
P1M.14

RELIABILITY ANALYSIS OF MASS CONSISTENT MODELS
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1 Introduction

Mass Consistent Models (MCM’s) [1-8] are some of the
main assimilation schemes of wind data by the simplicity
of the physics involved and their capacity to accept wind
data from different points in a region. Additionally, these
provide a way to estimate initial meteorological fields as
input of prognostic models [1,9,10]. The MCM’s are based
on the minimization of the variance between an initial
field V0 (obtained from a suitable interpolation of dis-
crete data) and a field V (called the adjusted field) that
satisfies the mass conservation equation ∇ ·V = 0. The
variance is usually defined in terms of a set of parameters
αi. The scheme leads to an elliptic problem for a Lagrange
multiplier λ. A careful deduction of the minimization
process is given in section 2 [11]. Two kind of bound-
ary conditions on the topography, have been used in the
literature to compute λ [1]: (i) The Nuemann bound-
ary condition ∂λ/∂n = 0 and (ii) the no-flow condition
V · n = 0 where n is normal to the topography. It is
shown that the former is incorrect when αi 6= 1. All sim-
ulations performed with MCM’s show that the adjusted
field V is very sensitive to the values of the αi’s but there
is no concensus about its correct value. For instance,
some authors suggest that the αi’s should be estimated
by considering the residual divergence [4]. The deduction
of section 2 shows that the exact λ yields a zero residual
divergence for any choice of the αi’s, so that sensibility
of the residual divergence to the αi’s is a consequence
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of the numerical estimation of λ rather than an intrinsic
property of the scheme.

Some authors [8] have studied the reliability of MCM’s
by comparison of the adjusted field V with a true field
Vtrue obtained from Map conforming. The analysis is
partial because (i) the adjusted field is calculated with
αi = 1 and (ii) the map conforming provides analytic ve-
locity fields only on a region with a simple geometry, since
inherent problems of the map conforming do not permit
consider a region with a complex topography. These prob-
lems are solved in two-dimensions when the topography
is approximated by means of splines [12] and the resulting
flow is used in this work to study the reliability of MCM’s
(section 3). The finite element method [13] is used to esti-
mate λ (section 4) and the numerical results are reported
in section 5. We consider the flow on a smooth topogra-
phy with data from the data base GTOPO30 [14]. The
results show the adjusted field V can reproduce the main
characteristics of the true flow Vtrue with a suitable choice
of the αi’s.

2 Theoretical formulation of
MCM’s

Let us consider a cartesian coordinate system xyz with
its origin at a point on a spherical earth model, the xy
plane is tangent to the earth and the z axis is out of
the earth. Hereafter we employ the notation x1 = x,
x2 = y, x3 = z and x̂ = x̂1, ŷ = x̂2, ẑ = x̂3 to denote the
unit vectors associated to the system xyz. The region
of study is D = {xmin 6 x 6 xmax, ymin 6 y 6 ymax,
h(x, y) 6 z 6 zmax} where h(x, y) is the terrain elevation
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on (x, y, z = 0). The true velocity field is denoted by

Vtrue =
∑

i

V i
truex̂i .

By simplicity we consider that Vreal satisfies the shallow
continuity equation

∇ ·Vtrue = 0 ,
(
∇ ≡

∑
x̂i

∂

∂xi

)
,

and the lower boundary condition

Vtrue · n = 0 for z = h(x, y)

where n is a vector normal to the topography,

n = ∇(h− z) = x̂∂xh + ŷ∂yh− ẑ .

Let us suppose that the data from a meteorological net-
work are interpolated in such a way that they provide and
initial field

V0 =
∑

i

V i0 x̂i ,

In general , the field V0 does not satisfy the equation
∇·V0 = 0, so that the problem consists in estimating an
adjusted field V that satisfies ∇ · V = 0, the boundary
condition V · n = 0 on z = h(x, y) and is closer to V0

with respect to some suitable distance d(W,U) between
vector fields.

2.1 A general definition of the distance
d(W,U)

In order to define a metric d(W,U) we use the follow-
ing notation. The standard Euclidean inner product is
denoted by

W ·U =
∑

i

W ix̂i ·
∑

j

U jx̂j =
∑

i

W iU i ,

We assume that W denotes the column vector

W =




W 1

W 2

W 3




and, consequently, the transposeWt denotes a row vector,

Wt =
(

W 1 W 2 W 3
)

.

According to this notation and the usual matrix algebra
the inner product W ·U can be written as WtU. Let

S be a symmetric and positive definite matrix, then the
expression

〈W | U〉S = Wt S U

defines a general inner product.

The vector fields of interest depend of each point x ≡
(x1, x2, x3),

W = W(x) =
∑

i

W i(x) x̂i.

In this case we combine the inner product in function
spaces

< f |g >=
∫

D

f(x)g(x)dx .

with 〈W | U〉S to get to the following inner product for
vector fields

〈W | U〉DS ≡
∫

D

〈W | U〉S dx =
∫

D

Wt S U dx.

where we assume that the matrix S(x) is symmetric and
positive definite at each point x in D. The corresponding
norm and metric are, respectively,

‖W‖2DS = 〈W | W〉DS =
∫

D

‖W‖2S dx

and
dDS(W,U) = ‖W −U‖DS .

In what follows the boundary of the region D is denoted
by ∂D and we consider the following decomposition

∂D = ∂Da ∪ ∂Db

where ∂Da denotes the lateral and upper boundaries of
D and ∂Db denotes the lower boundary defined by the
topography z = h(x, y). The problem of estimating an
adjusted field V from a given initial field V0 consists in
computing the field V that is closer to V0 with respect
to the metric

∥∥V −V0
∥∥2

DS
=

∫

D

∥∥V −V0
∥∥2

S
dx ,

and satisfies the equation

∇ ·V = 0 in D ,

together with the boundary condition

V · n = 0 on ∂Db .
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The conditions that the adjusted field V has to satisfy,
imply that it belongs to the set

V= {W(x) ∈ L2(D) : ∇ ·W = 0 in D

and W · n = 0 on ∂Db} ,

which constitues a vector space. The distance between a
vector field W in V and the initial field V0 defines the
functional

FS(W) ≡ ∥∥W −V0
∥∥2

DS
=

∫

D

∥∥W −V0
∥∥2

S
dx ,

in terms of which the calculation of an adjusted field con-
sists in estimating the field V in V that satisfies

FS(V) = min
W∈V

FS(W) .

2.2 Contravariant form of FS(W)

A standard procedure to simplify the treatment of the
lower boundary condition W · n = 0 on ∂Db consists in
using the so-called terrain-following coordinates. Since
there is no consensus about the definition of these coordi-
nates, in this section we report the expression of the func-
tional FS(W) in an arbitrary coordinate system y1y2y3

which is defined by means of a set of transformation equa-
tions

yj = yj(x) j = 1, 2, 3 , (1)

where the time t does not appears explicitly. The equa-
tions of the inverse transformation have the form

xi = xi(y) i = 1, 2, 3 . (2)

The i−th row and the j−th column of jacobian matrix
corresponding to (1) are defined by

Jij =
∂xi

∂yj
.

The metric tensor is defined by

G = JtJ , (3)

and its elements are denoted by gkl,

gkl ≡ Gkl =
∑

i

∂xi

∂yk

∂xi

∂yl
.

The elements of the inverse matrix G−1 are denoted by
gkl,

gkl ≡ (G−1)kl .

We suppose that the jacobian of the transformation (2)
is positive,

J(y) = det(J) > 0 on D.

The determinant of G is usually denoted by g and from
(3) we get the relationship

g = det(JtJ) = J2 or
√

g = J .

If J(y) is not zero on D, the so-called covariant vectors

τj =
∑

i

∂xi

∂yj
x̂i j = 1, 2, 3 , (4)

are linearly independent and, therefore, constitute a ba-
sis set of R3. In an analogous manner the contravariant
vectors

ηj ≡ ∇yj(x) =
∑

i

∂yj

∂xi
x̂i (5)

constitute a base of R3. The relationship between τj y ηk

is
τj =

∑

k

gjkηk ηk =
∑

j

gkjτj . (6)

and using the chain rule it is easy to see that τj and ηk

satisfy the reciprocity relationship

τj · ηk = δk
j . (7)

Since the basis x̂i associated to the cartesian coordinates
is orthonormal (x̂i · x̂j = δij) we can write

x̂i = x̂i .

The expression of a vector U in the basis τj

U =
∑

j

U j(y) τj (8)

is called the contravariant form of U, and the coefficients
U j(y) are the contravariant components of U in the co-
ordinate system y. The expression of U in the basis ηj

U =
∑

j

Uj(y) ηj (9)

is known as the covariant form of U and the coefficients
Uj(y) are the covariant components of U in the coordinate
system y. Accordingly, the contravariant and covariant
forms of U in the cartesian coordinate system x coincide,

U =
∑

i

U i(x) x̂i =
∑

i

Ui(x) x̂i

where we have U i(x) = Ui(x).
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From (4) and (8) we get the rationship

U j(y) =
∑

i

∂yj

∂xi
U i(x) (10)

which is known as the contravariant transformation law.
From (5) en (9) we get the covariant law

Uj(y) =
∑

i

∂xi

∂yj
Ui(x) . (11)

Finally, from (6) we get the relationship between U j(y)
and Uj(y)

Uj(y) =
∑

k

gjkUk(y)

Uk(y) =
∑

j

gkjUj(y) . (12)

In terms of column vectors we can write

U =




U1(x)
U2(x)
U3(x)


 =




U1(x)
U2(x)
U3(x)


 .

Let Uτ y Uη be the column vectors defined, respectively,
by the covariant and contravariant componenets of U,

Uτ =




U1(y)
U2(y)
U3(y)


 Uη =




U1(y)
U2(y)
U3(y)


 . (13)

The relationships (12) take the form

Uτ = G Uη Uη = G−1Uτ , (14)

and the transformation laws (11) and (10) are

U = J Uη =
(
J−1

)t
Uτ . (15)

The relationship (7) between τj and ηk yields a simple
expression for the inner product U ·W,

U ·W =
∑

k

ηkWk ·
∑

j

τjU
j =

∑

j

Wj(y)U j(y) ,

that in terms of the column vectors Wτ , Uη takes the
form

U ·W = Wt
τ Uη . (16)

Let us now consider the calculation of the functional

FS(W) =
∥∥W −V0

∥∥
DS

=
∫

D

∥∥W −V0
∥∥2

S
dx

where ‖·‖S is the norm associated to the inner product

〈W|U〉S = WtS U

and W, U are the column vectors defined by the carte-
sian components. To get the expression of FS(W) in the
coordinate system y we have the rule of change of variable
for integrals

∫

D

f(x) dx =
∫

Dy

f [x(y)]
√

gdy

where Dy is the image in the y−space of the original re-
gion D under the transformation yj = yj(x). The inner
product 〈W|U〉S is easily obtained in terms of the con-
travariant components Um(y), W i(y) of U and W using
(15), namely,

〈U|W〉S = Ut S W

= (J Uη)t S J Wη

= (Uη)t Jt S J Wη

= (Uη)t M Wη (17)

where we define
M ≡ Jt S J .

The matrix M can depend of each point y = (y1, y2, y3)
in Dy, is symmetric and it is easy to show that if S(x) is
positive defined, then M(y) also is. In this way the right
side of (17) defines an inner product in the y space that
we denote by < ·|· >M ,

〈U|W〉M ≡ (Uη)t M Wη . (18)

Thus we have the identity

〈U|W〉S = 〈U|W〉M .

and the corresponding norms

‖U‖S = 〈U|U〉1/2
S ‖U‖M ≡ 〈U|U〉1/2

M

satisfy
‖U‖2S = ‖U‖2M . (19)

The integration of (19) and the change of x by y yield

‖U‖2DS =
∫

D

‖U‖2S dx =
∫

Dy

‖U‖2M
√

gdy

and, therefore,

‖U‖2DS =
∫

Dy

‖U‖2M
√

g dy .
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The right side defines a norm that we denote by ‖ U ‖2DM ,

‖ U ‖2DM≡
∫

Dy

‖U‖2M
√

g dy . (20)

The norm ‖ U ‖DM is the contravariant form of ‖U‖2DS

and the desired contravariant form of the functional
FS(W) is

FS(W) =‖ W −V0 ‖2DM (21)

=
∫

Dy

∥∥W −V0
∥∥2

M

√
g dy

=
∫

Dy

〈
W −V0|W −V0

〉
M

√
g dy

2.3 Calculation of V with the contravari-
ant form of FS(W)

The space V that contains the desired adjusted field V
was defined in x space,

V = {W(x) : ∇ ·W = 0 in D, W · n = 0 on ∂Db}.

To compute V in the y space we use the contravariant
form of FS(W) since the expression of ∇ · W = 0 is
simple in terms of the contravariant components W k(y)
of W, namely,

∇ ·W =
1√
g

∑

l

∂

∂yl

√
gW l(y) .

The use of the contravariant form of each vector W in V
suggests that the vector n normal to the lower boundary
∂Db, should be represented in its covariant form,

n =
∑

l

nlη
l

to get a simple expression of the inner product W ·n [eq.
(16)]

W · n = nt
τW

η

where we use the notation of column vectors, nτ =
(n1, n2, n3)t y Wη = (W 1, W 2,W 3)t. In this way the
lower boundary condition takes the form

nt
τW

η = 0 on ∂Dyb . (22)

Let Dy, ∂Dy, ∂Dya, ∂Dyb the imagine of D, ∂D,
∂Da, ∂Db under the transformation yk = yk(x), then ∂Dy

has the decomposition

∂Dy = ∂Dya ∪ ∂Dyb .

Accordingly, the space V can be defined as followsin

V =

{
W =

∑

k

τkW k(y) : ∇ ·W = 0 in Dy

nt
τW

η = 0 on ∂Dby

}

Let us consider the calculation of the adjusted field V.
To simplify the notation we shall omit η and τ in Wη

and nτ . Suppose that there exists a field V that (in
its contravariant form) minimizes FS(W) in the space V,
then it satisfies

d

dε
FS (V + εW) |ε=0 = 0 for all W ∈ V .

Let
∆V ≡ V −V0.

According to (21) we have

FS (V + εW) =
∫

Dy

〈∆V + εW|∆V + εW〉M
√

g dy

=
∫

Dy

{ 〈∆V|∆V〉M + 2ε 〈∆V|W〉M
+ ε2 〈W|W〉M }√g dy

and, therefore,

d

dε
FS (V + εW) |ε=0 = 2

∫

Dy

〈∆V|W〉M
√

g dy

= 2
∫

Dy

∆Vt MW
√

g dy

= 0

or, equivalently,
∫

Dy

∆Vt M W
√

g dy = 0 . (23)

On the other hand, multiplying the condition ∇ ·W = 0
by a function λ(y) and integrating one gets

∫

Dy

λ∇ ·W√
g dy = 0 ,

and using the identity λ∇ ·W = ∇ · (λW)−∇λ ·W we
have ∫

Dy

[∇ · (λW)−∇λ ·W]
√

g dy = 0 . (24)

The divergence theorem in the y space yields
∫

Dy

(∇ · λW)
√

gdy =
∮

∂Dy

λn̂t
yW

√
g dsy
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where n̂yl are the components of the unit vector n̂y that
is normal and out of the region ∂Dy, and n̂y denotes the
corresponding column vector. Thus (24) takes the form

∮

∂Dy

λ n̂t
yW

√
g dsy −

∫

Dy

∇λ ·W√
g dy = 0 .

The sum of this equation with (23) implies that ∆V has
to satisfy the integral equation

∫

Dy

[
∆VtMW − (∇λ)t W

]√
gdy

+
∮

∂Dy

λn̂t
yW

√
gdsy = 0. (25)

for all W ∈ V. In particular, if W is zero on the boundary
∂Dy one gets

∫

Dy

[
∆VtM− (∇λ)t

]
W
√

g dy = 0 .

The components W l(y) of W are not independent since
they have to satisfy

∇ ·W =
1√
g

∑

l

∂

∂yl

√
gW l(y) = 0 .

Suppose that W k is the dependent component. If we
impose to λ(y) the condition that eliminates the term
corresponding to W k,

∑

l

∆V l Mkl − ∂λ

∂yk
= 0 for k = k′

the integral equation (25) becomes
∫

D

∑

k 6=k′

[∑

l

(
∆V lMkl − ∂λ

∂yk

)]
W kdx = 0 .

and since the components W k (k′ 6= k) are independent
we conclude that their coefficients satisfy

∑

l

(
∆V l Mkl − ∂λ

∂yk

)
= 0 para k 6= k′ .

In summary, if V minimizes FS(W) in the space V, then
the contravariant components of ∆V satisfy the Euler-
Lagrange equations

M∆V −∇λ = 0

where ∇λ denotes the column vector

∇λ =




∂λ/∂y1

∂λ/∂y2

∂λ/∂y3


 .

Therefore, ∆V = M−1∇λ and V, λ have to satisfy the
relationship

V = V0 +M−1 ∇λ, (26)

which in terms of components takes the form

V k = V 0,k +
∑

l

M−1
kl

∂λ

∂yl
. (27)

Since the equation (26) does not depend of a particular
field W in V, it is valid for all W’s in V and consequently
the integral equation (25) becomes

∮

∂Dy

λ n̂t
y W

√
g dsy = 0 for W ∈ V. (28)

In this point we should remember that the boundary con-
dition (22) is given in terms of the covariant components
nl of the vector n normal and exterior to the lower bound-
ary ∂Db. It is not hard to show that the component nl is
proportional to n̂yl; that is, there exists a function c(y)
such that

nl = c(y)n̂yl or nτ = c(y)n̂y on ∂Dy (29)

and the boundary condition (22) takes the form

n̂t
yW = 0 on ∂Dyb .

Hence the integral equation (28) becomes an integral
equation that λ has to satisfy

∫

∂Dya

λ n̂t
yW

√
g dsy = 0 for all W ∈ V ,

Since n̂t
y W 6= 0 in general, we conclude that the last

equation holds true only if λ satisfies the Dirichlet bound-
ary condition

λ = 0 on ∂Dya . (30)

Thus, V minimizes the functional FS (W) only if V and
λ satisfy (26) and λ satisfies the boundary condition (30).
These conditions together with the additional conditions
∇ ·V = 0 and n̂t

yV = 0 on ∂Dyb determine uniquely λ.
In fact, the substitution of (27) into ∇ ·V = 0 yields

∇ ·V =
1√
g

∑

k

∂

∂yk

√
gV k(y)

= ∇ ·V0 +
1√
g

∑

k

∂

∂yk

√
g

∑

l

M−1
kl

∂λ

∂yl

= 0 ,

Hence we get the elliptic equation

Lyλ =
√

g∇ ·V0 in Dy (31)
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where we define

Ly ≡ −
∑

kl

∂

∂yk

√
gM−1

kl

∂

∂yl
= −∇t√gM−1 ∇ .

If we put (26) into the boundary condition n̂t
yV = 0,

n̂t
yV = n̂t

y

(
V0 +M−1 ∇λ

)
= 0,

we get the Neumann boundary condition

Lyλ = −n̂t
yV

0 on ∂Dyb (32)

where we define

Ly ≡
∑

kl

n̂yk M−1
kl

∂

∂yl
= n̂t

y M−1 ∇ .

As is shown in the next section, the mixed boundary con-
ditions (30), (32) together with the elliptic equation (31)
determine uniquely to λ and, therefore, the adjusted field
V.

Having computed λ we use (26) to obtain the con-
travariant components of the adjusted field V. According
to the transformation law (15), the product of (26) with
the Jacobian matrix J,

JV(y) = J
[
V0(y) +M−1 ∇λ

]
,

yields the cartesian components of the adjusted field,

V(x) = V0(x) + J M−1∇λ (33)

= V0(x) + S−1
(
Jt

)−1 ∇λ ,

where we use M−1 = (JtSJ)−1 = J−1S−1 (Jt)−1.

2.4 Some particular cases of S and coor-
dinates yi

The most common matrix S used in the literature is [1-8]
is the diagonal matrix

Skl = δklα
2
k

whose inverse is S−1
kl = δklα

−2
k . In cartesian coordinates

the elliptic problem for λ is

Lλ = ∇ ·V0 (34)
λ = 0 for x ∈ ∂Da (35)

Lλ = −V0 · n̂ for x ∈ ∂Db , (36)

where

L = −∇tS−1∇ = −
∑

k

∂

∂xk

1
α2

k

∂

∂xk

L = n̂tS−1∇ =
∑

k

n̂k

α2
k

∂

∂xk

and the adjusted field V is given by

V k = V 0k +
1
α2

k

∂λ

∂xk
for k = 1, 2, 3

Almost all the terrain-following coordinates used in the
literature keep the horizontal coordinates

y1 = x y2 = y

and only the vertical coordinate is changed. For instance,
we have

y3 =
H − z

H − h(x, y)
with h(x, y) ≤ z ≤ H(x, y)

z = H + [h(y1, y2)−H]y3 [ref. (5)],

y3 =
z − h(x, y)

H(x, y)− h(x, y)
with h(x, y) ≤ z ≤ H(x, y)

z = y3[H(y1, y2)− h(y1, y2)] + h(y1, y2) [ref. (6)],

y3 =
z − h(x, y)

∆H
with h(x, y) ≤ z ≤ ∆H + h(x, y)

z = y3∆H + h(y1, y2) [ref. (4)],

y3 =
zt − z

zt − zs(x, y)
with zs(x, y) ≤ z ≤ zt

z = zt − y3
[
zt − zs(y1, y2)

]
[ref. (7)],

y3 = H
z − h(x, y)
H − h(x, y)

+ z0 with h(x, y) ≤ z ≤ H

z =
H − h(y1, y2)

H
(y3 − z0) + h(y1, y2) [ref. (10)].

In each case the coordinates yi have the form

y1 = x y2 = y y3 = y3(x, y, z)

or
x = y1 y = y2 z = z(y1, y3, y2) (37)

where the so-called sigma coordinate σ = y3 is constant
on the topography,

σ[x, y, z = h(x, y)] = cte on ∂Db ,
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and the upper boundary z = zmax,

σ[x, y, z = zmax] = cte on ∂Da .

The matrices J, J−1, G, G−1 associated to the transfor-
mation (37) have the form

J =




1 0 0
0 1 0
z1 z2 z3




J−1 =




1 0 0
0 1 0

−z1/z3 −z2/z3 1/z3




G =




1 + z2
1 z1z2 z1z3

z1z2 1 + z2
2 z2z3

z1z3 z2z3 z2
3




G−1 =




1 0 −z1/z3

0 1 −z2/z3

− z1
z3

− z2
z3

(
z2
1 + z2

2 + 1
)
/z2

3


 (38)

where we use the notation

zj ≡ ∂ z

∂yj
, J =

√
g = z3 =

∂ z

∂y3
.

We have

M =




α2
1 + z2

1α2
3 z1z2α

2
3 z1z3α

2
3

z1z2α
2
3 α2

2 + z2
2α2

3 z2z3α
2
3

z1z3α
2
3 z2z3α

2
3 z2

3α2
3


 .

To compute M−1 we use M−1 = (JtSJ)−1 = J−1[(SJ)−1]t

where

(SJ)−1 =




1/α2
1 0 0

0 1/α2
2 0

−z1/z3α
2
1 −z2/z3α

2
2 1/z3α

2
3


 ,

hence

M−1 =




1
α2

1

0 − z1

z3α2
1

0
1
α2

2

− z2

z3α2
2

− z1

z3α2
1

− z2

z3α2
2

M−1
33




(39)

where

M−1
33 =

(
z1

z3α1

)2

+
(

z2

z3α2

)2

+
(

1
z3α3

)2

.

Using the standard notation for the cartesian components
of the initial field V0

V 1,0(x) = u0 V 2,0(x) = v0 V 3,0(x) = w0

or
V0 =

∑
x̂iV

i,0(x) = x̂u0 + ŷv0 + ẑw0 .

the contravariant components of V0 are given by




V 1,0(y)
V 2,0(y)
V 3,0(y)


 =




u0

v0

−z1u
0 − z2v

0 + w0

z3


 . (40)

In a similar way, for the adjusted field

V =x̂u + ŷv + ẑw

we have



V 1(y)
V 2(y)
V 3(y)


 =




u
v

−z1u− z2v + w

z3


 . (41)

The continuity equation ∇ ·V = 0 has the form

∂

∂y1
z3V

1 +
∂

∂y2
z3V

2 +
∂

∂y3
z3V

3 = 0

or

∂

∂y1
z3u +

∂

∂y2
z3v +

∂

∂y3
(−z1u− z2v + w) = 0 .

For the elliptic equation Lyλ =
√

g∇ ·V0 (31) we have

Ly = −∇t√gM−1∇ = −∇t z3M−1 ∇ (42)

= −(∂1 ∂2 ∂3)




z3

α2
1

∂1 − z1

α2
1

∂3

z3

α2
2

∂2 − z2

α2
2

∂3

− z1

α2
1

∂1 − z2

α2
2

∂2 + z3M
−1
33 ∂3




or

−Ly = ∂1
1
α2

1

(z3∂1 − z1 ∂3) + ∂2 (z3 ∂2 − z2 ∂3) (43)

+ ∂3

{
− z1

α2
1

∂1 − z2

α2
2

∂2 + z3M
−1
33 ∂3

}
,

where

z3M
−1
33 =

1
z3

[(
z1

α1

)2

+
(

z2

α2

)2

+
(

1
α3

)2
]

(44)

and

√
g∇ ·V0 =

∂

∂y1
z3u

0 +
∂

∂y2
z3v

0

+
∂

∂y3

(−z1u
0 − z2v

0 + w0
)

. (45)
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The Dirichlet boundary condition λ = 0 on ∂Dya is
equivalent to the boundary conditions

λ
(
y1 = xmin, y2, y3

)
= 0 ,

λ
(
y1 = xmax, y

2, y3
)

= 0 ,

λ
(
y1, y2 = ymin, y3

)
= 0 , (46)

λ
(
y1, y2 = ymax, y

3
)

= 0 ,

λ
(
y1, y2, y3 = zmax

)
= 0 .

For the Neumann boundary condition Lyλ = −n̂t
yV

0 on
∂Dyb =

{
(y1, y2, y3 = σmin)

}
we have

n̂y =
∑

l

ŷln̂yl = −ŷ3 ,

and therefore

Ly = n̂t
yM−1∇ =

(
0 , 0 , −1

)
M−1 ∇

=
z1

z3α2
1

∂1 +
z2

z3α2
2

∂2 −M−1
33 ∂3 (47)

and
n̂t

yV
0 = −V 3,0 .

Thus Lyλ = −n̂t
yV

0 takes the form
(

z1

z3α2
1

∂1 +
z2

z3α2
2

∂2 −M−1
33 ∂3

)
λ = V 3,0(y) . (48)

The contravariant components of the adjusted field are
[eq. (26)]

V 1(y) = V 1,0(y) +
∂1λ

α2
1

− z1∂3λ

z3α2
1

V 2(y) = V 2,0(y) +
∂2λ

α2
2

− z2∂3λ

z3α2
2

(49)

V 3(y) = V 3,0(y)− z1∂1λ

z3α2
1

− z2∂2λ

z3α2
2

+ M−1
33 ∂3λ

and the Cartesian components are [eq. (33)]

V 1(x) = V 1,0(x) +
∂1λ

α2
1

− z1∂3λ

z3α2
1

V 2(x) = V 2,0(x) +
∂2λ

α2
2

− z2∂3λ

z3α2
2

(50)

V 3(x) = V 3,0(x) +
∂3λ

z3α2
3

.

2.5 The boundary condition ∂ λ /∂ n = 0
is incorrect if α2

i 6= 1

The standard procedure used in the literature [1-8] to
compute the adjusted field V with the functional

F (W) =
∫

D

∑

i

α2
i

(
W i − V i,0

)2
dx

and the condition ∇ · V = 0 consists in minimizing the
functional

J(W, λ) =
∫

D

[∑

i

α2
i

(
W i − V i,0

)2
+ λ∇ ·W

]
dx

It should be noted that no of the references [1-8] consid-
ered the definition of the space V that contains V and the
test fields W. This ambiguity is reflected by the bound-
ary condition

λδV · n̂ = 0 on ∂D (51)

obtained by minimizing J(V+εδV, λ). In fact, the equa-
tion (51) holds of either λ or δV · n̂ is zero on ∂D, since
these conditions cannot be imposed simultaneously (or
the problem is undetermined) the following choice was
adopted by Sherman [3] and other authors:

1. The Dirichlet boundary condition

λ = 0 (52)

is used for an open boundary ∂D.

2. The Neumann boundary condition

∂ λ

∂n
= ∇λ · n̂ = 0 (53)

is used to “impose a no-flow boundary condition on
∂D” [1-8]. It is generally accepted that such a bound-
ary condition is suitable on the terrain

Thus, the elliptic problem solved by several authors has
the form

(
−

∑ ∂

∂xk

1
α2

k

∂

∂xk

)
λ = ∇ ·V0 in D

λ = 0 on ∂Da

∂ λ

∂n
= ∇λ · n̂

=
∑

k

n̂k
∂ λ

∂xk
= 0 on ∂Db ,

where, by simplicity, we consider expressions in cartesian
coordinates. In previous sections we have shown that the
no-flow boundary condition V · n = 0 on the topography
∂Db holds true only if λ satisfies the boundary condition

∑

k

n̂k

α2
k

∂ λ

∂xk
= 0 on ∂Db

so that the condition (53) is incorrect when α2
i 6= 1.
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3 Analytic solutions of ∇·V(r) = 0

An important aspect of the present work to analyze the
reliability of MCM’s is the use of analytic solutions of
the dynamic restrictions used by MCM’s in their two-
dimensional version on the xz−plane, namely,

∇ ·Vtrue = 0 (54)

where Vtrue = utruei + wtruek and the no-flow boundary
condition

Vtrue · n = 0 on z = h(x). (55)

In this section we describe briefly the method used to
obtain such exact solutions [12] .

To begin consider an abstract complex plane with vari-
able

ζ = x̄ + i z̄ .

In this plane we consider a uniform flow

V̄ = V0 (ū = V0, w̄ = 0)

obtained from the potential

φ̄ = V0x̄.

The physical space can be seen as the complex plane as-
sociated to the variable

ξ = x + i z .

Suppose that h(ζ) is an analytic function of ζ and let h1

and h2 be the real and imaginary parts of h(ζ),

h(ζ) = h1(x̄, z̄) + ih2(x̄, z̄) .

Then the function

G(ζ) = ζ + ih(ζ)

is also an analytic function of ζ and defines the transfor-
mation equations

x = x(x̄, z̄) = x̄− h2(x̄, z̄)
z = z(x̄, z̄) = z̄ + h1(x̄, z̄).

It is clear that the imagine of the real axis z̄ = 0 in
the ζ−plane under these transformation equations is the
curve that represents to the topography,

{(x, h(x)} = G[{x̄, z̄ = 0}];
that is, we have

x = x̄, z = h(x̄) .

Since the real axis z̄ = 0 is a stream line of the flow V̄ , the
curve z = h(x̄) is a stream line of the flow V that is the
image of V̄ under the transformation G. The components
of the flow Vtrue = utruei + wtruek are

utrue =
V0

J

∂ z(x̄, z̄)
∂ z̄

wtrue = −V0

J

∂ x(x̄, z̄)
∂ z̄

where

J = det
(

∂x
∂x̄

∂x
∂z̄

∂z
∂x̄

∂z
∂z̄

)

and, since G(ζ) is analytic, the Cauchy-Riemann equa-
tions hold,

∂x

∂x̄
=

∂z

∂z̄

∂x

∂z̄
= −∂z

∂x̄
.

Inherent problems of the map conforming do not permit
us the direct use of h(x). These problems are solved by
a simpler representation of h(x), namely, a natural spline
S(x) which is defined as follows. Let {xk}n

k=0 be a set of
points where the terrain height h(xk) is known, then : (i)
S(x) satisfies

S(xk) = h(xk) for k = 0, ..., n,

(ii) S(x) is a cubic polynomial on each interval [xk, xk+1],

S(x) = ak + bk(x− xk) + ck(x− xk)2

+ dk(x− xk)3 for x ∈ [xk, xk+1] ,

(iii) S(x) and its derivatives S′(x), S′′(x) are continuous
on [x0, xn] and S′′(x) satisfies

S′′(x0) = S′′(xn) = 0.

There is a unique natural spline associated to an ana-
lytic function h(x) on the interval [x0, xn]. Since S(x)
is a cubic polynomial on each interval [xk, xk+1], we can
compute the flow

utrue =
V0

J

∂z(k)

∂z̄
, wtrue = −V0

J

∂x(k)

∂z̄
for x ∈ [xk, xk+1],

where

x(k) = x̄− S2(x̄, z̄)
z(k) = z̄ + S1(x̄, z̄)

and
S(ζ = x̄ + iz̄) = S1(x̄, z̄) + i S2(x̄, z̄).

The continuity of S(x), S′(x) and S′′(x) guarantees
that the field Vtrue =utruei + wtruek, its first derivatives

∂utrue

∂x
,

∂utrue

∂z
,

∂wtrue

∂x
,

∂wtrue

∂z
,
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and ∇·Vtrue are continuous on the interval [x0, xn]. This
together with the fact that utrue, wtrue satisfy the conti-
nuity equation (54) and the boundary condition (55) on
each interval [xk, xk+1], implies that the field Vtrue satis-
fies the same equations on the whole interval [x0, xn]. In
the present work we use smoothing splines [12] to obtain
a velocity field with a simpler structure, since natural
splines yields fields with a very complex structure as is
shown in [12].

4 Numerical Calculation of λ

4.1 Variational formulation of the prob-
lem Lyλ = f

In this section we consider the variational formulation
(see, e.g., [13]) of the elliptic equation (31),

Lyλ = f in Dy (56)

with the mixed boundary conditions

λ = 0 on ∂Dya , (57)
Lyλ = q on ∂Dyb , (58)

where ∂Dy = ∂Dya ∪ ∂Dyb is the boundary of the region
Dy in the y space, and Ly, Ly, f , q are given by

Ly = −∇t√gM−1∇ f =
√

g∇ ·V0

Ly = n̂t
yM−1∇ q = −n̂t

yV
0 .

The solution λ is (at least) square integrable so that it
belongs to the space

L2(Dy) =

{
v :

∫

Dy

|v|2 dy < ∞
}

endowed with the inner product

〈v|u〉y ≡
∫

Dy

v u dy ,

and the norm ‖ v ‖y= 〈v|v〉1/2
y . The function λ also

belongs to the space of functions that satisfy the Dirichlet
boundary condition (57), a space that we denote by Va.
In what follows we consider that Va is complete with the
norm

‖v‖2y1 ≡ ‖v‖2y +
∑

k

∥∥∥∥
∂ v

∂yk

∥∥∥∥
2

y

.

In order to obtain the variational (or weak) formulation
of the boundary value problem (56-58) the equation (56)
is multiplied by a function v in Va and integrated, thus

〈Ly λ|v〉y = 〈f |v〉y holds for all v ∈ Va . (59)

The left side is rewritten by integrating by parts
∫

Dy

∂ w

∂yk
v dy =

∮

∂Dy

vwn̂yk dsy −
∫

Dy

w
∂ v

∂yk
dy ,

where n̂yk are the components of the vector normal, uni-
tary and exterior to the boundary ∂Dy. Making calcula-
tions we get

〈Lyλ|v〉y = −
∑

kl

〈
∂

∂yk

√
gM−1

kl

∂ λ

∂yl
|v

〉

y

= −
∮

∂Dy

√
gvLyλ dsy + ay(λ, v) ,

where
Ly =

∑

kl

n̂ykM−1
kl

∂

∂yl
,

In terms of the bilinear form

ay(u, v) ≡
∑

kl

〈√
gM−1

kl

∂ u

∂yl
,

∂ v

∂yk

〉

y

=
∫

Dy

(∇u)t M−1∇v
√

g dy

the eq. (59) has the form

ay(λ, v) = 〈f |v〉y +
∮

∂Dy

√
gvLyλ dsy for all v ∈ Va.

Since v satisfies v = 0 on ∂Dya and Lyλ = q the integral
on ∂Dy takes the form

∮

∂Dy

√
gvLyλ dsy =

∫

∂Dyb

√
gvq dsy .

Thus, we conclude that if the function λ exists it has to
satisfy the integral equation

ay(λ, v) = f̃y(v) for all v ∈ Va (60)

where we define

f̃y(v) ≡ 〈f |v〉y +
∫

∂Dyb

√
gvq dsy .

The equation (60) is called the weak form of the elliptic
problem (56-58).

The existence and uniqueness of λ is guaranteed by the
properties of ay(·, ·) y f̃y(·). It is easy to see that ay(·, ·)
defines an inner product in the space Va since ay(·, ·) is

1. symmetric, ay(u, v) = ay(v, u) ,
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2. positive defined , ay(u, u) ≥ 0, and ay(u, u) = 0 only
for u = 0,

3. bilineal, ay(u, c1v + c2w) = c1ay(u, v) + c2ay(u,w) .

In fact, using the symmetry of M−1 we get

(∇u)t M−1 ∇v = (∇v)t M−1 ∇u ,

and therefore

ay(u, v) =
∫

Dy

(∇u)t M−1 ∇v
√

g dy

=
∫

Dy

(∇v)t M−1 ∇u
√

g dy = ay(v, u) .

If the transformation of coordinates xi = xi(y) is well
behaved and the coefficients α2

i (y) are non zero on D̄ ≡
D ∪ ∂D, then M−1 (y) is positive definite at each point
in D̄, that is,

Ut M−1 U > 0 for U 6= 0 .

In particular for U = ∇u we have (∇u)t M−1 ∇u > 0
when u is not the constant function. Multiplying the
last inequality by

√
g and integrating by parts we conclude

that ay(·, ·) is positive definite on Va,

ay(u, u) > 0 for all u ∈ Va .

The linearity of ay(·, ·) is obvious. Finally, if f(y) and q(y)
are piecewise continuos, the functional f̃y(·) is bounded.
According to the Lax-Milgram theorem [13] these prop-
erties guarantee the existence and uniqueness of the func-
tion λ that satisfies the integral equation (60).

The symmetry of ay(·, ·) allows us to see λ as an ex-
tremal of the quadratic functional

Jy(v) =
1
2
ay(v, v)− f̃y(v) for v ∈ Va .

Let us remember that a function u is an extremal of the
functional Jy(v) if it satisfies

d

dε
Jy(u + εv)|ε=0 = 0 for all v ∈ Va .

According to this definition, let us show that the last
equation is exactly the integral equation (60) to prove
that λ is an extremal of Jy(∗). Using the symmetry and
linearity of ay(·, ·) and f̃y(·) we get

Jy(λ + εv) =
1
2
ay(λ + εv, λ + εv)− f̃y(λ + εv)

=
1
2
ay(λ, λ) + εay(λ, v)

+
1
2
ε2ay(v, v)− f̃y(λ)− εf̃y(v)

The derivative at ε = 0 yields

d

dε
Jy(λ + εv)|ε=0 = ay(λ, v)− f̃y(v) = 0 .

This is exactly the equation (60) and, therefore, a solu-
tion λ of (60) is an extremal of Jy(v). The Lax-Milgram
theorem guarantees that λ exits and is unique.

The above results suggest that the extremal λ can be
compute by minimizing the functional J(λ) instead of
solving the integral equation (60). This way has the
advantage of considering in an implicitly the Nuemann
boundary condition (58) so that we have to consider only
the Dirichlet boundary conditions (56). To prove this as-
sertion let us show that if λ is an extremal of J(λ), it
automatically satisfies the Neumann boundary condition
(58).

We have shown that if λ minimizes Jy(λ), then satisfies
(60). Let us consider (60) with v in C∞0 (Dy). Since v is
zero on the boundary ∂Dy, it belongs to the space Va so
that λ satisfies (60) for all v ∈ C∞0 (Dy),

ay(λ, v) = 〈f |v〉y +
∮

∂Dyb

√
g v q dsy

but v = 0 on ∂Dy and hence the last equation becomes

ay(λ, v) = 〈f |v〉y for v ∈ C∞0 (Dy) .

On the other hand, if λ has continuous second derivatives
we can integrate by parts the left side to get

ay(λ, v) = 〈Lyλ|v〉y for v ∈ C∞0 (Dy) .

Thus we get

〈Lyλ− f |v〉y = 0 for v ∈ C∞0 (Dy) ,

and, therefore, λ satisfies the elliptic equation

Lyλ = f in Dy . (61)

If we now consider (60) in the form

〈Lyλ|v〉y +
∫

∂Dyb

√
gvLyλ dsy =

〈f |v〉y +
∫

∂Dyb

√
gvq dsy

and we use that fact that λ satisfies (4.6), the terms
〈Lλ|v〉y and 〈f |v〉y disappear so that λ satisfies

∫

∂Dyb

√
gv Lyλ dsy =

∫

∂Dyb

√
gv q dsy for all v ∈ Va
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and since v 6= 0, in general, it follows that λ has to satisfy

Lyλ = q on ∂Dyb .

In other words, if λ minimizes Jy(v), it satisfies automat-
ically the Neumann Boundary condition (58). By this
reason, such a condition is called natural boundary condi-
tion.

4.2 The finite element method

We choose the finite element method to solve the elliptic
problem (34-36) because we want to work in cartesian co-
ordinates. We have the following spaces of test functions

W = H1(D)
W0 = {φ ∈ H1(D) : φ = 0 on ∂Da}.

The integral equation (60) with f = ∇ ·V0 and q =
−n̂t

yV
0 has the simple form

∫

D

(S−1∇λ) · ∇φ dx = −
∫

D

V0 · ∇φ for all φ ∈ W0 .

(62)
Let h be a discretization step and denote by Jh a finite
element triangulation of D̄. If P1 is the space of polyno-
mials in two variables of degree ≤ 1, then we approximate
the function spaces W and W0 by the finite dimensional
spaces

Wh =
{
φh ∈ C0(D) : φh|T ∈ P1, for T ∈ Jh

}
,

W0h = {φh ∈ Wh : φh = 0 on ∂Da},

respectively. The finite element formulation of the prob-
lem (62) is: Find λh ∈ W0h such that
∫

D

(S−1∇λh) ·∇φhdx = −
∫

D

V0
h ·∇φh for all φh ∈ W0h .

(63)
In this last equation V0

h is the interpolant function on
Wh ×Wh that approximates the initial vector field V0.

Remark. It is well known [13] that the piecewise linear
approximation λh is second order accurate.

Next, we will include a more detailed description of
the finite element approximation (63). Let N be the to-
tal number of vertices in the triangulation Jh of D, and
suppose a numeration of those vertices has already been
introduced. Thus, a basis of the finite dimensional space
Wh is the collection of ”hat functions” associated to those
vertices:

βh = {ϕp}1≤p≤N

where ϕp is a piece wise linear function such that

ϕp (Q) = δpQ =
{

1 if p = Q
0 if p 6= Q

for Q ∈ {1, ...N} .

The support of these functions is the union of triangles
in Th that contain P as a vertex. In the same way, the
basis of the finite dimensional space W0h is

β0h = {ϕp ∈ βh : ϕp(Q) = 0 if Q is a vertex on ∂Da}
= {ϕp ∈ βh : p = 1, 2, . . . , N0}

where N0 is the number of vertices that do not belong to
∂Da. Using these basis functions the solution λh can be
expressed as

λh(x) =
N0∑

i=1

λ(xi)ϕi(x)

where {xi}N0
i=1 is the collection of vertices in the triangu-

lation that do not belong to ∂Da. If we denote λ(xi) by
λi the problem (63) is equivalent to the following linear
algebraic problem: Find {λi}N0

i=1 in RN0 such that

N0∑

i=1

aijλi = fi , i = 1, . . . , N0 , (64)

where
aij =

∫

D

(
S−1∇ψj

) · ∇ψidx

and
fi = −

∫

D

V0
h · ∇ψidx .

The matrix aij keeps the properties of S−1, namely, aij is
symmetric and positive definite. The algebraic problem
(64) can be solved by the conjugate gradient algorithm,
in this work we use a conjugate gradient method adapted
for sparse linear systems [15].

Once λh is computed, we finally compute an approxi-
mation Vh of the adjusted wind field V by

Vh = V0
h + S−1∇λh .

However, since λh is a piecewise linear function, ∇λh is
constant on each triangle and is not defined on the edges
of the triangulation. Thus we should compute Vh in the
weak sense. Let Uh = Vh −V0

h, then Uh can be com-
puted by solving the following problem: Find Uh such
that

∫

D

Uh ·w dx =
∫

D

(
S−1∇λh

) ·w dx for all w
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and Vh is given by Vh = Uh +V0
h. An easier alternative

is to compute Uh = (u1, u3) pointwise: For k = 1, 3 find
uk ∈ Wh such that

∫

D

ukφi dx =
∫

D

1
α2

i

∂λ

∂xk
φi dx for all i = 1, 2, . . . , N .

The integral in the right hand side can be computed ex-
actly by the trapezoidal rule since ∂λ/∂xk is constant on
each triangle T ∈ Jh. If the left hand side is computed
with the same rule, we get a diagonal algebraic linear
system whose solution is immediate.

5 Numerical examples

Let us begin with the flow in the domain D = [0, 10] ×
[h(x), 10] km2. The true field Vtrue = utruei + wtruek is
calculated with the datum utrue = 10 ms−1 and wtrue = 0
at the point (x = 0, z = 10 km), which is used to define
the magnitude V0 of the flow on the abstract complex
plane ζ (section 3). The initial field V0 is u0 = utrue and
w0 = 0.

Figure 1 shows the flow with an analytic topography
h(x) = h0 + h1 cosωx. The true field Vtrue and the ad-
justed field V denoted with red and blue arrows, respec-
tively, and the latter is computed with α1 = α3 = 1. Fig-
ure 2 shows the details of the fig. 1 and we see that there
is a significant difference between Vtrue and V. Figure
3 shows Vtrue and the adjusted field V calculated with
ε = 1/α2

3 = 10−2, we observe that V(ε = 10−2) field is
worse that the field V(ε = 1) of fig. 2. In contrast, figure
4 shows that the adjusted field V(ε = 10+2) has the main
properties of Vtrue and Fig. 5 shows that V(ε = 10+6) is
almost equal to the true field.

Figure 6 shows the flows Vtrue and V(ε = 10+6) on
a topography h(x) defined by smoothing real terrain el-
evation data from GTOPO30 [14]. Details of the same
figure are shown in figure 7. Once again we observe that
the adjusted field is an indeed correct approximation of
the true field.

These results show that MCMs’s can be used to esti-
mate the true field if the initial field V0 is a good ap-
proximation of the horizontal true field. The problem is
: how accurate should the initial field be to obtain a re-
liable adjusted field?, this problem will be studied in a
forthcoming work.
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Figure 1: True and adjusted fields, Vtrue, V(ε = 1)
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Figure 2: Details of the fields from fig. 1
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Figure 3: True and adjusted fields, Vtrue, V(ε = 10−2)
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Figure 4: True and adjusted fields, Vtrue, V(ε = 10+2)
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Figure 5: True and adjusted fields, Vtrue, V(ε = 10+6)
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Figure 6: True and adjusted fields, Vtrue, V(ε = 10+6)
on real terrain smoothed
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Figure 7: Details of the fields from fig. 6
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