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1. INTRODUCTION

The Weather Surveillance Radar-1988 Doppler
(WSR-88D) has been developed and deployed to
improve the detection and forecast of tornadoes. The
current Tornado Detection Algorithm (TDA) (Mitchell
et al. 1998) searches for strong azimuthal shears in
the velocity field. However, when a tornado is located
at far range or the size of the tornado is small
compared to the radar resolution volume, the shear
signature will be smoothed and difficult to identify.
Figure 1 shows the smoothing effect on shear
signature as a function of the ratio of the cross-beam
dimension (beam width) to the radius of tornado’s
maximum wind.

The Doppler spectrum from a tornado vortex is
different from typical Gaussian-like spectrum
produced by most other weather phenomena. A broad
and flattened tornado spectral signature was shown
using simulation, and bimodal spectra were observed
by pulse Doppler radar (Zrnic and Doviak, 1975). In
general, a large spectral width and small fluctuation
could be described as tornado’s spectral signatures.

However, a similar spectral signature can be
produced by a uniform wind field and reflectivity with a
shape that is the reciprocal of the antenna beam
pattern. Moreover, the spectrum width depends on the
size of tornado vortex. Therefore it is difficult to

Corresponding author address: Yadong Wang, 202 W.
Boyd, School of Electrical and Computer Engineering,
University of Oklahoma, Norman, Oklahoma 73019
Email: wyd@ou.edu

determine a threshold for the spectral width or the
strength of the shear to identify a tornado. In this work,
a neuro-fuzzy method is developed for the first time
based on spectral width, the flatness of a spectrum,
and other parameters to improve tornado detection.

Rader Beam/Rt = inf |
—Radar Beam/Rt = 1
—Radar Beam/Rt =2

Radar Beam/Rt =4 |
—Radar Beam/Rt = 8

Normalized mean Doppler Velocity

Normalized Azimuthal Distance from Vortex Center

Fig. 1 Smoothing effect on azimuthal shear. The horizontal
axis is the azimuth distance from the vortex center
normalized by the radius of maximum wind of the tornado
(Rt). The vertical axis is the Doppler mean radial velocity
normalized by the maximum tangential velocity. Results from
different ratio of transverse dimension of the radar beam to
Rt are coded in color.

2. FUZZY LOGIC METHOD

A fuzzy logic approach has inherent advantages
over other methods such as decision trees and neural
networks. For a decision tree, a threshold is
necessary. But there exists overlap region between
the tornado case and no-tornado case in each
parameter set, so it is difficult to accurately determine
the threshold. In the case of neural network, a large



amount of data sets are needed to train the algorithm.
On the other hand, the fuzzy logic method has the
ability to describe the system of interest and to deal
with the data set inside the overlap region using
simple rules (Liu and Chandrasekar 1999).

3.1 Parameters Used In Fuzzy Logic

In the neuro-fuzzy method developed in this work,
five parameters will be used: spectrum width (O, ),

reflectivity (Z), signal to noise ratio (SNR), azimuthal
velocity difference (AV), and the standard deviation
of the Doppler spectrum (STD).

The spectrum width, reflectivity, and signal to
noise ratio can be estimated directly using the spectral
method, where both Z and SNR are in dB (Doviak and
Zrnic, 1993). The velocity difference is defined as the
absolute of velocity difference between two adjacent
gates in the azimuthal direction.

The standard deviation of a spectrum is introduced
to quantify the flatness of a spectrum. After the
Doppler spectrum is calculated using the Periodogram
method, random fluctuations will occur inside it
unavoidably. These random fluctuations normally
have relatively low values compared to the spectrum.
To avoid this effect, the spectrum is first sorted, and
then only the first 70% which have higher values will
be used for calculation. This 70% is from testing that
suggests it provides the most accurate standard
deviation.

3.2 Fuzzy logic in tornado detection

Basically, there are four parts that compose a fuzzy
logic system: fuzzification, rule inference, aggregation,
and defuzzification (Liu and Chandrasekar 1999).
Figure 2 depicts these elements in relationship to our
work. In fuzzification, the precise measurements in the
real-world domain defined as crisp inputs will be
converted to membership degree in the fuzzy domain.
The degree of membership is a value between 0 and
1. The function used in this procedure is termed a
membership function. In the tornado detection
algorithm, two membership functions of tornado and
non-tornado cases are defined for each parameter
through a statistical analysis and knowledge learned
from the data.

In the rule interference step, the relationship
between a fuzzy input and output will be established in
the form of IF-THEN. In the IF side, several
antecedents will be given and in the THEN side one
consequent will be obtained. For example, when a
tornado exists, all of these five parameters must
satisfy certain conditions at the same time. In regions
close to the tornado center, the spectrum width and
the azimuthal velocity difference should reach a large
value, the standard deviation should be small, and the

reflectivity and the signal to noise ratio should be
reasonable high. So the correlation product is used as
the rule inference to combine all of these parameters
together. There are two groups of membership
functions. One is for the TRUE case in which a
tornado vortex is detected. The other one is for the
FALSE case where no tornado is detected. The
membership function MBF1-C till MBF5-C are used
for the TRUE case and MBF1-D to MBF5-D are used
for the FALSE case. The final confirmation degree Dc
and Dd is the multiplication of five membership
degrees for the case of TRUE and FALSE,
respectively.
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Fig. 2 the flow chart of the fuzzy logic method of tornado
detection

The two final degrees will be inputs of another
node termed aggregation. In this node, a MAX
operation will be performed to make the final decision,
which means if Dc is larger than Dd, a tornado is
detected and otherwise, no tornado is detected.

In the defuzzification part, the fuzzy output of rule
inference can be converted back to a crisp output
which can be understood and implemented by users.
In the tornado detection algorithm, when the output of
the aggregation is TRUE, the crisp output will be the
coordinate of the tornado in the form of azimuth angle
and range according to the radar. If the output is
FALSE, crisp out put will be non-tornado information.

3.3 Membership Functions

In the fuzzy logic method, the key component is
the membership function. There are many ways to
decide the membership functions: intuitions,
inferences, rank orderings, neural networks, genetic
algorithms and inductive reasoning (Timothy 2004). In
this algorithm, the inference is used to determine the



membership function which is deduced based on
statistical analysis and knowledge learned from the
data.

For the crisp input of spectrum width, the S-shape
and Z-shape functions are used for the TRUE and
FALSE cases, respectively. In other words, a large
spectrum is favorable (has a large value of
membership degree) to the TRUE case (Zrnic and
Doviak, 1975). The combination of S-shape and Z-
shape function are also used for velocity difference
and the standard deviation. The plots in Figure 3 are
these two membership functions for velocity
difference. For reflectivity and SNR, two S-shape
functions were selected with properly designed
breaking points because that high reflectivity and SNR
are not necessarily associated with the existence of a
tornado. For example, ground clutters or heavy
precipitation can produce strong reflectivity. The plots
in Figure 4 are these two membership functions.
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Fig. 3 the S and Z shape membership function of velocity
difference.
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4. NEURAL NETWORK

The S- and Z-shape membership functions are
mathematically defined by two breaking points X; and
X, in the following form. The S-shape membership

function is showed in equation 1.

And Z shape membership function is in the similar
form, and whenx<x, f(x)=1; x> x,, f(x)=0
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A neural network algorithm is designed to
subjectively find the breaking points based on the
existing data. To obtain the optimal breaking points,
some initial values are initially set. Then a set of data
which describe typical tornado or no-tornado cases is
applied and a detection result can be subsequently
used in our fuzzy logic system. By comparing the
current system output with the input state, the error
can be found easily as ¢ = C,-C. If & is not equal

to 0, the modification of the breaking points is
necessary.

When initiating the fuzzificaiton procedure, the
parameters whose membership functions need to be
determined as the first step. For example, if one set of
data consisting of five parameters which describe a
tornado are plugged in, 5 membership degrees will
obtain from MBF-Cs, and another 5 from MBF-Ds.
The one from MBF-Cs which has the lowest
membership degree and the one from MBF-Ds has
the highest membership degree will be chosen to
modify their breaking points. Then the gradient
descent learning method is used to adjust them.
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Where s the step length, f (X) is the output of

the membership function, and f; (X)is the one need

to be modified.
5. PERFORMANCE EVALUATION

The neuro-fuzzy TDA is tested using the KOUN
Level | time series data coIIected from May 8" 2003
Del City OK tornado and May 10™ 2003 Edmond OK
tornado. The breaking points for each membership
function are obtained by tra|n|ng the neuro-network
using the data from the May 8" 2003 tornado and part
of the May 10™ 2003’s tornado. Finally, the neuro-
fuzzy TDA is implemented on the data from the May
10" case. The results are compared with those from
the NSSL TDA on KOUN Level Il data, the NWS TDA
on KTLX data, and the tornado damage path from
ground survey.

The radial velocity and reflectivity from the lowest
elevation angle of 0.5° at 03:43 UTC May 10", 2003
are shown in Figure 5 and 6, respectively. A tornado is



detected in the azimuth of 8.5° and range of 39.625
km from the KOUN radar and is denoted by a blue
star. The tornado damage path is superimposed and
is denoted by a black line. It is evident that the
detected region is consistent with the damage path
and is associated with strong azimuthal shear in the
velocity field and a well-defined hook signature in the
reflectivity field. Additionally, the spectrum width from
the detected region is significantly larger than those
from other non-tornadic regions.

Figure 7 is the spatial distribution of Doppler
spectra from the tornado. The spectrum from detected
region is denoted by red line, which is located at
39.625 km in range and 8.5° in azimuth. It is clear that
the neuro-fuzzy algorithm detects the region with
distinct spectral signature.

A comparison of three different detection results is
shown in Figure 8. Results from the conventional TDA
on KOUN and KTLX Level Il data are denoted by blue
triangles and black inverse triangles, respectively,
which are termed TDA-KOUN and TDA-KTLX.
Results from the neuro-fuzzy on KOUN data with 0.5°
angular sampling is denoted by red solid circles. In
addition, the time for TDA-KOUN and neuro-fuzzy is
denoted by red text and the time for TDA-KTLX is
denoted by black text.

At 03:31, 03:43, 03:49, and 03:55 UTC, the
tornado locations detected by the TDA-KOUN are
within the damage path. However, at 03:37 a tornado
was detected approximately 2 km north of the damage
path. In addition, two locations at approximately 6 km
north and south of the damage path were identified as
tornado at 04:01 UTC. After 04:01 UTC no tornado
was detected, although the tornado damage path
suggested the tornado existed beyond that time.

The detection results from the neuro-fuzzy method
and TDA-KOUN are similar from 03:31 UTC to 03:55
UTC. The distance between the tornado and KOUN
varies approximately from 35.625 km to 42.625 km
during this period. Later time (04:07, 04:13 and 04:19
UTC) when the tornado moved further away from the
KOUN, the neuro-fuzzy TDA could still detect the
tornado while the TDA-KOUN did not identify the
tornado. In comparison, it is also evident that the
detection results from our neuro-fuzzy method agree
with the damage path more favorably than the results
from the TDA-KOUN. These results suggest that the
neuro-fuzzy method is less sensitive to the
smoothening than the conventional TDA and has the
potential to extend the range of tornado detection.

In general, the KTLX radar is located at
approxmately 20 Km north-east of the KOUN. For the
May 10™ case, the maximum distance between the
tornado and KTLX is approximately 30 km at 04:14
UTC compared to 55 km for KOUN at same time. In
general, results from TDA-KTLX shows better
agreement with the damage path compared to the
results from TDA-KOUN. Compared to the neuro-

fuzzy method, spurious detections by TDA-KTLX
occurred beyond the damage path at 03:49, 03:54,
03:59 and 04:01 UTC. At 04:01 UTC, the TDA-KTLX
identified one tornado that the neuro-fuzzy method
missed. It is likely that the tornado was relatively weak
and below the capability of the neuro-fuzzy method.
Otherwise, it is clear that the neuro-fuzzy method can
obtain result similar to the TDA_KTLX which was
closer to the tornado.
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Fig. 5 the PPI of velocity in May 10" 2003 Edmond Tornado
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Fig. 6 the PPl of reflectivity in May 10" 2003 Edmond
Tornado

6. SUMMARY

The proposed neuro-Fuzzy algorithm is based on a
distinct signature in Doppler spectrum in combination
with other velocity and reflectivity features to detect
tornadoes. In this small case study, it demonstrated
improved detection over conventional TDA when the
tornado is far away from the radar. Future work will
focus on strengthening the ability of the method to
detect tornadoes at far ranges.
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Fig. 7 the Doppler spectrum in May 10" 2003 Edmond
Tornado
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Fig. 8 the comparison of detection results from NWS TDA
and this Neuro-Fuzzy method from different on May 10"
2003. The red triangles are from TDA, and blue stars are
from this Neuro-Fuzzy method.
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