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FORMAL PROOF OF THE EXISTENCE OF AN ATMOSPHERIC BASE-STATE AND ITS

ESTIMATION

Marco A. Nuñez1

Universidad Autonoma Metropolitana Iztapalapa

1 Introduction

The main coordinate system used in mesoscale meteorol-
ogy [1-6] is a cartesian system xi with its origin at a point
on the spherical earth with latitude φc and longitude λc.
Let us suppose that the plane x1x2 is tangent to the earth
at (λc, φc) and the axis x3 is opposite to g at (λc, φc). In
this reference system the momentum equation is

dv
dt

= −ρ−1∇p + x̂igi − 2~Ω× u + f (1)

where p, ρ, v are the pressure, density and velocity vector
of the particle, g is the gravity acceleration and f is a
frictional force. If we assume that the earth is a sphere
with radius a, then g is given by

g = −g
a2

r3
R = gix̂i

where g ≡ GMa−2, M is the earth mass, G is the gravita-
tional constant, and R is the vector from the earth center
to an air particle, r = ‖R‖, and the gi’s are

gi = −ga2r−3(xi + δi3a). (2)

The equation (1) may be referred to as the exact momen-
tum equation since it has the exact components (2) of g.
In contrast, the standard mesoscale literature [1-6] uses
the approximation g ∼ −gx̂3 and the resulting momen-
tum equation

dv
dt

= −1
ρ
∇p− gk−2Ω̃× v + f . (3)

Let D(L) = 2L × 2L denote a rectangular region of the
tangent plane x1x2 with center at the origin xi = 0 and
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∣∣x1
∣∣,

∣∣x2
∣∣ ≤ L. In previous works [7,8] it was shown that

the eq. (2) is valid on domain D(L) bounded by 100×100
km2. The validity region can be estimated by the mag-
nitude of the terms in (3). Table I yields the magnitude
of the terms in the u1-equation from (3) as reported by
Atkinson [3] where we have added a column with the term
ga2r−3x1. We see that the term of ga2r−3x1 is one or-
der of magnitude larger than the largest term of the u1-
equation from (3) for L = 102, 103 km. For L = 10 km
the magnitude of ga2r−3x1 is equal to that of the Corio-
lis terms and 104 times larger than the dissipative terms.
These results show that the horizontal components of g
cannot be omitted in (3) for a region D(L) larger than
100×100 km2 and should be considered for D(L) between
10×10 and 100×100 km2.

TABLE I. Magnitudes in ms−2 of terms in the u1-
equation for flows with horizontal scale L (m), U = 10
ms−1, H =104 m, f = 2Ω sin φ, φ = 45o, g = 10

ms−2, and x1 = L/2, x2 = x3 = 0, r =
√

(x1)2 + a2,
a = 6378 km.

du
dt

1
ρ

∂p
∂x1 fv fw ∂

∂x3 Kz
∂u
∂x3

ga2x1

r3

L U2

L
∆P
ρL fU fHU

L
KU
H2

106 10−4 10−3 10−3 10−5 10−6 100

105 10−3 10−2 10−3 10−4 10−6 10−1

104 10−2 10−1 10−3 10−3 10−6 10−2

It should be noted that the scale analysis used by sev-
eral authors (see, e.g., [1]) to simplify the governing equa-
tios, starts from the approximate equation (3) but, ac-
cording to Table I, the analysis should include the hor-
izontal components of g for L ≥ 10 km In ref. [7] it is
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shown that the linear approximations

gi = −g xi/a (i = 1, 2)
g3 = −g + 2 g z/a or − g

constitute an accurate approximation of g on a region
D(L) ⊆ 700 × 700 km2 which is large enough for several
mesoscale studies.

In ref. [8] some computational mesoscale models that
use the approximate equation (3) are studied. These
models have been used on domains D(L) larger than
100 × 100 km2 for the analysis of data provided by me-
teorological networks but no correction of (3) has been
reported. This suggests that: (i) the number of data is
not sufficient to see the error in (3) generated by the omis-
sion of the horizontal components of the exact gravity ac-
celeration g, and (ii) the results given by computational
models that use equations like (3), should be reanalyzed
by solving the exact momentum equations. Almost all
the mesoscale literature uses (3). This includes the re-
cent books of Pielke [1] and Jacobson [2]. Among the
mesoscale models that use (3) we have the models ARPS
[9], HOTMAC [10] and RAMS [11]. The factor g appears
in the horizontal momentum equations of these models
but, as is shown in [8], the presence of g is due to the
use of terrain-following coordinates and the hydrostatic
approximation.

Map projections have been used in atmospheric model-
ing with the aim of including the earth sphericity [6,12].
This is equivalent to rewrite the equations of motion in
terms of a curvilinear coordinate system which is a le-
gitime coordinate system [7,8]. However, models such as
HOTMAC [10] and ARPS [9] use map projections only
to define the topography with the data from a digital ele-
vation model. In ref. [13] it is shown that this procedure
is valid in a small region of the xy plane, which is esti-
mated as 60×60 km2. A careful deduction of the equa-
tions in map-projection coordinates is given in [8] where
it is shown that the RAMS [11] model uses approximate
momentum equations in projection coordinates because
such equations are obtained from the approximated equa-
tion (3). The MM5 model [14] uses projection coordinates
but, unfortunately, different versions of the model solve
different governing equations [8].

The use of the approximate momentum equation (3)
has motivated, in part, the following decomposition

ψ(r, t) = ψ0(z) + ψ̄(r, t) (4)

for the dependent meteorological variables, where ψ0 is a
reference value that depends only of the height z with re-
spect to the tangent-plane xy. Then the governing equa-
tions are used to calculate the ”deviations” ψ̄(r, t) from
a known reference state ψ0(z) [1-4]. This approach is
correct only if the reference value ψ0(z) is close to the
total field ψ(r, t). However, in this work it is shown that
the decomposition (4) is valid on a small region D(L),
as occurs with the momentum equation (3). In section 2
we use the correct momentum equation (1) to prove that
each meteorological field has the decomposition

ψ(r, t) = ψ(0)(zs, t) +
∑

k=1

ψ(k)(r, t) µk (5)

where zs is the height with respect to an spherical earth
model and µ is a suitable parameter. Analytic solutions of
the continuity equation ∇·V = 0 [17] are used in section
3 to show that the terms ψ(0)(zs, t) can be estimated by
means of a spatial average. The same analytic flows are
used to prove that the decomposition (4) is valid on a
region D(L) bounded by 100×100 km2, a result that is
consistent with the small validity region of (3).

The proof (5) is based on the replacement of the mo-
mentum equation (1) by an ordinary differential equation.
In section 4 it is shown that such a differential equation
provides a very simple diagnostic scheme to compute com-
pute the pressure field from the velocity alone, without
the knowledge of any other thermodynamic variable. The
simplicity of the scheme is shown by means of an analytic
example. In contrast, the standard diagnostic schemes
(see, e.g., [1]) pose the formidable problem of solving a
nonlinear partial differential equation.

2 Proof of decomposition (5)

Let λ, φ, r be the geographic coordinates defined with re-
spect to a cartesian system XY Z fixed to the earth and
its origin is at the earth’s center,

X = r cos φ cos λ Y = r cos φ sin λ Z = r sin φ.

In terms of the curvilinear coordinates

xs = (λ− λc)a cos φ ys = (φ− φc)a zs = r − a.

the momentum equations are (frictional terms are ne-
glected)

dus

dt
− usvs

r
tanφ +

usws

r
− 2Ωvs sin φ (6)

+ 2Ωws cosφ = −a cos φc

r cosφ

1
ρs

∂ps

∂xs
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dvs

dt
+

u2
s

r
tanφ +

vsws

r
+ 2Ωus sin φ

+ Ω2r cosφ sinφ = −a

r

1
ρs

∂ps

∂ys

dws

dt
− u2

s + v2
s

r
− 2Ωus cos φ− Ω2r cos2 φ

= − 1
ρs

∂ps

∂zs
− g

a2

r2

where

d

dt
=

∂

∂t
+ us

a cosφc

r cosφ

∂

∂xs
+ vs

a

r

∂

∂ys
+ ws

∂

∂zs
.

The key of our argument to prove the decomposition (5)
consists in replacing these equations by the Ordinary
Differential Equation (ODE) associated to a pressure-
constant curve (which is usually called isobar). To this
end let us introduce quasi-polar coordinates ξs, θs defined
by

xs = ξs cos θs ys = ξs sin θs.

The isobar defined by the intersection of the surface θs =
θ0

s(= cte.) and a pressure-constant surface,

ps(xs, ys, zs, t) = p0
s = cte.,

has parametric equations

xs = ξs cos θs ys = ξs sin θs zs = f(ξs, θs, t),

where θs and t are taken as constant parameters, which
obviously satisfy

ps(xs = ξs cos θs, ys = ξs sin θs, zs = fs(ξs, θs, t), t ) = p0
s

Differentiation with respect to ξs yields

df

dξs
= − cos θs

∂xsps

∂zsps
− sin θs

∂ysps

∂zsps
(7)

where the ratios

∂xsps

∂zsps

∂ysps

∂zsps

are obtained from the momentum equations (6). This
defines an ODE for f if the velocity field and frictional
forces are known. The solution of this equation with the
boundary condition

fs = z0 at ξs = 0 (8)

yields an isobar that passes through the point (xs = ys =
0, zs = zs0). The equation (7) is worthy because it does
not contain the density ρ.

Let Lx, Ly, H, t0, U0, V0, W0 be the characteristic
values of xs, ys, zs, t, us, vs y ws, respectively, with Lx =
Ly ≡ L, U0 = V0 and t0 ≡ L/U0. The dimensionless
variables are

x̄s = xs/L ȳs = ys/L z̄s = zs/H t̄ = t/t0,

r̄ = r/a, ū = u/U0 v̄ = v/U0 w̄ = w/W0,

f̄s = fs/H, ξ̄s = ξs/L

and let us define the dimensionless parameters

ε =
H

L
η =

W0

U0
, δ =

L

a
, µ =

U2
0

gL
.

Let pr and Tr the characteristic values of pressure and
temperature at the surface earth, the characteristic value
ρr of the density is obtained from the equation of state,
pr = RTrρr. It is generally accepted that the character-
istic values observed for midlatitude large-scale synoptic
systems are [15]

L = 103 km H = 10 km, U0 = 10 ms−1

W0 = 10−2 ms−1, ε = 10−2 η = 10−3,
δ = 10−1, µ = 10−5.

In terms of dimensionless variables the momentum equa-
tions (6) take the form

dū

dt̄
− δ

ūv̄

r̄
tan φ + δη

ūw̄

r̄
+

2ΩL

U0
(ηw̄ cos φ− v̄ sin φ)

= −pr/ρr

U2
0

cosφc

cosφ

1
r̄ρ̄

∂p̄

∂x̄s

dv̄

dt̄
+ δ

ū2 tanφ

r̄
+ δη

v̄w̄

r̄
+

2ΩL

U0
ū sin φ

+
Ω2aL

U2
0

r̄ cos φ sin φ = −pr/ρr

U2
0

1
r̄ρ̄

∂p̄

∂ȳs

εη
dw̄

dt̄
− δε

ū2 + v̄2

r̄
− 2ΩL

U0
εū cos φ− Ω2aL

U2
0

εr̄ cos2 φ

= −pr/ρr

U2
0

1
ρ̄

∂p̄

∂z̄s
− gH

U2
0 r̄2

where

d

dt̄
=

∂

∂t̄
+

ūs

r̄

cosφc

cos φ

∂

∂x̄s
+

v̄s

r̄

∂

∂ys
+

η

ε
w̄s

∂

∂z̄s
.

Let pxs be defined by

pxs ≡ dū

dt̄
− δ

ūv̄

r̄
tan φ + δη

ūw̄

r̄

+
2ΩL

U0
(ηw̄ cosφ− v̄ sin φ) ,
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and let us write the left hand side of the w̄−equation as
follows

εη
dw̄

dt̄
− δε

ū2 + v̄2

r̄
− 2ΩL

U0
εū cos

− Ω2aL

U2
0

εr̄ cos2 φ +
gH

U2
0

r̄−2

=
{(

η
dw̄

dt̄
− δ

ū2 + v̄2

r̄
− 2ΩL

U0
ū cos φ

−Ω2aL

U2
0

r̄ cos2 φ

)
ε
U2

0 r̄2

gH
+ 1

}
gH

U2
0

r̄−2

=
{(

η
dw̄

dt̄
− δ

ū2 + v̄2

r̄
− 2ΩL

U0
ū cos φ

−Ω2aL

U2
0

r̄ cos2 φ

)
µr̄2 + 1

}
r̄−2ε

µ
r̄−2

= (1 + µpzs)
r̄−2ε

µ

where we define

pzs ≡
(

η
dw̄

dt̄
− δ

ū2 + v̄2

r̄
− 2ΩL

U0
ū cosφ

− Ω2aL

U2
0

r̄ cos2 φ

)
r̄2 .

Hence we get

cos φc

cos φ r̄−1 ∂p̄
∂x̄s

∂p̄
∂z̄s

=
µ

r̄−2ε

pxs

1 + µpzs
. (9)

In a similar way we have

r̄−1 ∂p̄
∂ȳs

∂p̄
∂z̄s

=
µ

r̄−2ε

pys

1 + µpzs
(10)

with

pys ≡ dv̄

dt̄
+ δ

ū2

r̄
tanφ + δη

v̄w̄

r̄

+
2ΩL

U0
ū sin φ +

Ω2aL

U2
0

r̄ cos φ sin φ

and the ODE (7) takes the form

d f̄s

d ξ̄s
= −µ

ε

[
cos θs

cosφ

cosφc
pxs + sin θspys

]
r̄3

1 + µpzs
(11)

with r̄ = r/a ∼ 1, and pxs ∼ 10, pys ∼ 102, µpzs ∼ 10−3.
The eq. (12) has the form

df̄s

dξ̄s
= µF (ξ̄s, f̄s, t̄, θs, µ) with f̄s = z̄0 at ξ̄s = 0. (12)

We can invoke the next result.

Theorem [16, p. 213]. Let X = (x1, x2, ..., xn). If
F (X, z, µ) is analytic in x1, x2,..., xn and µ, and con-
tinuous in ξ, then the system

dX

dξ
= F (X, ξ, µ)

under the condition X(ξ = 0, µ) = 0, solution has unique
solution of the form

X =
∞∑

k=0

Xk(ξ)µk .

where Xk(ξ) is a vector function of ξ.

In our case the right side of (11) is an analytic function
of µ in a vicinity of µ = 0 and we can suppose that
F (ξ̄s, f̄s, t̄, θs, µ) is analytic in f̄s and continuous in ξ̄s,
then there exists a solution of the form

f̄s =
∞∑

k=0

f̄ (k)(ξ̄s, f̄s, t̄, θs) µk , (13)

and it is easy to see that the coefficients f̄
(k)
s satisfy the

boundary conditions

f̄ (0) = z̄0 , f̄ (k) = 0 for k ≥ 1.

Replacing the series (13) into (12) we get the zero-order
solution

f (0)(ξs, t, θs) = z0.

This means that the zero-order isobar that passes through
(xs = ys = 0, zs = zs0) depends only of zs and, conse-
quently, the pressure field has the form

p(r, t) = p(0)(zs, t) +
∑

k=1

p(k)(r, t) µk. (14)

This rigorous result is worthy because it is completely in-
dependent of the distribution of temperature and density.
The substitution of (14) into the equation of state

p(r, t, µ) = R T (r, t, µ) ρ(r, t, µ),

yields a functional equation for T (r, t, µ) and ρ(r, t, µ)
which has the formal solution

T (r, t) = T (0) +
∑

k=1

T (k)(r, t) µk (15)

ρ(r, t) = ρ(k) +
∑

k=1

ρ(k)(r, t) µk . (16)
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where it is easy to see that the zero-order terms only
depend of zs and t,

T (0) = T (0)(zs, t)
ρ(0) = ρ(0)(zs, t).

In other words, there exists a thermodynamic reference
state that depends only of zs and t. The substitution
of the series (14-16) into the momentum equation or the
mass-conservation equation leads to the series

V(r, t) = V(0)(zs, t) +
∑

k=1

V(k)(r, t) µk. (17)

Thus we conclude that each dependent meteorological
variable ψ has the series

ψ(r, t) = ψ(0)(zs, t) +
∑

k=1

ψ(k)(r, t) µk . (18)

The standard decomposition (4) is an approximation of
(18) because the relevant coordinate is the height zs with
respect to the earth rather than the height z with respect
to the tangent-plane xy.

3 Estimation of the reference
value ψ(0)(zs, t)

In this section we consider the estimation of the term
ψ(0)(zs, t) in (18) by means of the spatial average

ψ̂(zs) =
1
Ls

∫ +Ls/2

−Ls/2

ψ(xs, zs) dxs (19)

for the case of a stationary bidimensional flow on the
xz−plane. The flow in question V = ui + wk is an ana-
lytic solution of the so-called [1] shallow continuity equa-
tion

∇ ·V(r) = 0 (20)

with the boundary condition

V · n = 0 on z = h(x) (21)

where h(x) is the terrain elevation on the point (x, y =
0, z = 0).

3.1 Calculation of V

Let us describe briefly the method used to obtain V [17].
To begin consider an abstract complex plane with variable

ζ = x̄ + i z̄ .

In this plane we consider a uniform flow

V̄ = V0 (ū = V0, w̄ = 0)

obtained from the potential

φ̄ = V0x̄.

The physical space can be seen as the complex plane as-
sociated to the variable

ξ = x + i z .

Suppose that h(ζ) is an analytic function of ζ and let h1

and h2 be the real and imaginary parts of h(ζ),

h(ζ) = h1(x̄, z̄) + ih2(x̄, z̄) .

Then the function

G(ζ) = ζ + ih(ζ)

is also an analytic function of ζ and defines the transfor-
mation equations

x = x(x̄, z̄) = x̄− h2(x̄, z̄)
z = z(x̄, z̄) = z̄ + h1(x̄, z̄).

It is clear that the imagine of the real axis z̄ = 0 in
the ζ−plane under these transformation equations is the
curve defined by the the topography,

{(x, h(x)} = G[{x̄, z̄ = 0}];
that is, we have

x = x̄, z = h(x̄) .

Since the real axis z̄ = 0 is a stream line of the flow V̄ , the
curve z = h(x̄) is a stream line of the flow V that is the
image of V̄ under the transformation G. The components
of the flow V = ui + wk are

u =
V0

J

∂ z(x̄, z̄)
∂ z̄

w = −V0

J

∂ x(x̄, z̄)
∂ z̄

where

J = det
(

∂x
∂x̄

∂x
∂z̄

∂z
∂x̄

∂z
∂z̄

)

and, since G(ζ) is analytic, the Cauchy-Riemann equa-
tions hold,

∂x

∂x̄
=

∂z

∂z̄

∂x

∂z̄
= −∂z

∂x̄
.

Inherent problems of the map conforming do not permit
us the direct use of h(x). These problems are solved by
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a simpler representation of h(x), namely, a natural spline
S(x) which is defined as follows. Let {xk}n

k=0 be a set of
points where the terrain height h(xk) is known, then : (i)
S(x) satisfies

S(xk) = h(xk) for k = 0, ..., n,

(ii) S(x) is a cubic polynomial on each interval [xk, xk+1],

S(x) = ak + bk(x− xk) + ck(x− xk)2

+dk(x− xk)3 for x ∈ [xk, xk+1],

(iii) S(x) and its derivatives S′(x), S′′(x) are continuous
on [x0, xn] and S′′(x) satisfies

S′′(x0) = S′′(xn) = 0.

There is a unique natural spline associated to an ana-
lytic function h(x) on the interval [x0, xn]. Since S(x)
is a cubic polynomial on each interval [xk, xk+1], we can
compute the flow

u =
V0

J

∂z(k)

∂z̄

w = −V0

J

∂x(k)

∂z̄
for x ∈ [xk, xk+1],

where

x(k) = x̄− S2(x̄, z̄)
z(k) = z̄ + S1(x̄, z̄)

and
S(ζ = x̄ + iz̄) = S1(x̄, z̄) + i S2(x̄, z̄).

The continuity of S(x), S′(x) and S′′(x) guarantees
that the field V =ui + wk, its first derivatives

∂u

∂x
,

∂u

∂z
,

∂w

∂x
,

∂w

∂z
,

and ∇ · V are continuous on the interval [x0, xn]. This
together with the fact that u, w satisfy the continuity
equation (20) and the boundary condition (21) on each
interval [xk, xk+1], implies that the field V satisfies the
same equations on the whole interval [x0, xn]. Figure 1
shows the region and some points where V is computed.
Data from the data base GTOPO30 [18] were used to
estimate h(x) by means of a spline S(x). The field V =
ui + wk is calculated with the datum u = 10 ms−1 and
w = 0 at the point (x = 0, z = 10 km).

−400 −300 −200 −100 0 100 200 300 400
−20

−15

−10

−5

0

5

10

15

x (km)

z 
(k

m
)

Figure 1: Topography and sketch of the field V

3.2 Estimation of p(0)(zs, t)

Let us consider the estimation of the term p(0)(zs, t) cor-
responding to the decomposition (19)

p(xs, zs) = p(0)(zs) +
∞∑

k=1

p(k)(r) µk , (22)

for the pressure p, by means of the spatial average

p̂(zs) =
1
Ls

∫ +Ls/2

−Ls/2

p(xs, zs) dxs (23)

The Bernoulli equation is used to obtain the pressure field
at a point r = (x, y, z),

p(r)
ρ0

= C0 − 1
2
V 2(r) + φg(r)

where V 2 = u2+w2, ρ0 = 1 kg/m3, φg(r) = −ga2/(zs+a)
is the gravitational potential, a = 6376.98 km is the earth
radius and C0 = −62428×104 m2/s2 is calculated with
p(r) = 324.84 mb, u = 10.0 m2/s2, w = 0.13 m2/s2

φg(r) = −62460×104 m2/s2 at (x = 0, y = 0, zs = 10
km). The relative error of p̂(zs) with respect to the exact
value p(x, zs),

∆p̂(zs) =
(

1− p̂(zs)
p(xs, zs)

)
× 100 ,

is a suitable measure of the accuracy of p̂ if it is seen
as an approximation of p(xs, zs) and the reference state
p(0)(zs).
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Table II shows the results for the pressure. Surpris-
ingly, we see that p̂(zs) has a relative error |∆p̂(zs)| that
is lower than 0.1 % for Ls from 50 to 800 km, so that for
practical purposes p̂(zs) is almost equal to p(x, zs) and,
consequently, the field p(r) has the decomposition

p(xs, zs) = p̂(zs) + δp̂(xs, zs)

with |δp̂/p| < 10−1 %. In ref. [17] we report analytic
solutions of the so-called deep continuity equation ∇ ·
ρ0(r)U(r) = 0. The use of the field U leads basically
to the same numerical values of Table II. These results
support the correctness of the decomposition (5) and the
estimation of ψ(0)(zs, t) by means of a spatial average like
ψ̂(zs) [eq. (19)].

TABLE II. Values of p̂, min{∆p̂} and max{∆p̂} for the
pressure (in mb) at zs = 2, 10 km.

Ls min{∆p̂} max{∆p̂} p̂
zs = 2 km

800 km −.1 .1 1106.64
400 km −.1 .1 1106.60
100 km −.1 .0 1106.65
50 km .0 .0 1106.67

Ls min{∆p̂} max{∆p̂} p̂
zs = 10 km

800 km .0 .0 324.85
400 km .0 .0 324.85
100 km .0 .0 324.85
50 km .0 .0 324.86

3.3 Validity region of decomposition (4)

Let us consider the standard mesoscale decomposition

ψ(r) = ψ0(z) + ψ̄(r)

where the reference value ψ0(z) is estimated by means of
the spatial average (see , e.g., [1])

ψ̆(z) =
1
L

∫ +L/2

−L/2

ψ(x, z) dx. (24)

The relative error of ψ̆(z) with respect to the exact value
ψ(x, z),

∆ψ̆(z) =

(
1− ψ̆(z)

ψ(x, z)

)
× 100 ,

is a suitable measure of accuracy of ψ̆ if it is seen as an
approximation of ψ(x, z) and the reference state ψ(0)(z).
Table III reports results for the pressure obtained from

the same flow of Table II and the Bernoulli equation.
We see that the relative error |∆p̌| is lower than 5% for
L ≤ 100 km. The use of analytic solutions of the so-
called deep continuity equation ∇ · ρ0(r)U(r) = 0 yields
basically to the same numerical values of Table III. If we
consider that the average value p̌(z) is obtained from an
exact field p(x, z) whereas in practical situations p̌(z) is
estimated from the data of an observational network and,
consequently, is accuracy with respect to the true value
p̌(z), may be poor, then the validity of the decomposition
(4) may be significantly lower than 100×100 km2.

TABLE III. Values of p̌, min{∆p̌} and max{∆p̌} for the
pressure (in mb) at z = 2, 10 km.

L min{∆p̌} max{∆p̌} p̌
zs = 2 km

400 km −20.2 10.4 1002.63
200 km −4.7 2.4 1080.71
150 km −2.6 1.3 1092.42
100 km −1.2 0.5 1100.87
50 km −0.3 0.2 1105.02

L min{∆p̌} max{∆p̌} p̌
zs = 10 km

400 km −91.5 45.8 222.82
200 km −17.0 8.5 299.28
150 km −9.2 4.6 310.44
100 km −4.0 2.0 318.42
50 km −1.0 0.5 323.20

4 Estimation of thermodynamic
variables

Doppler Radars can provide detailed wind data so that
three-dimensional kinematics of small-scale convective
systems can be constructed. The radars cannot, how-
ever, measure directly the three-dimensional structure of
pressure, temperature and density. The main approach
to estimate the pressure consists in replacing the momen-
tum equation by a Poisson’s partial differential equation
for the pressure [1],

∇2p = ∇ · ρ
(
−dv

dt
+ x̂igi − 2~Ω× u + f

)
. (25)

where we consider the exact equation (1) instead of the
approximate one (3). This equation can be solved with
the Neumann Boundary Conditions (NBCs’)

∂p

∂n
= n̂ · ∇p = n̂ · ρ

(
−dv

dt
+ x̂igi − 2~Ω× u + f

)
(26)
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obtained from the same momentum equation. This
scheme has the following disadvantages [1]: (i) The so-
lution of (25,26) is not unique. (ii) The computing time
is increased by the numerical solution of (25,26). (iii)
The numerical differentiation magnifies errors. (iv) The
equation has an additional unknown, the density, which is
approximated by its ”hydrostatic” value. These problems
are easily eliminated by means of the Ordinary Differen-
tial Equation (ODE) (7), which has a solution uniquely
determined by the boundary condition (8). Additionally,
our scheme has the advantage that the sole momentum
equation allows us to compute all the pressure constant
surfaces because the density disappears in (7).

In order to show the simplicity of the ODE (7) we con-
sider an analytic calculation of thermodynamic variables
with respect to the tangent-plane coordinate system xyz
and a uniform velocity field

V = iU + jV.

In ref. [7] it is shown that the components of g can be
approximated by

g1 = −gx/a, g1 = −gy/a, g3 = −g

on a domain D(L) ∼ 700 × 700 km2. As in section 2,
polar coordinates are used,

x = ξ cos θ y = ξ sin θ.

Let z = f(ξ, θ, z0) denote the isobar defined by the in-
tersection of the plane θ =cte. and the pressure-constant
surface at (x = y = 0, z0), then the momentum equation
(1) leads to an equation of the form

df

dξ
= Ã ξ + B̃

whose solution with f = z0 at ξ = 0 is

f(ξ, θ, z0) = z0 + αx− βy + γ(x2 + y2)

where α, β, γ are constants. This is exactly the carte-
sian equation of the pressure-constants surface that passes
by (x = y = 0, z0). This result cannot be obtained
from equations (25,26) if the density distribution ρ is
unknown. Let p0[z] be the pressure distribution on the
z-axis provided by a radiosonde. It is easy to see that
this sole information allows us to obtain the pressure dis-
tribution at an arbitrary point (x, y, z)!, namely,

p(x, y, z) = p0

[
z − αx + βy − γ(x2 + y2)

]
.

Once again, this result cannot be obtained from (25,26)
if the density ρ is unknown. In order to compute ρ and
T , let us consider the case of an adiabatic atmosphere.
Then the well-known thermodynamic Poisson’s formulas

T = T0(p/p0)R/Cp

ρ = RT/p

yield T and ρ in terms of p. In contrast, if these equa-
tions are used to eliminate ρ from (25,26), we have the
formidable problem of solving a nonlinear partial differ-
ential equation to compute p. A deeper study about the
equations (25,26), our diagnostic scheme and additional
examples, will be given in a forthcoming work [19].
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[17] M. A. Nuñez and E. Cruz M., Analytic solutions
of the deep continuity equation over a complex ter-
rain, 11th Conferenece on Mesoscale Processes, work
P1M.13 (Albuquerque, AMS, 2005).

[18] GTOPO30 documentation, section 7, U. S. Geo-
logical Survey (1997). http:// www.scd.ucar.edu/
dss/datasests/ds758.0hmtl.
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