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1. INTRODUCTION1

 
     The Weather Surveillance Radar-1988 Doppler 
(WSR-88D) has been developed and deployed to 
improve the detection and forecast of tornadoes. The 
current Tornado Detection Algorithm (TDA) (Mitchell 
et al. 1998) searches for strong azimuthal shears in 
the velocity field. However, when a tornado is located 
at far range or the size of the tornado is small 
compared to the radar resolution volume, the shear 
signature will be smoothed and difficult to identify. 
Figure 1 shows the smoothing effect on shear 
signature as a function of the ratio of the cross-beam 
dimension (beam width) to the radius of tornado’s 
maximum wind. 
 

  The Doppler spectrum from a tornado vortex is 
different from typical Gaussian-like spectrum 
produced by most other weather phenomena. A broad 
and flattened tornado spectral signature was shown 
using simulation, and bimodal spectra were observed 
by pulse Doppler radar (Zrnic and Doviak, 1975). In 
general, a large spectral width and small fluctuation 
could be described as tornado’s spectral signatures. 
      However, a similar spectral signature can be 
produced by a uniform wind field and reflectivity with a 
shape that is the reciprocal of the antenna beam 
pattern. Moreover, the spectrum width depends on the 
size of tornado vortex. Therefore it is difficult to 
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determine a threshold for the spectral width or the 
strength of the shear to identify a tornado. In this work, 
a neuro-fuzzy method is developed for the first time 
based on spectral width, the flatness of a spectrum, 
and other parameters to improve tornado detection. 
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Fig. 1 Smoothing effect on azimuthal shear. The horizontal 
axis is the azimuth distance from the vortex center 
normalized by the radius of maximum wind of the tornado 
(Rt). The vertical axis is the Doppler mean radial velocity 
normalized by the maximum tangential velocity. Results from 
different ratio of transverse dimension of the radar beam to 
Rt are coded in color.  
      
 
 
2. FUZZY LOGIC METHOD 
 
    A fuzzy logic approach has inherent advantages 
over other methods such as decision trees and neural 
networks. For a decision tree, a threshold is 
necessary. But there exists overlap region between 
the tornado case and no-tornado case in each 
parameter set, so it is difficult to accurately determine 
the threshold. In the case of neural network, a large 



amount of data sets are needed to train the algorithm. 
On the other hand, the fuzzy logic method has the 
ability to describe the system of interest and to deal 
with the data set inside the overlap region using 
simple rules (Liu and Chandrasekar 1999). 
 
3.1 Parameters Used In Fuzzy Logic 
 
       In the neuro-fuzzy method developed in this work, 
five parameters will be used:  spectrum width ( vσ ), 
reflectivity (Z), signal to noise ratio (SNR), azimuthal 
velocity difference ( ), and the standard deviation 
of the Doppler spectrum (STD).   

vΔ

 
      The spectrum width, reflectivity, and signal to 
noise ratio can be estimated directly using the spectral 
method, where both Z and SNR are in dB (Doviak and 
Zrnic, 1993). The velocity difference is defined as the 
absolute of velocity difference between two adjacent 
gates in the azimuthal direction. 
 
     The standard deviation of a spectrum is introduced 
to quantify the flatness of a spectrum. After the 
Doppler spectrum is calculated using the Periodogram 
method, random fluctuations will occur inside it 
unavoidably. These random fluctuations normally 
have relatively low values compared to the spectrum. 
To avoid this effect, the spectrum is first sorted, and 
then only the first 70% which have higher values will 
be used for calculation. This 70% is from testing that 
suggests it provides the most accurate standard 
deviation.  
 
3.2 Fuzzy logic in tornado detection 

 
 Basically, there are four parts that compose a fuzzy 

logic system: fuzzification, rule inference, aggregation, 
and defuzzification (Liu and Chandrasekar 1999). 
Figure 2 depicts these elements in relationship to our 
work. In fuzzification, the precise measurements in the 
real-world domain defined as crisp inputs will be 
converted to membership degree in the fuzzy domain. 
The degree of membership is a value between 0 and 
1. The function used in this procedure is termed a 
membership function. In the tornado detection 
algorithm, two membership functions of tornado and 
non-tornado cases are defined for each parameter 
through a statistical analysis and knowledge learned 
from the data. 

 
      In the rule interference step, the relationship 
between a fuzzy input and output will be established in 
the form of IF-THEN. In the IF side, several 
antecedents will be given and in the THEN side one 
consequent will be obtained. For example, when a 
tornado exists, all of these five parameters must 
satisfy certain conditions at the same time. In regions 
close to the tornado center, the spectrum width and 
the azimuthal velocity difference should reach a large 
value, the standard deviation should be small, and the 

reflectivity and the signal to noise ratio should be 
reasonable high. So the correlation product is used as 
the rule inference to combine all of these parameters 
together. There are two groups of membership 
functions. One is for the TRUE case in which a 
tornado vortex is detected. The other one is for the 
FALSE case where no tornado is detected. The 
membership function MBF1-C till MBF5-C are used 
for the TRUE case and MBF1-D to MBF5-D are used 
for the FALSE case. The final confirmation degree Dc 
and Dd is the multiplication of five membership 
degrees for the case of TRUE and FALSE, 
respectively.  
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Fig. 2  the flow chart of the fuzzy logic method of tornado  
detection 
        
      The two final degrees will be inputs of another 
node termed aggregation. In this node, a MAX 
operation will be performed to make the final decision, 
which means if Dc is larger than Dd, a tornado is 
detected and otherwise, no tornado is detected.  
     In the defuzzification part, the fuzzy output of rule 
inference can be converted back to a crisp output 
which can be understood and implemented by users.  
In the tornado detection algorithm, when the output of 
the aggregation is TRUE, the crisp output will be the 
coordinate of the tornado in the form of azimuth angle 
and range according to the radar. If the output is 
FALSE, crisp out put will be non-tornado information. 
 
3.3 Membership Functions 
 

     In the fuzzy logic method, the key component is 
the membership function. There are many ways to 
decide the membership functions: intuitions, 
inferences, rank orderings, neural networks, genetic 
algorithms and inductive reasoning (Timothy 2004). In 
this algorithm, the inference is used to determine the 



membership function which is deduced based on 
statistical analysis and knowledge learned from the 
data. 

 
      For the crisp input of spectrum width, the S-shape 
and Z-shape functions are used for the TRUE and 
FALSE cases, respectively. In other words, a large 
spectrum is favorable (has a large value of 
membership degree) to the TRUE case (Zrnic and 
Doviak, 1975). The combination of S-shape and Z-
shape function are also used for velocity difference 
and the standard deviation. The plots in Figure 3 are 
these two membership functions for velocity 
difference. For reflectivity and SNR, two S-shape 
functions were selected with properly designed 
breaking points because that high reflectivity and SNR 
are not necessarily associated with the existence of a 
tornado. For example, ground clutters or heavy 
precipitation can produce strong reflectivity. The plots 
in Figure 4 are these two membership functions. 
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 Fig. 3 the S and Z shape membership function of velocity 
difference.   
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Fig. 4 the S shape membership function of signal to noise 
ratio 
 
4. NEURAL NETWORK 
 
        The S- and Z-shape membership functions are 
mathematically defined by two breaking points  and 

 in the following form. The S-shape membership 
function is showed in equation 1. 

1x

2x

 
       And Z shape membership function is in the similar 
form, and when , ; ,1xx< 1)( =xf 2xx > 0)( =xf . 
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        A neural network algorithm is designed to 
subjectively find the breaking points based on the 
existing data. To obtain the optimal breaking points, 
some initial values are initially set. Then a set of data 
which describe typical tornado or no-tornado cases is 
applied and a detection result can be subsequently 
used in our fuzzy logic system. By comparing the 
current system output with the input state, the error 
can be found easily as CC t −=ε . Ifε is not equal 
to 0, the modification of the breaking points is 
necessary. 
 
        When initiating the fuzzificaiton procedure, the 
parameters whose membership functions need to be 
determined as the first step. For example, if one set of 
data consisting of five parameters which describe a 
tornado are plugged in, 5 membership degrees will 
obtain from MBF-Cs, and another 5 from MBF-Ds. 
The one from MBF-Cs which has the lowest 
membership degree and the one from MBF-Ds has 
the highest membership degree will be chosen to 
modify their breaking points. Then the gradient 
descent learning method is used to adjust them. 
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      Where μ is the step length, is the output of 

the membership function, and is the one need 

to be modified. 
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5. PERFORMANCE EVALUATION 
 
      The neuro-fuzzy TDA is tested using the KOUN 
Level I time series data collected from May 8th 2003 
Del City OK tornado and May 10th 2003 Edmond OK 
tornado. The breaking points for each membership 
function are obtained by training the neuro-network 
using the data from the May 8th 2003 tornado and part 
of the May 10th 2003’s tornado. Finally, the neuro-
fuzzy TDA is implemented on the data from the May 
10th case. The results are compared with those from 
the NSSL TDA on KOUN Level II data, the NWS TDA 
on KTLX data, and the tornado damage path from 
ground survey.  
 
      The radial velocity and reflectivity from the lowest 
elevation angle of 0.5o at 03:43 UTC May 10th, 2003 
are shown in Figure 5 and 6, respectively. A tornado is 



detected in the azimuth of 8.5o and range of 39.625 
km from the KOUN radar and is denoted by a blue 
star. The tornado damage path is superimposed and 
is denoted by a black line. It is evident that the 
detected region is consistent with the damage path 
and is associated with strong azimuthal shear in the 
velocity field and a well-defined hook signature in the 
reflectivity field. Additionally, the spectrum width from 
the detected region is significantly larger than those 
from other non-tornadic regions. 
 
      Figure 7 is the spatial distribution of Doppler 
spectra from the tornado. The spectrum from detected 
region is denoted by red line, which is located at 
39.625 km in range and 8.5o in azimuth. It is clear that 
the neuro-fuzzy algorithm detects the region with 
distinct spectral signature.  
 
      A comparison of three different detection results is 
shown in Figure 8. Results from the conventional TDA 
on KOUN and KTLX Level II data are denoted by blue 
triangles and black inverse triangles, respectively, 
which are termed TDA-KOUN and TDA-KTLX. 
Results from the neuro-fuzzy on KOUN data with 0.5o 
angular sampling is denoted by red solid circles. In 
addition, the time for TDA-KOUN and neuro-fuzzy is 
denoted by red text and the time for TDA-KTLX is 
denoted by black text.  
      At 03:31, 03:43, 03:49, and 03:55 UTC, the 
tornado locations detected by the TDA-KOUN are 
within the damage path. However, at 03:37 a tornado 
was detected approximately 2 km north of the damage 
path. In addition, two locations at approximately 6 km 
north and south of the damage path were identified as 
tornado at 04:01 UTC. After 04:01 UTC no tornado 
was detected, although the tornado damage path 
suggested the tornado existed beyond that time. 
 
      The detection results from the neuro-fuzzy method 
and TDA-KOUN are similar from 03:31 UTC to 03:55 
UTC. The distance between the tornado and KOUN 
varies approximately from 35.625 km to 42.625 km 
during this period. Later time (04:07, 04:13 and 04:19 
UTC) when the tornado moved further away from the 
KOUN, the neuro-fuzzy TDA could still detect the 
tornado while the TDA-KOUN did not identify the 
tornado. In comparison, it is also evident that the 
detection results from our neuro-fuzzy method agree 
with the damage path more favorably than the results 
from the TDA-KOUN. These results suggest that the 
neuro-fuzzy method is less sensitive to the 
smoothening than the conventional TDA and has the 
potential to extend the range of tornado detection.        
 
      In general, the KTLX radar is located at 
approximately 20 Km north-east of the KOUN.  For the 
May 10th case, the maximum distance between the 
tornado and KTLX is approximately 30 km at 04:14 
UTC compared to 55 km for KOUN at same time. In 
general, results from TDA-KTLX shows better 
agreement with the damage path compared to the 
results from TDA-KOUN. Compared to the neuro-

fuzzy method, spurious detections by TDA-KTLX 
occurred beyond the damage path at 03:49, 03:54, 
03:59 and 04:01 UTC. At 04:01 UTC, the TDA-KTLX 
identified one tornado that the neuro-fuzzy method 
missed. It is likely that the tornado was relatively weak 
and below the capability of the neuro-fuzzy method. 
Otherwise, it is clear that the neuro-fuzzy method can 
obtain result similar to the TDA_KTLX which was 
closer to the tornado. 
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Fig. 5 the PPI of velocity in May 10th 2003 Edmond Tornado 
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Fig. 6 the PPI of reflectivity in May 10th 2003 Edmond 
Tornado 
 
6. SUMMARY 
 
     The proposed neuro-Fuzzy algorithm is based on a 
distinct signature in Doppler spectrum in combination 
with other velocity and reflectivity features to detect 
tornadoes. In this small case study, it demonstrated 
improved detection over conventional TDA when the 
tornado is far away from the radar. Future work will 
focus on strengthening the ability of the method to 
detect tornadoes at far ranges.  
 



  

 
Fig. 7 the Doppler spectrum in May 10th 2003 Edmond 
Tornado 

 
 
Fig. 8 the comparison of detection results from NWS TDA 
and this Neuro-Fuzzy method from different on May 10th 
2003. The red triangles are from TDA, and blue stars are 
from this Neuro-Fuzzy method. 
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