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RELIABILITY ANALYSIS OF MASS CONSISTENT MODELS
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1 Introduction

Mass Consistent Models (MCM’s) [1-8] are some of the
main assimilation schemes of wind data by the simplicity
of the physics involved and their capacity to accept wind
data from different points in a region. Additionally, these
provide a way to estimate initial meteorological fields as
input of prognostic models [1,9,10]. The MCM’s are based
on the minimization of the variance between an initial
field VO (obtained from a suitable interpolation of dis-
crete data) and a field V (called the adjusted field) that
satisfies the mass conservation equation V -V = 0. The
variance is usually defined in terms of a set of parameters
a;. The scheme leads to an elliptic problem for a Lagrange
multiplier A. A careful deduction of the minimization
process is given in section 2 [11]. Two kind of bound-
ary conditions on the topography, have been used in the
literature to compute A [1]: (i) The Nuemann bound-
ary condition dA/9n = 0 and (ii) the no-flow condition
V -n = 0 where n is normal to the topography. It is
shown that the former is incorrect when a; # 1. All sim-
ulations performed with MCM’s show that the adjusted
field V is very sensitive to the values of the a;’s but there
is no concensus about its correct value. For instance,
some authors suggest that the a;’s should be estimated
by considering the residual divergence [4]. The deduction
of section 2 shows that the exact A yields a zero residual
divergence for any choice of the a;’s, so that sensibility
of the residual divergence to the «;’s is a consequence
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of the numerical estimation of A rather than an intrinsic
property of the scheme.

Some authors [8] have studied the reliability of MCM’s
by comparison of the adjusted field V with a true field
Virue obtained from Map conforming. The analysis is
partial because (i) the adjusted field is calculated with
a; = 1 and (ii) the map conforming provides analytic ve-
locity fields only on a region with a simple geometry, since
inherent problems of the map conforming do not permit
consider a region with a complex topography. These prob-
lems are solved in two-dimensions when the topography
is approximated by means of splines [12] and the resulting
flow is used in this work to study the reliability of MCM’s
(section 3). The finite element method [13] is used to esti-
mate A (section 4) and the numerical results are reported
in section 5. We consider the flow on a smooth topogra-
phy with data from the data base GTOPO30 [14]. The
results show the adjusted field V can reproduce the main
characteristics of the true flow V.4 with a suitable choice
of the a;’s.

2 Theoretical formulation of

MCM’s

Let us consider a cartesian coordinate system xyz with
its origin at a point on a spherical earth model, the zy
plane is tangent to the earth and the z axis is out of
the earth. Hereafter we employ the notation z' = =z,
22 =9y, 23 =z and X = X, § = %X,, 2 = X3 to denote the
unit vectors associated to the system xyz. The region
of Study is D = {xmin <z < Tmax, Ymin < Yy < Ymax;
h(z,y) < 2 < Zmax} where h(z,y) is the terrain elevation



on (z,y,z = 0). The true velocity field is denoted by
Vtrue = Z Vvtiuef(i .

By simplicity we consider that Ve, satisfies the shallow
continuity equation

v'\[true:Oa

-5u)

and the lower boundary condition

Viwe =0 for z=h(z,y)

where n is a vector normal to the topography,
n=V(h-—z)=%0,h+3y0,h—12.

Let us suppose that the data from a meteorological net-
work are interpolated in such a way that they provide and

initial field
VO=3 Vg,

In general , the field V° does not satisfy the equation
V-V? =0, so that the problem consists in estimating an
adjusted field V that satisfies V - V = 0, the boundary
condition V-n = 0 on z = h(z,y) and is closer to V°
with respect to some suitable distance d(W, U) between
vector fields.

2.1 A general definition of the distance
d(W,U)

In order to define a metric d(W,U) we use the follow-
ing notation. The standard Euclidean inner product is
denoted by

W-U:ZWiii-ZUjij :ZWiUi,
[ i i

We assume that W denotes the column vector
Wl
W2
W3

W =

and, consequently, the transposeW! denotes a row vector,
Wt:(W1 w2 w3 ) .

According to this notation and the usual matrix algebra
the inner product W - U can be written as W!U. Let

S be a symmetric and positive definite matrix, then the
expression

(W|U)y=W'SU

defines a general inner product.

The vector fields of interest depend of each point z =

(xt, 22 23),

W =W(z) = Z Wi(z) %i.

In this case we combine the inner product in function
spaces

< flg>= /Df(w)g(:c>dw-

with (W | U)¢ to get to the following inner product for
vector fields

(W|U>DSE/D<W\U>S dx:/DWtSUda:.

where we assume that the matrix S(z) is symmetric and
positive definite at each point z in D. The corresponding
norm and metric are, respectively,

W = (W | W) = /D W2 da

and
dps(W,U) = [W - Ul|pg -

In what follows the boundary of the region D is denoted
by 0D and we consider the following decomposition

0D = 0D, U dD,

where 0D, denotes the lateral and upper boundaries of
D and 0D, denotes the lower boundary defined by the
topography z = h(z,y). The problem of estimating an
adjusted field V from a given initial field V® consists in
computing the field V that is closer to V° with respect
to the metric

2 2
IV =V = [ V=V dr.

and satisfies the equation

V-V=0 in D

together with the boundary condition

V.n=0 on 9Dy .



The conditions that the adjusted field V has to satisfy,
imply that it belongs to the set

V={W(z) €Ly(D):V-W=0in D
and W-n=0o0n0D} ,

which constitues a vector space. The distance between a
vector field W in V and the initial field VO defines the
functional

FoW) = [W = Vg = [ W= VO ar,

in terms of which the calculation of an adjusted field con-
sists in estimating the field V in V that satisfies

F5(V) = min Fs(W) .

2.2 Contravariant form of Fs(W)

A standard procedure to simplify the treatment of the
lower boundary condition W -n = 0 on 9D}, consists in
using the so-called terrain-following coordinates. Since
there is no consensus about the definition of these coordi-
nates, in this section we report the expression of the func-
tional Fg(W) in an arbitrary coordinate system y'y2y?
which is defined by means of a set of transformation equa-
tions

J=123, (1)

where the time ¢ does not appears explicitly. The equa-
tions of the inverse transformation have the form

y =y ()

i=1,2,3. (2)

The i—th row and the j—th column of jacobian matrix
corresponding to (1) are defined by

o' = 1'(y)

B oz’
=95

Jij
The metric tensor is defined by
G=1I7,

and its elements are denoted by g,

oz Ox'
gkt = Gy :Zﬁiykaiyl

The elements of the inverse matrix G~! are denoted by
Kl
g,

We suppose that the jacobian of the transformation (2)
is positive,

J(y) = det(J) > 0on D.
The determinant of G is usually denoted by ¢ and from
(3) we get the relationship

g =det(J]) = J? or Vi=J.

If J(y) is not zero on D, the so-called covariant vectors

oz’ |

T; = : aiiji ]:172731 (4)

are linearly independent and, therefore, constitute a ba-
sis set of R?. In an analogous manner the contravariant
vectors .
oy’

— Ox' x 5)

W =Vy(x) =

constitute a base of R3. The relationship between Ty nk
is
mi=> g 0= g% (6)
k J

and using the chain rule it is easy to see that 7; and n*
satisfy the reciprocity relationship

Tj'?’]k:(s)‘;-c.

(7)

Since the basis X; associated to the cartesian coordinates
is orthonormal (X; - X; = d;;) we can write

Xi:)’\(l.

The expression of a vector U in the basis 7;

U=3 U6 ®

is called the contravariant form of U, and the coefficients
U’ (y) are the contravariant components of U in the co-
ordinate system y. The expression of U in the basis 7/

U= Z Ui(y) o’ (9)

is known as the covariant form of U and the coefficients
U, (y) are the covariant components of U in the coordinate
system y. Accordingly, the contravariant and covariant
forms of U in the cartesian coordinate system x coincide,

U= ZUi(x) % = ZUi(:v) %

where we have U'(z) = U;(z).



From (4) and (8) we get the rationship

J .

U (y) =

B — O’ (10)

which is known as the contravariant transformation law.
From (5) en (9) we get the covariant law

o’
Uj(y) =

=2 5 Vi) - (11)

Finally, from (6) we get the relationship between U7 (y)
and U;(y)

> iU (y)
k
ngjUj(y) -

S
b
—~
<
~—
I

In terms of column vectors we can write

Ui (x) Ul(x)
U= UQ(I) = U2(17
Us() U3 (x)

Let U, y U"7 be the column vectors defined, respectively,
by the covariant and contravariant componenets of U,

Ui(y) U (y)
U, = | Ol vi— | oy | a3)
Us(y) U*(y)
The relationships (12) take the form
U,=G U” U'=G"'U,, (14)
and the transformation laws (11) and (10) are
U=JU" =(IY U,. (15)

The relationship (7) between 7; and n* yields a simple
expression for the inner product U - W,

U-W =0 Y v =3 W)U (y)
B ; j

that in terms of the column vectors W, U" takes the
form

U-W=W.U". (16)

Let us now consider the calculation of the functional

FsW) = [W =V = [ W=V} s

where ||-|| is the norm associated to the inner product
(W|U)g = WIS U

and W, U are the column vectors defined by the carte-
sian components. To get the expression of Fg(W) in the
coordinate system y we have the rule of change of variable
for integrals

/ f@)de = [ fle))Vady
D Dy

where D, is the image in the y—space of the original re-
gion D under the transformation y/ = y7(z). The inner
product (W|U)g is easily obtained in terms of the con-
travariant components U™ (y), W(y) of U and W using
(15), namely,

(UW)g=U"'SW
=Jun sIw”
— (Uﬁ)t J'S T W"
= (UM MW"
where we define
M=J'SJ.

The matrix M can depend of each point y = (y!, 4%, y3)
in Dy, is symmetric and it is easy to show that if S(z) is
positive defined, then M(y) also is. In this way the right
side of (17) defines an inner product in the y space that
we denote by < |- >,

(UIW),, = (U MW" . (18)
Thus we have the identity
(UIW) s = (UIW),, .
and the corresponding norms
1/2 1/2
[Ulls = (UIU)* Ul = (U[0)y
satisfy ) ,
10l = 1013 - (19)

The integration of (19) and the change of x by y yield

U3 = /D U2 dz = /D 112, vady
Yy

and, therefore,

U1 = /D IUI%, v dy -
Yy



The right side defines a norm that we denote by || U ||%,,,

U 2= /D 112, Vg dy - (20)
Yy

The norm || U ||pas is the contravariant form of [|U|%g
and the desired contravariant form of the functional
FS (W) is

Fs(W) = W = V° |3,y

= [ W=V, v

(21)

:/ (W-VIW -V /gdy
Dy

2.3 Calculation of V with the contravari-
ant form of Fs(W)

The space V that contains the desired adjusted field V
was defined in x space,

V={W(z):V-W=0in D, W-n=00n0D}.

To compute V in the y space we use the contravariant
form of Fs(W) since the expression of V- W = 0 is
simple in terms of the contravariant components W¥(y)
of W, namely,

1 0
V'W:ﬁ;@ﬁwl(y)-

The use of the contravariant form of each vector W in V
suggests that the vector n normal to the lower boundary
0Dy, should be represented in its covariant form,

n= anl
l

to get a simple expression of the inner product W - n [eq.

(16)]
W . n=n.W"

where we use the notation of column vectors, n, =

(n1,n2,n3)t y W7 = (WH W2 W3)t. In this way the
lower boundary condition takes the form

n! W’ =0 on ODyy, . (22)

Let Dy, 0Dy, 0Dy,, 0Dy, the imagine of D, 0D,
9D, dDy, under the transformation y* = y*(z), then 9D,
has the decomposition

dD, = OD,q U Dy, .

Accordingly, the space V can be defined as followsin

vV = {W: nWFk(y) : V-W =0in D,
k

n:W" =0 on 9Dy, }

Let us consider the calculation of the adjusted field V.
To simplify the notation we shall omit n and 7 in W"
and n,. Suppose that there exists a field V that (in
its contravariant form) minimizes Fs(W) in the space V,
then it satisfies

d
—Fs(V+eW)|e=o =0 forall

WevVv.
de <

Let
AV =V — VO,

According to (21) we have

FS(V—l—eW):/ (AV + eW|AV + W), /g dy

Dy

= { (AV|AV>M + 2¢ (AV|W>M
Dy

+e (WIW),, }gdy
and, therefore,

d
—Fs(V+eW) = =

: 2 [ @aviw,, vady
€ Dy

2 AV MW Vady
Dy
= 0

or, equivalently,

AVtMW\/Edy:O.
Dy

(23)

On the other hand, multiplying the condition V- W =0
by a function A(y) and integrating one gets

/ AV - W /gdy =0,
Dy

and using the identity A\V-W =V - (AW) — VA W we
have

V- (AW) = VA- W] /gdy =0 .
Dy

(24)

The divergence theorem in the y space yields

/ (V- AW) \/gdy = f{ AW /g ds,
D D,

Yy



where 71,; are the components of the unit vector n, that
is normal and out of the region dD,, and n, denotes the
corresponding column vector. Thus (24) takes the form

jlé )\ﬁZW\/Edsy—/ VAW /gdy=0.
oD, D

Y

The sum of this equation with (23) implies that AV has
to satisfy the integral equation

/D [AVtMW — (VN W} Jady

+j{ Ay W /gds, = 0. (25)
oD,

for all W € V. In particular, if W is zero on the boundary
0D, one gets

/D [AVtM - (w)t} W /gdy =0 .

Y

The components W!(y) of W are not independent since
they have to satisfy

1 0

Suppose that WF is the dependent component. If we
impose to A(y) the condition that eliminates the term
corresponding to Wk,

oA

oy k=K

Z AV My, — =0 for
l

the integral equation (25) becomes

/ S (AVIMM - 5})] Wkdz =0 .

Dopsrr L

and since the components W* (k' # k) are independent
we conclude that their coefficients satisfy

oA
§ : l

l

para k # k' .

In summary, if V minimizes Fs(W) in the space V, then
the contravariant components of AV satisfy the Euler-
Lagrange equations

MAV —VA=0

where VA denotes the column vector
oN oyt
ON/Oy?
oN/oy3

VA=

Therefore, AV = M~V and V, X have to satisfy the
relationship

V=Vl M1! V) (26)
which in terms of components takes the form
_1 OA
VE=VOR LN M o (27)
l

Since the equation (26) does not depend of a particular
field W in V, it is valid for all W’s in V and consequently
the integral equation (25) becomes

j{ )\ﬁZW\/gdsyzoforWGV. (28)

0Dy

In this point we should remember that the boundary con-
dition (22) is given in terms of the covariant components
ny; of the vector n normal and exterior to the lower bound-
ary 0Dy. It is not hard to show that the component n; is

proportional to f,;; that is, there exists a function c(y)
such that

ny = c(y)fy or n; = c(y)n, on dD, (29)

and the boundary condition (22) takes the form
ﬁZW =0 on 9Dy .

Hence the integral equation (28) becomes an integral
equation that A has to satisfy

/BD )\ﬁZW\/f]dsyzo forall WeV,
ya

Since ﬁ; W # 0 in general, we conclude that the last
equation holds true only if A satisfies the Dirichlet bound-
ary condition

A=0 on 0Dy, . (30)

Thus, V minimizes the functional Fs (W) only if V and
A satisfy (26) and A satisfies the boundary condition (30).
These conditions together with the additional conditions
V-V =0 and ﬁZV = 0 on 0Dy, determine uniquely A.
In fact, the substitution of (27) into V - V = 0 yields

1 0
V-V= ﬁzkjafyk\/ﬁvk(y)

vv%\}gzkj(;zk\/g;m,j (%
=0,
Hence we get the elliptic equation
L,A=/gV-V® inD, (31)



where we define

0 1 0 _
:_ZWﬁMkll @Z—Vtw 'v.
kl

If we put (26) into the boundary condition n!V =0,

alV=n (V'+M " V) =0,

we get the Neumann boundary condition

L\ = —nlV° on 0Dy, (32)

where we define
y_znyk Mkl W:fl; M_l V.

As is shown in the next section, the mixed boundary con-
ditions (30), (32) together with the elliptic equation (31)
determine uniquely to A and, therefore, the adjusted field
V.

Having computed A we use (26) to obtain the con-
travariant components of the adjusted field V. According
to the transformation law (15), the product of (26) with
the Jacobian matrix J,

IV(y) =T [VO(y) + M V],

yields the cartesian components of the adjusted field,

V(z)=Vz)+J M VA (33)
—VOz)+51 (I VA,
where we use M—1 = (J'SJ])~ b= J1st (Jt)fl.

2.4 Some particular cases of S and coor-
dinates v

The most common matrix S used in the literature is [1-8]
is the diagonal matrix

2
Sk = Ori0g,

whose inverse is S,;ll = 5“0@;2. In cartesian coordinates

the elliptic problem for A is

A=V -V° (34)
A=0 for x € 0D, (35)
LA=-V’. @4 for x € Dy , (36)

where
g 1 0
L=-V'STiv =— —
\Y% \Y Da* of 0aF
L=qa'ST'V=)" e 9
ai dzk
k
and the adjusted field V is given by
vk :v0k+i§— for k=1,2,3

Almost all the terrain-following coordinates used in the
literature keep the horizontal coordinates

1 2

y =z y =Yy

and only the vertical coordinate is changed. For instance,
we have
= H-—=z
z=H+[h(y'y*) - Hly®

with h(z,y) <z < H(z,y)

[ref. (5)],
3 z = hz,y)

YT H(z,y) - h(x,y)
2=y [H(y",y*) — h(y"

with h(x,y)

]+ byt )

<z < H(z,y)

et. (6)],

y3 _ Z— h((ﬁ,y)
AH
2=y AH + h(y',y?)

with  h(z,y) <2z < AH + h(x,y)
[ref. (4)],

Y = _ARTE  with zs(zyy) <z < z
Zt — zs(azy)
g =zt = y3 [Zt - Zs(y17y2)] [ref. (7)],
— h(z,y)
<z<
HH e y)—l-zo with h(z,y) <z< H
H—h(y",
= TR (5 hy D) et (0]

H

In each case the coordinates y* have the form

1 2 3

=y ¥ =9(z,y,2)

or
e=y' y=y* z=z0"y"")  (37)
where the so-called sigma coordinate o =3 is constant

on the topography,

olz,y,z = h(z,y)] = cte on dDy ,



and the upper boundary z = 2,44, or

VO =3 "%V0(2) = %0 + 300 + 2’ .

olx,y,z2 = Zmaz| = cte  on 8D, .
the contravariant components of V? are given by

The matrices J, J7!, G, G~! associated to the transfor-

mation (37) have the form V10(y) us
V20 = v . (40
10 0 Vg,ogzg —21u® — 290° + (40)
J=10 1 0 23
R In a similar way, for the adjusted field
1 0 0
J71= 0 1 0 V =xu + yv + 2w
—afm —mlEm 15 we have
1+ z% 2129 2173
G = 2122 1+ Z% 2923 Vl(y) u
2 2 _ v
2123 2923 23 Vg(y) =| —su—zvtw | (41)
1 0 —21/2’3 Vv (y) 23
(Gil = 0 1 —2’2/23 (38)
B - (z% + 22+ 1) /23 The continuity equation V -V = 0 has the form
zZ3 zZ3
where we use the notation iz V4 iz V2 4+ iz V3i=0
oyt 3 Oy? 3 oy? 3
dz 0z
s = — 5 J = = = = . or
Zj ayj \/va <3 ayd
We have 6—y1z3u + B2 23V + 87y3(—21u —zv+w)=0.
of +ziaf  mmay  szmad For the elliptic equation LyA = /gV - V? (31) we have
M= | z12005 o3+ 2303 22303 .
212303 292303 22 L,=-V'\/gM 'V =-V' sM" 'V (42)
-1 -1 tqmy 1 -1 —1y¢ ﬁ31 - ﬂ5'3
To compute M~ we use M~! = (J!SJ)" " = J}[(SJ) ] a? a?
where = (01 0 0s) 20r - 0y
1/a? 0 0 S
_ ——0 — 50 My O
(SH~' = 0 1/a3 0 , a2l a2 2 Z3Mas Os
—21/2303 —zp/z303 1/z303 or
h 1
ence 1 0 21 —Ly =0 ? (2’361 — 21 83) + 0o (23 Oy — 29 83) (43)
—5 - i
a? ) 2302 . o )
Mfl_ 0 — . Z22 (39) +a3 {—a2 81—?824—23]\4’373 83} y
e’ z3055 1 2
! _ »?2 Mol h
z303 23002 33 where

21 2 z9 2 1 2
Mt = + - .
33 (23041) (2’3()[2) Z303 and

Using the standard notation for the cartesian components N VO — i 231 + ﬂ 2500
of the initial field V° dy?

oyt

9 0 0, ,0
VIOz) = u® V20(z) =00 V3O(z) = +8Tj” (—z1u” — 200° + ) . (45)



The Dirichlet boundary condition A = 0 on 0D, is
equivalent to the boundary conditions

Ay = 2min, ¥%,9°) =0,
Ayt = Tmax, ¥, y%) =0,
Ay Y = Ymin, %) =0,
AW Y = Ymaxs ) =0,
A2 Y% = Zmax) =0

(46)

For the Neumann boundary condition £,A = —ﬁ;VO on
0Dy, = {(y17y27y3 = amm)} we have

fy =Y Jiig = —Fs ,
l
and therefore

L,=n/M'V=(0, 0, -1)M "'V

21 29 _1
= 0 —== Oy — M3z O 47
2302 L+ 2303 2 33 3 (47)
and
ny VO = —v30.
Thus L\ = — AZVO takes the form

21 22 -1 3,0
0 — 09— M.y O3 | A=V . 48
(z:»,oz% 1t z3a§ 2 33 3) (v) (48)

The contravariant components of the adjusted field are
[eq. (26)]

M z103A
Vl _ Vl’o 1A <103
(y) (y) + a? z302
02\ 2203\
Viy) = V20 R 49
(y) (y) + a2 23032 (49)
01N 2202
& V30(y) — SLAZ 2P0 pigpn
() () Bl 7l + Mgz 03
and the Cartesian components are [eq. (33)]
81/\ 2’183>\
Vl VI,O o
@) @)+ o - 2%
02X 2903
9 - 2,0 214 <203
Vi) = Vo%x)+ o T 2l (50)
. O3\
3 _ 3,0 3
Vix) = V>Px)+ 2l

2.5 The boundary condition 0\ /dn = 0
is incorrect if o? # 1

The standard procedure used in the literature [1-8] to
compute the adjusted field V with the functional

F(W) = /Dzaf (W = v*0)? da

and the condition V - V = 0 consists in minimizing the
functional

J(W,\) = /D

It should be noted that no of the references [1-8] consid-
ered the definition of the space V that contains V and the
test fields W. This ambiguity is reflected by the bound-
ary condition

S a2 (W Vi) 4 AV W da

AV-n=0 on 9D (51)

obtained by minimizing J(V +edV, \). In fact, the equa-
tion (51) holds of either A or §V -1 is zero on 9D, since
these conditions cannot be imposed simultaneously (or
the problem is undetermined) the following choice was
adopted by Sherman [3] and other authors:

1. The Dirichlet boundary condition

A=0 (52)
is used for an open boundary 0D.
2. The Neumann boundary condition
oA
— . =VYMN-D=0 53
on " (53)

is used to “impose a no-flow boundary condition on
0D” [1-8]. It is generally accepted that such a bound-
ary condition is suitable on the terrain

Thus, the elliptic problem solved by several authors has
the form

9 1 0\, o o .
A=0 on 0D,
oA

_— = )\.A
o VA-n

. O
:;nk@:OOHBDb,

where, by simplicity, we consider expressions in cartesian
coordinates. In previous sections we have shown that the
no-flow boundary condition V - n = 0 on the topography
0Dy, holds true only if A satisfies the boundary condition

i O\
oS D
- ai dxk 0 on OD,

so that the condition (53) is incorrect when o # 1.



3 Analytic solutions of V-V (r) =0

An important aspect of the present work to analyze the
reliability of MCM’s is the use of analytic solutions of
the dynamic restrictions used by MCM’s in their two-

dimensional version on the zz—plane, namely,
V Ve =0 (54)

where Virue = Utruel + Wiruek and the no-flow boundary
condition

Vie -n=0 on z=h(z). (55)

In this section we describe briefly the method used to
obtain such exact solutions [12] .

To begin consider an abstract complex plane with vari-
able

(=2+1iZ2.
In this plane we consider a uniform flow
V=" (@ ="Vo, w=0)
obtained from the potential
d_> = Wz.

The physical space can be seen as the complex plane as-
sociated to the variable

E=x+1iz2.

Suppose that h(¢) is an analytic function of ¢ and let hq
and hs be the real and imaginary parts of h(¢),

h(¢) = hi(z, 2) +tha(z, Z) .
Then the function
G(¢) = ¢ +ih(Q)

is also an analytic function of ¢ and defines the transfor-
mation equations

Z) =7 — ha(Z, 2)

zZ)=zZ+ mh(z, 2).

x = x(z,

= 2(z,

It is clear that the imagine of the real axis z = 0 in
the (—plane under these transformation equations is the
curve that represents to the topography,

{(z, h(2x)} = G{z,2z = 0}];
that is, we have

z=h(z) .

Since the real axis zZ = 0 is a stream line of the flow V, the
curve z = h(Z) is a stream line of the flow V' that is the
image of V under the transformation G. The components
of the flow Virue = Utruel + WirueK are

" _ Ea 2(Z, %)
true - J 82
w _ Wouaz, 2)
true - J a 3
where
Oz Oz
J = det < T gz )
oz 9z

and, since G(¢) is analytic, the Cauchy-Riemann equa-

tions hold,
Oxr 0z Ox 0z
or 9z 0z  or
Inherent problems of the map conforming do not permit
us the direct use of h(z). These problems are solved by
a simpler representation of h(x), namely, a natural spline
S(x) which is defined as follows. Let {x}}}_, be a set of
points where the terrain height h(zy) is known, then : (i)
S(x) satisfies

S(z) = h(xy) for k=0,...,n,
(ii) S(x) is a cubic polynomial on each interval [, xx+1],
S(z) = ax + bg(x — xx) + cx(z — :Ek)Q
+di(z — ) for = € [z, 2y1]

(iii) S(x) and its derivatives S’(z), S”(x) are continuous
on [xg,z,] and S”(x) satisfies

S (w0) = S (2,) = 0.

There is a unique natural spline associated to an ana-
lytic function h(z) on the interval [zg,x,]. Since S(z)
is a cubic polynomial on each interval [z, Txt1], we can
compute the flow

U _&az;k) w ——waorxe[x x
true — J 0z true 7 0z ks Lk+1]
where
+ ™ = - 8y(%, 7)
A0 = 24 8.(z, 2)
and

S(¢C=z+1iz) = S1(Z, 2)+1i S2(z, 2).
The continuity of S(x), S’(x) and S”(x) guarantees
that the field Virue =Utruel + Wiruek, its first derivatives

a'wtruc

0z ’

awtruc
ox ’

autruc

0z '’

autruc
ox ’
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and V- Vi,e are continuous on the interval [zg, ©,,]. This
together with the fact that uiyye, Wirue satisfy the conti-
nuity equation (54) and the boundary condition (55) on
each interval [z, 1], implies that the field Ve satis-
fies the same equations on the whole interval [z, z,]. In
the present work we use smoothing splines [12] to obtain
a velocity field with a simpler structure, since natural
splines yields fields with a very complex structure as is
shown in [12].

4 Numerical Calculation of A\

4.1 Variational formulation of the prob-
lem L\ = f

In this section we consider the variational formulation
(see, e.g., [13]) of the elliptic equation (31),

L,x=f in D, (56)

with the mixed boundary conditions
A=0 on 0Dy, (57)
L,A=q on 0Dy, (58)

where 0D, = 0D, U D, is the boundary of the region
D, in the y space, and L, L, f, q are given by

L, ~Vi/gM™'V  f=,/gV-V°

L, a/ M~V g=-nV".

The solution A is (at least) square integrable so that it

belongs to the space
2
v / [v]” dy < o0
D

endowed with the inner product

wh, = [ vudy,

Dy

and the norm | v ||,= <v|v>11//2. The function A also

belongs to the space of functions that satisfy the Dirichlet
boundary condition (57), a space that we denote by V.
In what follows we consider that V, is complete with the

norm
ov
2
ezl
k

In order to obtain the variational (or weak) formulation
of the boundary value problem (56-58) the equation (56)
is multiplied by a function v in V, and integrated, thus

(Ly A|v)y = (flv)y holds for allv €V, . (59)

L2(Dy)

Y

2

[vlly, =

2
Y

11

The left side is rewritten by integrating by parts

_/ ov
D

w—=—r-dy
k )
y 9y
where i, are the components of the vector normal, uni-
tary and exterior to the boundary dD,. Making calcula-
10X

tions we get
9]
— E —9gM, " — v>
— <ayk\f kl 5‘yl| y

— % VIuLyAdsy + ay(A,v),
oD,

<Ly)‘|U>y

where 9
-1
Mo

Ly = Z Tyk
kl

In terms of the bilinear form

ou Ov
1
> (v g gt

kl

U,V

)

ay(

)

/ (Vu)' M~V /g dy
D

Yy

the eq. (59) has the form
ay(\,v) = (flv), —&—j{ VgvLyAds, for all v € V.
oD,

Since v satisfies v = 0 on 0Dy, and L, A = ¢ the integral
on 0D, takes the form

VavLyAds, :/ Vgugdsy .
aD, dDy,

Thus, we conclude that if the function \ exists it has to
satisfy the integral equation

ay(\v) = f,(v) forallv eV, (60)

where we define

fy(0) = (flv), + Vgvgdsy .

OD,y,

The equation (60) is called the weak form of the elliptic
problem (56-58).

The existence and uniqueness of A is guaranteed by the
properties of a,(-,-) y fy(+). It is easy to see that a,(-,-)
defines an inner product in the space V, since a,(-,-) is

1. symmetric, ay(u,v) = ay(v,u) ,



2. positive defined , a,(u,u) > 0, and a,(u,u) = 0 only
for u =0,

3. bilineal, ay(u, c1v + cow) = cray(u, v) + caay(u, w) .
In fact, using the symmetry of M~! we get
(Vu)! M™! Vo = (Vo)! M~ Vu ,

and therefore

ay (u, v)

/D (Vu)' M~ Vo /g dy

Y

/D (Vo) M~ Vu /g dy = a,(v,u) .

Y

If the transformation of coordinates z° = x'(y) is well
behaved and the coefficients a?(y) are non zero on D =
D U D, then M~! (y) is positive definite at each point
in D, that is,

UM'U>0for U#0.

In particular for U = Vu we have (Vu)' M~ Vu > 0
when u is not the constant function. Multiplying the
last inequality by,/g and integrating by parts we conclude
that ay(-,-) is positive definite on Vj,

ay(u,u) >0 forallu e V, .

The linearity of a, (-, -) is obvious. Finally, if f(y) and ¢(y)
are piecewise continuos, the functional fy() is bounded.
According to the Lax-Milgram theorem [13] these prop-
erties guarantee the existence and uniqueness of the func-
tion A that satisfies the integral equation (60).

The symmetry of a,(-,-) allows us to see A as an ex-
tremal of the quadratic functional

Jy(v) = %ay(v,v) — fy(v) forveV,.

Let us remember that a function w is an extremal of the
functional J,(v) if it satisfies

d

de
According to this definition, let us show that the last
equation is exactly the integral equation (60) to prove
that A is an extremal of Jy(x). Using the symmetry and
linearity of a,(-,-) and f,(-) we get

Jy(u+ €ev)|e=g =0 forallv eV, .

T+ ) = Say(A+ v, A+ ) = fy(A+ ev)
= %ay()\, A) + €ay(Aa U)
+ 5€ayv,0) = 00 = ey (v)
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The derivative at € = 0 yields
d

de

This is exactly the equation (60) and, therefore, a solu-
tion X of (60) is an extremal of J,(v). The Lax-Milgram
theorem guarantees that A exits and is unique.

Jy(A+ ev)]e=o = ay (X, v) — fy(”) =0.

The above results suggest that the extremal A can be
compute by minimizing the functional J(\) instead of
solving the integral equation (60). This way has the
advantage of considering in an implicitly the Nuemann
boundary condition (58) so that we have to consider only
the Dirichlet boundary conditions (56). To prove this as-
sertion let us show that if A is an extremal of J(X), it
automatically satisfies the Neumann boundary condition
(58).

We have shown that if A minimizes J, (), then satisfies
(60). Let us consider (60) with v in C§°(D,). Since v is
zero on the boundary 0D,, it belongs to the space V, so
that A satisfies (60) for all v € C§°(D,),

ay()\,v):<f|v>y+j{ Vg v gdsy
8Dy
but v = 0 on dD, and hence the last equation becomes

ay(A,v) = (flv),

On the other hand, if A has continuous second derivatives
we can integrate by parts the left side to get

for v € C§°(Dy) .

ay(A,v) = (LyAlv),  forv € CG°(Dy) .
Thus we get
(LA~ flo), =0 forve CF(D,)
and, therefore, A satisfies the elliptic equation
L= f

inD, . (61)

If we now consider (60) in the form

(LyAlv), + VauLyAds, =
BDyb

<f|v>y+/aD Vvgds,

and we use that fact that A satisfies (4.6), the terms
(LAlv), and (f|v), disappear so that A satisfies

Vv LyAds, = / Vv qdsy for allv e Vg
dD,s 9Dy



and since v # 0, in general, it follows that A has to satisfy
Lyd=¢q ondDy, .

In other words, if A minimizes J,(v), it satisfies automat-
ically the Neumann Boundary condition (58). By this
reason, such a condition is called natural boundary condi-
tion.

4.2 The finite element method

We choose the finite element method to solve the elliptic
problem (34-36) because we want to work in cartesian co-
ordinates. We have the following spaces of test functions

w
Wo

(D)
{¢p e H(D): ¢ =0o0n dD,}.

The integral equation (60) with f = V-V° and ¢ =
—n! V? has the simple form

/(S_1VA)-V¢dm:—/VO-V¢forall¢€W0.
D D

(62)
Let h be a discretization step and denote by Jp, a finite
element triangulation of D. If P; is the space of polyno-
mials in two variables of degree < 1, then we approximate
the function spaces W and Wy by the finite dimensional
spaces

%43
Won

{(f)h c Co(b) : Qsh‘T c Pl, for T € Jh} R
{d)h e Wy : ¢h =0on 8Da},

respectively. The finite element formulation of the prob-
lem (62) is: Find A\, € Wy, such that

/ (STIVA) - Vénda = —/ V9.Vey for all ¢, € Woy, .
D D

(63)
In this last equation V% is the interpolant function on
W), x Wj, that approximates the initial vector field VO°.

Remark. It is well known [13] that the piecewise linear
approximation A is second order accurate.

Next, we will include a more detailed description of
the finite element approximation (63). Let N be the to-
tal number of vertices in the triangulation Jj, of D, and
suppose a numeration of those vertices has already been
introduced. Thus, a basis of the finite dimensional space
W), is the collection of "hat functions” associated to those
vertices:

Br = {‘pp}1§p§1\i
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where ), is a piece wise linear function such that

lifp=Q
0ifp#@Q
The support of these functions is the union of triangles

in Ty that contain P as a vertex. In the same way, the
basis of the finite dimensional space Wyy, is

ﬁOh

ey (Q) = bpg = { for @ € {1,..N} .

{pp € Bn : vp(Q) =0 if Q is a vertex on 9D, }
{@peﬁh Ip= 1,2,...,N0}

where Ny is the number of vertices that do not belong to
dD,. Using these basis functions the solution A, can be
expressed as

No
An(z) = Z i) pi(x)

where {x;} is the collection of vertices in the triangu-
lation that do not belong to dD,. If we denote A\(x;) by
A; the problem (63) is equivalent to the following linear
algebraic problem: Find {\;}X° in RN° such that

No
Saihi=fii=1,...,No, (64)
i=1
where
ai; :/ (S7'VY)) - Vihidz
and

D
fi:f/V?L-Vw,;d:z:.
D

The matrix a;; keeps the properties of S~ namely, a;; is
symmetric and positive definite. The algebraic problem
(64) can be solved by the conjugate gradient algorithm,
in this work we use a conjugate gradient method adapted
for sparse linear systems [15].

Once )y, is computed, we finally compute an approxi-
mation Vj, of the adjusted wind field V by

Vi, =V 4SSV, .

However, since \j, is a piecewise linear function, V is
constant on each triangle and is not defined on the edges
of the triangulation. Thus we should compute V}, in the
weak sense. Let U, = V;, — VY, then U, can be com-
puted by solving the following problem: Find Uy such
that

/ Uy, -wdz = / (S_IV)\;L) -w dx for all w
D D



and V), is given by Vj, = Uy, + V9. An easier alternative
is to compute Uy, = (ug,ug) pointwise: For k = 1,3 find
ug € Wy, such that

1 0
/ukdh‘dx:/ — o gpdidrforalli=12... N.
D p a; Ox

The integral in the right hand side can be computed ex-
actly by the trapezoidal rule since \/dx* is constant on
each triangle T' € J. If the left hand side is computed
with the same rule, we get a diagonal algebraic linear
system whose solution is immediate.

5 Numerical examples

Let us begin with the flow in the domain D = [0,10] x
[h(z),10] km?. The true field Ve = Utruel + Wirnek is
calculated with the datum wiye = 10 ms™! and wipye = 0
at the point (z = 0,z = 10 km), which is used to define
the magnitude Vj of the flow on the abstract complex
plane ¢ (section 3). The initial field V© is u® = e and
w® = 0.

Figure 1 shows the flow with an analytic topography
h(z) = ho + hy coswz. The true field Vi and the ad-
justed field V denoted with red and blue arrows, respec-
tively, and the latter is computed with oy = a3 = 1. Fig-
ure 2 shows the details of the fig. 1 and we see that there
is a significant difference between Vi, and V. Figure
3 shows Ve and the adjusted field V calculated with
e =1/a% = 1072, we observe that V(¢ = 1072) field is
worse that the field V(e = 1) of fig. 2. In contrast, figure
4 shows that the adjusted field V(¢ = 10%2) has the main
properties of Vi, and Fig. 5 shows that V(e = 1019) is
almost equal to the true field.

Figure 6 shows the flows Vi, and V(e = 10%%) on
a topography h(z) defined by smoothing real terrain el-
evation data from GTOPO30 [14]. Details of the same
figure are shown in figure 7. Once again we observe that

the adjusted field is an indeed correct approximation of
the true field.

These results show that MCMs’s can be used to esti-
mate the true field if the initial field V° is a good ap-
proximation of the horizontal true field. The problem is
: how accurate should the initial field be to obtain a re-
liable adjusted field?, this problem will be studied in a
forthcoming work.
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Figure 1: True and adjusted fields, Viyue, V(€

:1)

T T S A
\ =
! 4 = =
WS v v ¢ b7 =
A Z =
S s+ o« ! L £
\ A — = =
T < A L 2
=
1 =
12F = I -
~ — - Lz == -
1k < _— —_—— = = .
— P
- — — = —= = _
osF —o /, —_ =
—= . —— == T .
- — —_ — — - -
06 - = . —
— 52 En D e 7
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Figure 4: True and adjusted fields, Ve, V(e = 1072)

Figure 7: Details of the fields from fig. 6
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