = \bar{\phi}(\bar{x}, \bar{z}) + i\bar{\psi}(\bar{x}, \bar{z})$$

be a complex potential so that

$$\bar{\mathbf{V}} = \frac{d\bar{F}(\zeta)}{d\zeta} = \bar{u} - i\bar{w}.$$
defines a velocity field in the ζ plane with potential $\phi = \text{Re} \hat{F}(\zeta)$ and stream function $\psi = \text{Im} \hat{F}(\zeta)$. Let us consider that there is a relationship between ξ and ζ,

$$\xi = G(\zeta),$$

and let us denote the inverse transformation by G^{-1},

$$\zeta = G^{-1}(\xi).$$

The complex potential

$$F(\xi) = \hat{F}[G^{-1}(\xi)] = \phi(x, z) + i\psi(x, z)$$

yields a velocity field V (12) in the xz-plane that is the image of \hat{V} under the transformation $G(\zeta)$. Suppose that $G(\zeta)$ is an analytic function of ζ, then G transforms stream lines of the flow \hat{V} into the stream lines of the field V and analogously with the equipotential lines [4]. Thus, if G transforms a stream line of \hat{V} into the curve $z = h(x)$, the flow V automatically satisfies the continuity equation (3) and the boundary condition (4).

In this way, the problem to compute our desired velocity field V consists in defining a field \hat{V} in the ζ-plane with a stream line $\hat{\psi} = \psi_0$ whose image under an analytic function $G(\zeta)$ is the curve $z = h(x)$.

Suppose that we know a field \hat{V} and a function $G(\zeta)$ with the aforementioned properties. The desired field V can be obtained from the stream function $\psi(x, y)$ or the potential $\phi(x, y)$ as follows. In principle, from the inverse transformation G^{-1},

$$\zeta = \bar{x} + i\bar{z} = G^{-1}(\xi) = \bar{x}(x, z) + i\bar{z}(x, z)$$

(13a)

we get the inverse transformation equations

$$\bar{x} = \bar{x}(x, z), \quad \bar{z} = \bar{z}(x, z).$$

(13b)

The substitution of these expressions in the equation

$$F(\xi) = \hat{F}[G^{-1}(\xi)]$$

yields the relationship between ϕ, ψ and $\bar{\phi}$, $\bar{\psi}$, namely,

$$\phi(x, z) = \bar{\phi}[\bar{x}(x, z), \bar{z}(x, z)]$$

and, therefore, the desired field V has the components

$$u = \frac{\partial \bar{\psi}}{\partial z} = \frac{\partial \bar{\phi}}{\partial x},$$

$$w = -\frac{\partial \bar{\psi}}{\partial x} = \frac{\partial \bar{\phi}}{\partial z}.$$
3 The case of a uniform flow \vec{V} in the plane ζ

In this section we consider the simplest flow \vec{V} in the complex plane ζ and an analytic function $G(\zeta)$ that transforms a stream line of \vec{V} into a terrain curve $z = h(x)$. The flow in question is the uniform field

$$\vec{V} = V_0 \quad (u = V_0, \ w = 0)$$

obtained from the potential

$$\phi = V_0 \bar{x}.$$

The corresponding flow V under an arbitrary analytic transformation $G(\zeta)$ is [eq. (16)]

$$u = \frac{V_0}{T} \frac{\partial z}{\partial \bar{z}}$$

$$w = \frac{V_0}{T} \frac{\partial x}{\partial \bar{z}}$$

The real axis $\bar{z} = 0$ in the ζ-plane is a stream line of \bar{V}, and the simplest function $G(\zeta)$ that transforms such an axis into the curve $z = h(x)$ is

$$G(\zeta) = \zeta + ih(\bar{x}).$$

In fact, if ζ is replaced by $\zeta = \bar{x}$ we get

$$G(\zeta) = \bar{x} + ih(\bar{x})$$

which is exactly the parametric form of the curve $z = h(x)$ with $x = \bar{x}$. Let h_1 and h_2 be the real and imaginary parts of $h(\zeta)$,

$$h(\zeta) = h_1(\bar{x}, \ \bar{z}) + ih_2(\bar{x}, \ \bar{z}),$$

then the transformation equations defined by (15) are

$$x = x(\bar{x}, \ \bar{z}) = \bar{x} + h_2(\bar{x}, \ \bar{z})$$

$$z = z(\bar{x}, \ \bar{z}) = \bar{z} + h_1(\bar{x}, \ \bar{z}).$$

4 Problems posed by conforming map and splines

In principle any (analytic) representation of the terrain $h(\zeta)$ can be used in the transformation $G(\zeta) = \zeta + ih(\zeta)$. For instance, let us consider the topography

$$h(\zeta) = \sin \pi \zeta/a$$

where a is a positive real number. The corresponding transformation equations (19) are

$$x = x(\bar{x}, \ \bar{z}) = \bar{x} - \cos(\pi \bar{x}/a) \ \sinh(\pi \bar{z}/a)$$

$$z = z(\bar{x}, \ \bar{z}) = \bar{z} + \sin(\pi \bar{x}/a) \ \cosh(\pi \bar{z}/a).$$

The presence of the hyperbolic functions implies that a region in the ζ-plane is substantially different in the \bar{x}-plane. Figure 1 shows that the image of the semiplane $\{ \zeta : \text{Im} \zeta \geq 0 \}$ under the transformation $\zeta = \sin \pi \zeta/a$, is a very small region of the \bar{x}-plane (the physical space). This implies that we cannot compute the desired field V on an arbitrary region of the physical space. This example also shows the convenience of computing the field V using \bar{x} and \bar{z} as independent variables [eq. (16)], since in general the inverse transformation (13a,b) cannot be obtained in a closed and analytic form because of the non-linearity of the direct transformation (19) as occurs with (20).

Figure 1: Region in the ζ-plane and its image in the \bar{x}-plane with $h(\zeta) = \sin \pi \zeta/a$.

Since our primary objective is the calculation of a velocity field V that satisfies (3) and the boundary condition (4) we can replace an arbitrary (but analytic) topography $h(z)$ by a simpler representation that eliminates the inherent problem of the map conforming. In this section $h(x)$ is approximated by a natural spline $S(x)$ which is defined as follows. Let $\{x_k\}_{k=0}^n$ be a set of points where the terrain height $h(x_k)$ is known, then: (i) $S(x)$ satisfies

$$S(x_k) = h(x_k) \quad \text{for} \quad k = 0, \ldots, n,$$

(ii) $S(x)$ is a cubic polynomial on each interval $[x_k, x_{k+1}]$,

$$S(x) = a_k + b_k(x - x_k) + c_k(x - x_k)^2 + d_k(x - x_k)^3 \quad \text{for} \quad x \in [x_k, x_{k+1}],$$

(iii) $S(x)$ and its derivatives $S'(x)$, $S''(x)$ are continuous on $[x_0, x_n]$ and $S''(x)$ satisfies

$$S''(x_0) = S''(x_n) = 0.$$
There is a unique natural spline associated to an analytic function $h(x)$ on the interval $[x_0, x_n]$. Since $S(x)$ is a cubic polynomial on each interval $[x_k, x_{k+1}]$, we can compute the flow

$$
u = \frac{V_0}{J} \frac{\partial \tilde{z}^{(k)}}{\partial \tilde{x}},$$
$$w = -\frac{V_0}{J} \frac{\partial \tilde{x}^{(k)}}{\partial \tilde{z}}$$

for $x \in [x_k, x_{k+1}]$, where

$$\tilde{x}^{(k)} = \tilde{x} - S_2(\tilde{x}, \tilde{z})$$
$$\tilde{z}^{(k)} = \tilde{z} + S_1(\tilde{x}, \tilde{z})$$

and

$$S(\zeta = \tilde{x} + i \tilde{z}) = S_1(\tilde{x}, \tilde{z}) + i S_2(\tilde{x}, \tilde{z}).$$

The continuity of $S(x)$, $S'(x)$ and $S''(x)$ guarantees that the field $\mathbf{V} = u \mathbf{i} + w \mathbf{k}$, its first derivatives

$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial z}, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial z}$$

and $\nabla \cdot \mathbf{V}$ are continuous on the interval $[x_0, x_n]$. This together with the fact that u, w satisfy the continuity equation (3) and the boundary condition (4) on each interval $[x_k, x_{k+1}]$, implies that the field \mathbf{V} satisfies the same equations on the whole interval $[x_0, x_n]$.

Remark. A clear advantage of the splines is that they can be used to model real terrain elevation data $h(x_k)$ which are known only on a discrete set of points $\{x_k, h(x_k)\}$ which constitute a digital terrain elevation model.

5 Examples

The velocity fields considered below are calculated with the datum $u = 10 \text{ ms}^{-1}$ and $w = 0$ at the point $(x = 0, z = 10 \text{ km})$, which is used to define the magnitude V_0 of the flow on the abstract complex plane ζ.

5.1 Flow \mathbf{V} from a natural spline

In this section we consider the field \mathbf{V} defined by the natural spline corresponding to the terrain data $\{x_k, h(x_k)\}$ of fig. 2 with $-400 \leq x \leq 400 \text{ km}$, the data were obtained from the base GTOPO30 [7]. The field \mathbf{V} is a solution of the shallow continuity equation (3) and the boundary condition (4), with ρ constant. Hereafter, we describe the part of the field on the region $-10 \leq x \leq 10 \text{ km}$. Figures 3 and 4 show $\mathbf{V}(x, z)$ on lines with $x = x_0 = \text{constant}$.

Figure 2: Topography used to compute a natural spline $S(x)$.

![Figure 2](image2)

Figure 3: Field $\mathbf{V}(x_0, z)$ at points with $x_0 = \text{constant}$.

Figure 4: Field $\mathbf{V}(x, z_0)$ at points with $z_0 = \text{constant}$.
and $z = z_0 = \text{constant}$, respectively. Each figure shows the effect of the topography on $V(x, z)$.

Figures 5 and 6 show the plot of $z \text{ v.s. } u(x_0, z)$ and $w(x_0, z)$, respectively, at $x_0 = -10, 0, 10$ km. The graphs allows us to see the continuity of $u(x, z)$ and $w(x, z)$ as z increases from the topography $z = h(x)$.

Figures 7 and 8 show the plot of $x \text{ v.s. } u(x, z_0)$ and $w(x, z_0)$, respectively, at $z_0 = 2, 10$ km. The graphs show that $u(x, z)$ and $w(x, z)$ have an irregular behavior as x increases, a result that can be attributed to the topography. The case of $w(x, z_0 = 2)$ is particularly interesting since we observe that it behaves very irregularly. In principle, the continuity of the spline and its first two derivatives should produce smooth graphs of $u(x, z_0)$ and $w(x, z_0)$, but the figures 7 and 8 allows us to see that the field $V(x, z)$ keeps the sudden changes of the topography.
In order to show that the continuity equation $\nabla \cdot V(x, z) = 0$ is satisfied we plot the values $\nabla \cdot V(x, z)$ at points (x_0, z) and (x, z_0) in figures 9 and 10, respectively. As expected, we see that $\nabla \cdot V(x, z)$ is, for practical purposes, zero.

Let us now consider the boundary condition $V \cdot n = 0$ on $z = h(x)$. As expected, figure 11 shows that $V \cdot n$ is essentially the zero of the computer machine. As above, the irregular behavior is due to the irregularity of the topography.

In order to appreciate the irregular behavior of the components $u(x, z_0)$ and $w(x, z_0)$ as a function of x with $-10 \leq x \leq 10$, we plotted some histograms. The histogram of $w(x, z_0)$ with $z_0 = 2$ km is plotted in figure 12, and we see that it behaves like a Gaussian distribution with $< w > \sim 0$. Figure 13 shows the histogram of $w(x, z_0 = 10)$ km, and we see that it behaves like a three-modal distribution. Finally, figures 14 and 15 show the histogram of $u(x, z_0)$ at $z_0 = 2$ and 10 km, respectively. The behavior of u at $z_0 = 2$ km is irregular but with a small dispersion, in contrast the behavior at $z_0 = 10$ km is significantly more irregular on a wider range of velocities.

5.2 Flow V from a smoothing spline

In this section we consider the field V defined by a smoothing spline $S_p(x)$ corresponding to the terrain data $\{x_k, h(x_k)\}_{k=1}^N$ of fig. 2. The field V is a solution of the shallow continuity equation (3) and the boundary condition (4), $\rho = $ constant, and we describe the part of the field on the region $-10 \leq x \leq 10$ km. The splines $S_p(x)$
are obtained by minimizing the functional

\[F = p \sum_{k=1}^{n} |h_k - S_p(x_k)|^2 + (1 - p) \int_{x_1}^{x_n} |D^2 S_p(t)|^2 dt \]

Here, \(n \) is the number of terrain data and the integral is over the smallest interval containing all the data \(x_k \). Further, \(D^2 S_p(t) \) denotes the second derivative of \(S_p(x) \). The smoothing parameter is \(p \), it determines the relative weight on the contradictory demands of having be smooth v.s. having be close to the data. For \(p = 0 \), we get the least-squares straight line fit to the data, while, at the other extreme, \(p = 1 \) yields the natural spline. As \(p \) moves from 0 to 1, the smoothing spline changes from one extreme to the other.

We begin with the field \(\mathbf{V}_{p=0.1}(x,z) \) from the smoother spline \(S_p(t) \) with \(p = 0.1 \). Figures 16 and 17 show \(\mathbf{V}_{p=0.1}(x,z) \) on lines with \(x = x_0 \) constant and \(z = z_0 \) constant, respectively. Figures 18 and 19 show the plot of \(z \) v.s. \(u(x_0, z) \) and \(w(x_0, z) \), respectively, at \(x_0 = -10, 0, 10 \) km, where we see the continuity of \(u(x,z) \) and \(w(x,z) \) as \(z \) increases from the topography \(z = h(x) \). Figures 20, 21 show the plot of \(x \) v.s. \(u(x_0,z_0) \) and \(w(x_0,z_0) \), respectively, at \(z_0 = 2, 10 \) km. As expected, \(u \) and \(w \) are smooth at \(z_0 = 2 \) km but they become irregular as \(z_0 \) increases. The irregularity can be seen in the histograms plotted in figs. 22 to 25.

Figures 26 to 31 show the behavior of \(\mathbf{V}_{p=0.5}(x,z) \) from the smoothing spline \(S_p(t) \) with \(p = 0.5 \). Figures 26 and 27 show \(\mathbf{V}_{p=0.5}(x,z) \) on lines with \(x = x_0 \) and \(z = z_0 \), respectively. Figures 28 and 29 show the plot of \(z \) v.s. \(u(x_0, z) \) and \(w(x_0, z) \), respectively, at \(x_0 = -10, 0, 10 \) km.

Figure 13: Histogram of \(w(x, z_0) \) for \(-10 \leq x \leq 10 \) and \(z_0 = 10 \) km.

Figure 14: Histogram of \(u(x, z_0) \) for \(-10 \leq x \leq 10 \) and \(z_0 = 2 \) km.

Figure 15: Histogram of \(u(x, z_0) \) for \(-10 \leq x \leq 10 \) and \(z_0 = 2 \) km.
Figure 16: Field $V_{p=0.1}(x_0, z)$ at points with $x_0 =$ constant.

Figure 17: Field $V_{p=0.1}(x, z_0)$ at points with $z_0 =$ constant.

Figure 18: Graph of z v.s. $u_{p=0.1}(x_0, z)$ at $x_0 = -10, 0, 10$ km.

Figure 19: Graph of z v.s. $w_{p=0.1}(x_0, z)$ at $x_0 = -10, 0, 10$ km.

Figure 20: Graph of x v.s. $w_{p=0.1}(x, z_0)$ at $z_0 = 2, 10$ km.
Figure 21: Graph of x v.s. $w_{p=0.1}(x,z_0)$ at $z_0 = 2, 10$ km.

Figure 22: Histogram of $w_{p=0.1}(x,z_0)$ for $-10 \leq x \leq 10$ and $z_0 = 2$ km.

Figure 23: Histogram of $w_{p=0.1}(x,z_0)$ for $-10 \leq x \leq 10$ and $z_0 = 10$ km.

Figure 24: Histogram of $u_{p=0.1}(x,z_0)$ for $-10 \leq x \leq 10$ and $z_0 = 2$ km.

Figure 25: Histogram of $u_{p=0.1}(x,z_0)$ for $-10 \leq x \leq 10$ and $z_0 = 2$ km.
km, where we see the continuity of $u(x, z)$ and $w(x, z)$ as z increases from $z = h(x)$. Figures 30, 31 show the plot of x v.s. $u(x, z_0)$ and $w(x, z_0)$, respectively, at $z_0 = 2, 10$ km. Once again, u and w are smooth at $z_0 = 2$ km but they become irregular as z_0 increases.

Figures 26 to 39 show the behavior of $\mathbf{V}_{p=0.9}(x, z)$ from the smoothing spline $S_p(t)$ with $p = 0.9$. Figures 32 and 33 show $\mathbf{V}_{p=0.9}(x, z)$ on lines with $x = x_0$ and $z = z_0$, respectively. Figures 34 and 35 show the plot of z v.s. $u(x_0, z)$ and $w(x_0, z)$, respectively, at $x_0 = -10, 0, 10$ km, where we see the continuity of $u(x, z)$ and $w(x, z)$ as z increases from $z = h(x)$. The irregularity can be seen in the histograms plotted in figs. 36 to 39.
Figure 30: Graph of x v.s. $w_{p=0.5}(x, z_0)$ at $z_0 = 2, 10$ km.

Figure 31: Graph of x v.s. $w_{p=0.5}(x, z_0)$ at $z_0 = 2, 10$ km.

Figure 32: Field $V_{p=0.9}(x_0, z)$ at points with $x_0 =$ constant.

Figure 33: Field $V_{p=0.9}(x, z_0)$ at points with $z_0 =$ constant.

Figure 34: FIG 34 Graph of z v.s. $u_{p=0.9}(x_0, z)$ at $x_0 = -10, 0, 10$ km.

Figure 35: Graph of z v.s. $w_{p=0.9}(x_0, z)$ at $x_0 = -10, 0, 10$ km.
Figure 36: Histogram of $w_{p=0.9}(x, z_0)$ for $-10 \leq x \leq 10$ and $z_0 = 2$ km.

Figure 37: Histogram of $w_{p=0.9}(x, z_0)$ for $-10 \leq x \leq 10$ and $z_0 = 10$ km.

Figure 38: Histogram of $u_{p=0.9}(x, z_0)$ for $-10 \leq x \leq 10$ and $z_0 = 2$ km.

Figure 39: Histogram of $u_{p=0.9}(x, z_0)$ for $-10 \leq x \leq 10$ and $z_0 = 10$ km.

Figure 40 shows the fields V_p with $p = 0.1, 0.5, 0.9, 1.0$ where $p = 1$ corresponds to the natural spline. A comparison of the above results shows that "small" changes on the topography (approximated by a spline) produce significant changes in the field $V_{p=0.5}$. This is particularly evident from the histograms. The most irregular field is $V_{p=1.0}$. In principle we can expect that V_p tends to $V_{p=1.0}$ as $p \to 1.0^-$ but this limiting process is not continuous since the natural spline $S_{p=1}(x)$ is almost discontinuous (see fig. 2).

Figure 40: Splines $S_p(x)$ and the corresponding velocity fields V_p for $p = 0.1, 0.5, 0.9, 1.0$.

Acknowledgments

One of us (M.A.N.) wishes to thank Ma. T. Nuñez by her its invaluable support.
6 References

