
 

DECORRELATION IN RANGE OF OVERSAMPLED WEATHER RADAR SIGNALS 
USING FIR FILTER 

Igor R. Ivić(1)(2), Allen Zahrai(2), and Sebastián M. Torres(1)(2) 
(1) Cooperative Institute for Mesoscale Meteorological Studies (CIMMS), The University of Oklahoma 

(2) NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma 

1. INTRODUCTION1 

Due to rapid advances in digital technology and the 
demands of the telephone industry, digital receivers 
suitable for use in weather radars have become readily 
available. These receivers have the capability to 
produce samples of weather signals at rates that are 
several times higher than the reciprocal of the 
transmitted pulse width τ. It is natural to assume that, 
given the sampling rate of L/τ (where L is a positive 
integer) one could improve the estimates’ variance by 
averaging L sample-time autocorrelations (at lags 0 and 
1) in range. Unfortunately, simple averaging does not 
yield the maximum variance reduction because samples 
are correlated in range. Torres and Zrnić (2003) have 
proposed an approach that uses the prior knowledge of 
autocorrelation along range to decorrelate samples. The 
scheme operates on blocks (i.e., vectors) of L samples 
in range whereby each vector is multiplied by an L×L 
matrix producing a new vector of uncorrelated samples. 
Thus, each spectral moment is estimated from an L×M 
block (M is the number of samples along sample-time) 
of samples, where samples along range-time are not 
correlated. Consequently, range-time averaging of L 
autocovariances results in an optimal variance reduction 
given by the oversampling factor. In this paper, an 
alternative realization of the same concept is presented. 
Namely, the use of FIR (Finite Impulse Response) filters 
to obtain decorrelated samples in range is investigated. 
The study has been motivated by the fact that many 
digital receiver processors feature built-in FIR filters with 
programmable coefficients (e.g., GC4016 digital 
receiver chip from Texas Instruments). 

2. THEORY 

Let us assume that the transmitted pulse has an 
arbitrary envelope shape p(l) of length K, and the digital 
receiver outputs samples at a rate L/τ (for the sake of 
briefness we follow the notation of Torres and Zrnić  
2003). Then, the induced weighting to each contiguous 
elemental shell (or “slab”) in the complex sample V(l,n) 
of the composite echo (located at position l in range, 
and n in sample-time) is given as (Torres and Zrnić 
2003): 
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where s(l,n) is the contribution of the elemental shell,  ∗ 
denotes convolution and h(l) is the receiver filter impulse 
response. For simplicity, we consider the system where 
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the bandwidth of the radar receiver up to the point of 
Analog-to-Digital (A/D) conversion is greater than or 
equal to L/τ  and the magnitude of the frequency 
response is flat for frequencies [−L/τ, L/τ]. Then the 
impulse response of the receiver filter h(l) is dependent 
only on the coefficients of the digital filter applied to the 
complex samples. Let us re-write equation (1) as: 
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It is obvious that if h(i)∗p(i) = δ(i−K+1) (where δ(i) = 1 for 
i = 0 and zero otherwise) we obtain V(l,n) = s(l,n). The 
FIR filter coefficients calculation can now be formulated 
as the least squares inverse filtering problem (solution 
of which is readily available in the signal processing 
literature). Following Hayes (1996) the coefficients can 
be obtained as a solution of the Wiener-Hopf equations 
given below in matrix form as: 
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where CV
(R) is the Toeplitz-Hermitian correlation matrix 

before the receiver filter. Elements of this matrix can be 
found as RV

(R)(l) = p(l)∗p*(−l) ((2) in Torres and Zrnić  
2003). Vector P = [p*(K−1) p*(K−2)… p*(0)]T, and H = 
[h(0) h(1)…h(K−1)] contains the filter coefficients. The 
approximation error is given by: 
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3. THE NOISE ENHANCEMENT FACTOR 

 Additive noise is present in every system so we can 
write V(l,n) = VS(l,n) + VN(l,n) where the subscripts S 
and N stand for signal and noise, respectively. Then, if 
we denote the transformed signal with X(l,n) = XS(l,n) + 
XN(l,n) we can calculate the resulting autocorrelation of 
XN(l,n) as: 
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where N is the noise power. Consequently, the noise 
becomes colored, and the noise component of the total 
power of the transformed signal is: 
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Hence, the noise enhancement factor (NEF) of the 
deconvolving FIR filter is: 
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4. THE RANGE-WEIGHTING FUNCTION 

As defined in Doviak and Zrnić (1993), the range-
weighting function weights the reflectivity field in range. 
As previously shown, the deconvolving FIR filter 
attempts to transform samples V(l,n) into X(l,n) so that 
XS(l,n) ≈ s(l,n). Henceforth, it makes sense to estimate 
the power using the formula: 
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where wF(l) is the weight assigned to each elemental 
shell echo s(l,n). Following a similar derivation as in 
Doviak and Zrnić (1996) that leads to (4.22), but in the 
discrete domain, results in the expression for the range-
weighting function: 
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where n ranges from −K+1 to K+L−2. As an example, let 
us consider the pulse shape obtained as a return from a 
tower by the KOUN research WSR-88D radar, located 
in Norman, OK. The return signal was oversampled by a 
factor of 5 where the spacing between adjacent samples 
was 50 m. The pulse envelope and its phase profile are 
given in Fig. 1. 
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Figure 1. Amplitude and phase of the transmitted pulse. 

The 3 dB pulse width is 1.57 μs (roughly corresponding 
to 250 m), but as can be seen from Fig. 1 (a) the pulse 
tails span more than just five samples. To take this into 
account as well as to obtain a filter that better 
approximates the desired impulse response, the FIR 
filter length was chosen to be K = 7. Then by setting 
wF(l) = 1/L and calculating |W(n)|2 for an L of 1 and 5, 
we get the range-weighting functions shown in Fig. 2. 
Note that because the phase profile of the transmitted 
pulse (Fig. 1 (b)) is not flat the coefficients of the FIR 
filter are complex. 
 It is apparent from Fig. 2 that the support of the 
range-weighting functions in both cases is fairly wide (it 
spans 2K+L−2 elemental shells). Particularly, given the 
range gate length of 5 samples (the case shown in Fig. 
2 (b)), where the desired range resolution is 250 m, one 
can easily observe that the spectral moment estimate 
for the range gate encompassing elemental shells 0 to 4 
will have contributions from two surrounding range 
gates. These contributions, however, will be attenuated 

by at least 10 dB. Nevertheless, this presents a serious 
problem in cases when strong signals are present in 
these range gates because they would contaminate the 
signal of interest. 
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Figure 2. Range-weighting functions using an 

oversampling factor of 5, and a filter of length 7 with (a) 
no sample averaging, and (b) 5-sample averaging with 

uniform weights. 

5. PERFORMANCE ANALYSIS 

 To assess the performance of the deconvolution 
FIR filter, the variance reduction of the autocovariance 
processor (Doviak and Zrnić 1996) for three estimators 
is compared. These are: 

a. Oversampling-and-average-based (OAB). This 
estimator operates on oversampled data and 
each estimate is obtained though averaging L 
correlated autocovariances in range. 

b. Whitening-transformation-based (WTB) (Torres 
and Zrnić 2003). This estimator operates on 
oversampled data to which the whitening 
transformation has been applied. 

c. Deconvolving-filter-based (DFB). This estimator 
operates on oversampled data that has been 
transformed using a deconvolving FIR filter. 

Power estimates are computed using (8) where, for the 
OAB and WTB, weights wF(l) are set to be 1/L (the 
estimator then reduces to the same one given in Torres 
and Zrnić 2003). To estimate the velocity and spectrum 
width, the autocorrelation in sample-time at lag 1 is 
calculated as: 
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where the weights wF(l) are the same as the ones used 
for the power estimator. The Doppler velocity is 
calculated as (Doviak and Zrnić 1993): 
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where υa is the unambiguous velocity. The spectrum 
width is obtained as follows (Doviak and Zrnić 1993): 
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To find the weights for the DFB estimator, the range-
weighting function in the case of OAB is calculated from 
(9) by setting wF(l) to 1/L and h(k) = δ(k) (shown in Fig. 
3). These weights are then used as wF(l) values for the 
DFB. The resulting range-weighting functions are both 
shown in Fig. 3 for comparison. To achieve the shape of 
the range-weighting function in Fig. 3, the DFB 
estimator averages twice as many autocovariances in 
range as opposed to OAB (or WTB). Consequently, the 
support of the DFB range-weighting function is twice as 
wide. As previously stated, this makes the DFB 
estimator prone to contamination from strong signals 
located outside the region covered by the OAB range-
weighting function. 
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Figure 3. Range-weighting functions for OAB and DFB 

estimators. 

 In order to preserve the power, the FIR filter 
coefficients need to be scaled so that: 
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If the weights wF(l) are scaled so that their sum is one, 
one gets: 
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 Three estimators are compared on simulated data 
for values of signal-to-noise ratio (SNR) ranging from 0 
to 25 dB. Oversampled data was simulated using the 
pulse shape shown in Fig. 1. The results are given in 
Fig. 4. Observing the plots, it is apparent that both WTB 
and DFB estimators, as predicted, yield much smaller 
variances than OAB for all three Doppler spectral 
moments. Unfortunately, due to the noise enhancement 
factor present in both WTB and DFB estimator, this 
improvement disappears as SNR decreases. 
Furthermore, the curves show that the DFB estimator 
achieves somewhat larger variance reduction than 
WTB. This can be easily explained by the fact that the 
DFB estimator uses a block of (2L+K−1)×M samples to 
calculate each estimate as opposed L×M samples in the 
case of WTB estimator. Consequently, it becomes 

obvious that the DFB estimator does not achieve the 
maximum variance reduction given the number of 
samples it uses for estimation (i.e., it does not achieve 
the Cramer-Rao lower bound of Bamler (1991); thus, it 
is not optimal). This, however, is expected because the 
DFB estimator does not maximize the use of all the 
information from elemental shells (because it attempts 
to weight them differently) encompassed by the support 
of its range-weighting function, while the whitening 
transformation does. 
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Figure 4. Normalized standard error of (a) signal power, 

(b) mean Doppler velocity, and (c) Doppler spectrum 
width vs the SNR for the pulse profile shown in Fig. 1. 
Curves were calculated from simulated data based on 

2000 realizations for each SNR value. 

6. TIME SERIES IMPLEMENTATION 

For validation of the results obtained through 
simulations, all three estimators were applied to time 
series. Data used in the experiment was collected with 
the Echotek ECDR-GC814 digital receiver that had 
been incorporated into the RRDA (Research Radar 
Data Acquisition) subsystem (Ivić, Zahrai, and Zrnić 
2003). The subsystem is capable of actively controlling 
the WSR-88D radar, producing Doppler spectral 
moments, and recording them as well as time series 
data on an array of hard disks (RAID). The system is 
capable of collecting data oversampled by a factor of 5 
or 10. For this experiment, the weather signal was 
sampled at a rate five times greater than the inverse of 
the pulse width while the antenna was kept in a 
stationary position. To verify that all three estimators are 
unbiased with respect to each other, autocovariances 
averaged over 100 radials were used to estimate three 
Doppler spectral moments which are shown in Figs. 5 



 

(a), 6 (a) and 7 (a). These were also used to estimate 
statistics on each of the three moments. The results are 
shown in Figs. 5 (b), 6 (b), and 7 (b). The total pool of 
data used for statistics estimation was 800 radials. 
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Figure 5. (a) Estimated SNR and (b) experimental 

normalized standard deviation of power estimates for 
L = 5. 
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Figure 6. (a) Estimated normalized velocity and (b) 

experimental normalized standard deviation of velocity 
estimates for L = 5. 
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Figure 7. (a) Estimated normalized spectrum width and 

(b) experimental normalized standard deviation of 
spectrum width estimates for L = 5. 

7. SUMMARY 

Due to their wide use, many digital receiver circuits 
provide hardware based FIR filters with programmable 
coefficients. This makes FIR filters suitable for efficient 
hardware implementation. It is shown that by summing 
appropriately weighted sample-time autocovariance 
averages, it is possible to influence the shape of the 
estimators’ range-weighting function. Furthermore, the 
possibility of using deconvolving FIR filters as an 
alternative to matrix-based whitening transformation 
was investigated. It was shown that an estimator using a 
deconvolving FIR filter that mimics the range-weighting 
function of the OAB estimator can be devised. However, 
the support of the range-weighting function of such an 
estimator is twice as wide as that of the OAB (or WTB) 
estimator. This has the potential of severely degrading 
the resolution in the case of strong reflectivity gradients. 
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