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1. INTRODUCTION

Due to rapid advances in digital technology and the
demands of the telephone industry, digital receivers
suitable for use in weather radars have become readily
available. These receivers have the capability to
produce samples of weather signals at rates that are
several times higher than the reciprocal of the
transmitted pulse width z. It is natural to assume that,
given the sampling rate of L/z (where L is a positive
integer) one could improve the estimates’ variance by
averaging L sample-time autocorrelations (at lags 0 and
1) in range. Unfortunately, simple averaging does not
yield the maximum variance reduction because samples
are correlated in range. Torres and Zri¢ (2003) have
proposed an approach that uses the prior knowledge of
autocorrelation along range to decorrelate samples. The
scheme operates on blocks (i.e., vectors) of L samples
in range whereby each vector is multiplied by an LxL
matrix producing a new vector of uncorrelated samples.
Thus, each spectral moment is estimated from an LxM
block (M is the number of samples along sample-time)
of samples, where samples along range-time are not
correlated. Consequently, range-time averaging of L
autocovariances results in an optimal variance reduction
given by the oversampling factor. In this paper, an
alternative realization of the same concept is presented.
Namely, the use of FIR (Finite Impulse Response) filters
to obtain decorrelated samples in range is investigated.
The study has been motivated by the fact that many
digital receiver processors feature built-in FIR filters with
programmable coefficients (e.g., GC4016 digital
receiver chip from Texas Instruments).

2. THEORY

Let us assume that the transmitted pulse has an
arbitrary envelope shape p(l) of length K, and the digital
receiver outputs samples at a rate L/z (for the sake of
briefness we follow the notation of Torres and Zrni¢
2003). Then, the induced weighting to each contiguous
elemental shell (or “slab”) in the complex sample V(l,n)
of the composite echo (located at position | in range,
and n in sample-time) is given as (Torres and Zrni¢
2003):

K-1
V(I,n):{Zs(l+i,n)p(K—1—i)}h(I), )

i=0
where s(l,n) is the contribution of the elemental shell, *

denotes convolution and h(l) is the receiver filter impulse
response. For simplicity, we consider the system where
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the bandwidth of the radar receiver up to the point of
Analog-to-Digital (A/D) conversion is greater than or
equal to L/z and the magnitude of the frequency
response is flat for frequencies [-L/z, L/z. Then the
impulse response of the receiver filter h(l) is dependent
only on the coefficients of the digital filter applied to the
complex samples. Let us re-write equation (1) as:

V(|,n):§s(K —1+1=i,n)[ h(i)*p(i)]. (2)

It is obvious that if h(i) #p(i) = Ai—-K+1) (where i) = 1 for
i = 0 and zero otherwise) we obtain V(I,n) = s(l,n). The
FIR filter coefficients calculation can now be formulated
as the least squares inverse filtering problem (solution
of which is readily available in the signal processing
literature). Following Hayes (1996) the coefficients can
be obtained as a solution of the Wiener-Hopf equations
given below in matrix form as:

[cPTH=P, 3)

where C\® is the Toeplitz-Hermitian correlation matrix
before the receiver filter. Elements of this matrix can be
found as RV(R)(I) = p(I)*p*(—I) ((2) in Torres and Zrnié
2003). Vector P = [p'(K-1) p'(K-2)... p(0)]", and H =
[h(0) h(1)...h(K-1)] contains the filter coefficients. The
approximation error is given by:

Err:1—§h(|)p(K—1—l). )

3. THE NOISE ENHANCEMENT FACTOR

Additive noise is present in every system so we can
write V(I,n) = Vs(l,n) + Vn(l,n) where the subscripts S
and N stand for signal and noise, respectively. Then, if
we denote the transformed signal with X(I,n) = Xs(I,n) +
Xn(l,n) we can calculate the resulting autocorrelation of
Xn(l,n) as:

R‘;:’(m)= Nih(k)h*(k—m), (5)

k=m

where N is the noise power. Consequently, the noise
becomes colored, and the noise component of the total
power of the transformed signal is:

X, (1) = NZ|h(k)|2. 6)

Hence, the noise enhancement factor (NEF) of the
deconvolving FIR filter is:

NEF = Ki|h(k)|2 . @)



4. THE RANGE-WEIGHTING FUNCTION

As defined in Doviak and Zrni¢ (1993), the range-
weighting function weights the reflectivity field in range.
As previously shown, the deconvolving FIR filter
attempts to transform samples V(l,n) into X(I,n) so that
Xs(l,n) = s(I,n). Henceforth, it makes sense to estimate
the power using the formula:

~ L1 M-1

Sx =ZWF(|)[12|X(|,n)|2—N -NEF), (8)
1=0 M m=0

where we(l) is the weight assigned to each elemental

shell echo s(I,n). Following a similar derivation as in

Doviak and Zrni¢ (1996) that leads to (4.22), but in the

discrete domain, results in the expression for the range-

weighting function:

2

w (n)f :pr(l) Zh(k)p(K “1-n+l-k) , (9)

where n ranges from K+1 to K+L-2. As an example, let
us consider the pulse shape obtained as a return from a
tower by the KOUN research WSR-88D radar, located
in Norman, OK. The return signal was oversampled by a
factor of 5 where the spacing between adjacent samples
was 50 m. The pulse envelope and its phase profile are
given in Fig. 1.
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Figure 1. Amplitude and phase of the transmitted pulse.

The 3 dB pulse width is 1.57 us (roughly corresponding
to 250 m), but as can be seen from Fig. 1 (a) the pulse
tails span more than just five samples. To take this into
account as well as to obtain a filter that better
approximates the desired impulse response, the FIR
filter length was chosen to be K = 7. Then by setting
we(l) = 1/L and calculating |W(n)| for an L of 1 and 5,
we get the range-weighting functions shown in Fig. 2.
Note that because the phase profile of the transmitted
pulse (Fig. 1 (b)) is not flat the coefficients of the FIR
filter are complex.

It is apparent from Fig. 2 that the support of the
range-weighting functions in both cases is fairly wide (it
spans 2K+L-2 elemental shells). Particularly, given the
range gate length of 5 samples (the case shown in Fig.
2 (b)), where the desired range resolution is 250 m, one
can easily observe that the spectral moment estimate
for the range gate encompassing elemental shells 0 to 4
will have contributions from two surrounding range
gates. These contributions, however, will be attenuated

by at least 10 dB. Nevertheless, this presents a serious
problem in cases when strong signals are present in
these range gates because they would contaminate the
signal of interest.
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Figure 2. Range-weighting functions using an
oversampling factor of 5, and a filter of length 7 with (a)
no sample averaging, and (b) 5-sample averaging with

uniform weights.

5. PERFORMANCE ANALYSIS

To assess the performance of the deconvolution
FIR filter, the variance reduction of the autocovariance
processor (Doviak and Zrni¢ 1996) for three estimators
is compared. These are:

a. Oversampling-and-average-based (OAB). This
estimator operates on oversampled data and
each estimate is obtained though averaging L
correlated autocovariances in range.

b. Whitening-transformation-based (WTB) (Torres
and Zrni¢ 2003). This estimator operates on
oversampled data to which the whitening
transformation has been applied.

c. Deconvolving-filter-based (DFB). This estimator
operates on oversampled data that has been
transformed using a deconvolving FIR filter.

Power estimates are computed using (8) where, for the
OAB and WTB, weights wg(l) are set to be 1/L (the
estimator then reduces to the same one given in Torres
and Zrni¢ 2003). To estimate the velocity and spectrum
width, the autocorrelation in sample-time at lag 1 is
calculated as:

A(T) L-1

RN

where the weights wg(l) are the same as the ones used
for the power estimator. The Doppler velocity is
calculated as (Doviak and Zrni¢ 1993):

Z X*(1,m)X (I, m +1), (10)

;: ——arg[R(xT)m)J (11)

where v, is the unambiguous velocity. The spectrum
width is obtained as follows (Doviak and Zrni¢ 1993):

o, =2 V2| {T] sgn{ln[A(ST) ” (12)
T | RY () Rx (1)




To find the weights for the DFB estimator, the range-
weighting function in the case of OAB is calculated from
(9) by setting we(l) to 1/L and h(k) = &k) (shown in Fig.
3). These weights are then used as wg(l) values for the
DFB. The resulting range-weighting functions are both
shown in Fig. 3 for comparison. To achieve the shape of
the range-weighting function in Fig. 3, the DFB
estimator averages twice as many autocovariances in
range as opposed to OAB (or WTB). Consequently, the
support of the DFB range-weighting function is twice as
wide. As previously stated, this makes the DFB
estimator prone to contamination from strong signals
located outside the region covered by the OAB range-
weighting function.
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Figure 3. Range-weighting functions for OAB and DFB
estimators.

In order to preserve the power, the FIR filter

coefficients need to be scaled so that:

3 (B FRGE

If the weights wg(l) are scaled so that their sum is one,
one gets:

L1

2 we(l)

=0

h(k)
Z scale scale  (Khn

(14)

Three estimators are compared on simulated data
for values of signal-to-noise ratio (SNR) ranging from 0
to 25 dB. Oversampled data was simulated using the
pulse shape shown in Fig. 1. The results are given in
Fig. 4. Observing the plots, it is apparent that both WTB
and DFB estimators, as predicted, yield much smaller
variances than OAB for all three Doppler spectral
moments. Unfortunately, due to the noise enhancement
factor present in both WTB and DFB estimator, this
improvement disappears as SNR decreases.
Furthermore, the curves show that the DFB estimator
achieves somewhat larger variance reduction than
WTB. This can be easily explained by the fact that the
DFB estimator uses a block of (2L+K-1)xM samples to
calculate each estimate as opposed LxM samples in the
case of WTB estimator. Consequently, it becomes

obvious that the DFB estimator does not achieve the
maximum variance reduction given the number of
samples it uses for estimation (i.e., it does not achieve
the Cramer-Rao lower bound of Bamler (1991); thus, it
is not optimal). This, however, is expected because the
DFB estimator does not maximize the use of all the
information from elemental shells (because it attempts
to weight them differently) encompassed by the support
of its range-weighting function, while the whitening
transformation does.
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Figure 4. Normalized standard error of (a) signal power,
(b) mean Doppler velocity, and (c) Doppler spectrum
width vs the SNR for the pulse profile shown in Fig. 1.
Curves were calculated from simulated data based on
2000 realizations for each SNR value.

6. TIME SERIES IMPLEMENTATION

For validation of the results obtained through
simulations, all three estimators were applied to time
series. Data used in the experiment was collected with
the Echotek ECDR-GC814 digital receiver that had
been incorporated into the RRDA (Research Radar
Data Acquisition) subsystem (lvi¢, Zahrai, and Zrni¢
2003). The subsystem is capable of actively controlling
the WSR-88D radar, producing Doppler spectral
moments, and recording them as well as time series
data on an array of hard disks (RAID). The system is
capable of collecting data oversampled by a factor of 5
or 10. For this experiment, the weather signal was
sampled at a rate five times greater than the inverse of
the pulse width while the antenna was kept in a
stationary position. To verify that all three estimators are
unbiased with respect to each other, autocovariances
averaged over 100 radials were used to estimate three
Doppler spectral moments which are shown in Figs. 5



(a), 6 (a) and 7 (a). These were also used to estimate
statistics on each of the three moments. The results are
shown in Figs. 5 (b), 6 (b), and 7 (b). The total pool of
data used for statistics estimation was 800 radials.
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Figure 5. (a) Estimated SNR and (b) experimental
normalized standard deviation of power estimates for
L=5.
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Figure 6. (a) Estimated normalized velocity and (b)
experimental normalized standard deviation of velocity

estimates for L = 5.
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Figure 7. (a) Estimated normalized spectrum width and
(b) experimental normalized standard deviation of
spectrum width estimates for L = 5.

7. SUMMARY

Due to their wide use, many digital receiver circuits
provide hardware based FIR filters with programmable
coefficients. This makes FIR filters suitable for efficient
hardware implementation. It is shown that by summing
appropriately weighted sample-time autocovariance
averages, it is possible to influence the shape of the
estimators’ range-weighting function. Furthermore, the
possibility of using deconvolving FIR filters as an
alternative to matrix-based whitening transformation
was investigated. It was shown that an estimator using a
deconvolving FIR filter that mimics the range-weighting
function of the OAB estimator can be devised. However,
the support of the range-weighting function of such an
estimator is twice as wide as that of the OAB (or WTB)
estimator. This has the potential of severely degrading
the resolution in the case of strong reflectivity gradients.
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