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1. INTRODUCTION*

Rainfall is one of the most important inputs to
hydrological models, and rain gauge and weather

radar are probably the two most widely sensors used
in rainfall measurement. Unfortunately, operational
rain gauge networks are not usually able to fulfill the
requirements for hydrological modeling. Low spatial
density and the irregular location of their
measurement sites typically don’t allow capture the
large variability in space and time of precipitation
fields. In this sense, weather radar could help to

improve the knowledge of rainfall fields because
radars provide an indirect measurement (reflectivity)
of rainfall fields but with high resolution both in time (5
- 10 min) and space (1 km

2
). These complementary

characteristics are the motivation to work with both
types of information. Therefore, an objective from the
initial studies of hydrological applications of
meteorological radar has been the development of
methodologies to estimate rainfall fields merging radar

and rain gauge data. In this sense several attempts
have been reported previously, starting with the
simplest formulation, finding constant multiplicative
calibration factors (Wilson and Brandes 1979), and
continuing through statistical approaches based on
multivariate analysis (Hevesi et al. 1992) on radar rain
gauge distribution probability analysis (Calheiros and
Zawadzki 1987, Rosenfeld et al. 1994), on

geostatistical estimators (Krajewski 1987, Creutin et
al. 1988, Azimi-Zonooz et al. 1989, Seo 1998, Sinclair
and Pegram 2005), or on Bayesian methods (Todini
2001).

Main problem for an implementation in real-time of
geostatistical techniques is the definition of a valid
spatial variability models (correlograms or variograms)

from observations. In these conditions, the definition
of valid spatial variability models (e.g., correlograms)
has not been solved in a satisfactory way to avoid
manual analysis or a priori simplified assumptions.

In this paper, an automatic technique to compute
rainfall fields blending radar and rain gauges, which is
based on kriging with external drift, is described and

its performance is evaluated. The main interest of this
new methodology is that it can be fully implemented in
a real-time framework because the correlograms are
automatically computed at each time step applying a
fast approach based on the FFT.
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2. THE PROPOSED ALGORITHM

2.1 Automatic Definition of Valid Correlograms

All geostatistical estimators (kriging) require knowing

or to define previously a spatial variability model
(covariance, correlogram or semivariogram) that
provides the spatial continuity of estimated fields, and
guarantee the solution of its equations system. The
traditional (parametric) modeling approach to find
these spatial models considers solely positive linear
combinations of covariance or semivariogram basic
models known to be positive definite under some

restrictive conditions. These basic structures are
closed form analytical functions defined by a few
parameters, typically a range and a relative
contribution to the total variation, hence the term
“parametric” model. This modeling method requires
one to decide on the number and the types of the
basic covariance structures, and then determine their
model parameters (range and contribution). In
practice, parameters of basic models that summarize

the experimental covariance structure are most often
chose by trial and error, based on particular
preferences, or applying some optimization algorithm
based on goodness-of-fit or cross-validation.
However, the restriction to linear combinations could
be sometimes rather unfair, and also determining the
linear combination that bests fits experimental data
could be difficult and high time consuming. The prior

decision about number and types of component
structures is rather subjective. Also, sometimes the fit
between the analytical model and the experimental
values may be poor because the limitation of each
structure being one of the few classic positive definite
basic models. Different fitted-models and diverse
methodologies to define these valid spatial variability
models of rainfall fields have been reported in

previous works, but each one has defined different
spatial models according to the best adjustment with
the specific data used and actually none have
become a reference procedure. Exhaustive
description of adjustment techniques and main
difficulties on identification and calibration of spatial
variability models of rainfall using the parametric
modeling approach are reported in Bacchi and

Kottegoda (1995).

As an alternative to the traditional methodologies, Yao
and Journel (1998) have proposed a non-parametric
methodology to find definite positive spatial
covariance maps. This technique looking for
covariance values that are not related by any
analytical formulae, but provide a good fit of the
corresponding experimental covariance. Principal

advantage of this nonparametric technique is that not
call for any prior choice of an analytical model, frees
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the modeling of coregionalization model, and
guarantee valid and unique solution of kriging system.
This nonparametric covariance modeling technique
consists of transforming the experimental covariance
values into spectral density maps in the frequency

domain using FFT. Following Bochner’s theorem
(Bochner 1949), the spectral density maps are
smoothed in this frequency domain under positivity
constraints. Then, the FFT inverse transform of the
smoothed spectral density tables provides positive
definite covariance tables. This technique can be
applied to define cross covariance models and to find
valid variability models on one, two, or three

dimensions. Therefore, this technique does not call for
any previous choice of an analytical model, the
transformation between spatial and frequency domain
is done vary fast using FFT, and the constraints for
positive definiteness in the frequency domain are
easy to implement. Final valid covariance values are
thus built from a FFT “roundtrip” with multiple
intermediate smoothing processes. Full description of

this algorithm could be found in Yao (1998).

Non-parametric techniques have not been applied
previously in the context of radar – rain gauge data
combination to estimate rainfall fields. In this paper,
we propose use the non-parametric technique
described above to define quickly and automatically
bi-dimensional valid correlograms from radar data.

This methodology allows compute different and valid
spatial variability model for each time step in
operational frameworks of merging radar – rain gauge
process.

2.2 Kriging with an external drift

Our objective is to estimate rainfall fields that fit locally
with direct (but scarce) rain gauge measurements and

spatially with the shapes of exhaustive (but indirect)
radar fields in framework of real-time combination of
radar and rain gauge data by some kriging technique.

If exhaustive auxiliary information is available and
correlated with the target variable, kriging with an
external drift (KED) should be used in estimation
process. KED assumes that the estimations should be

modeled as a drift term plus a residual. The drift term
is an unknown linear function of some auxiliary
variables that is defined externally. The application of
KED requires modeling the covariance of the
residuals. Full description of KED equations can be
seeing in literature (Wackernagel 1995, Goovaerts
1997, Hengl et al. 2003).

Assuming that we want to impose the spatial pattern
of the radar data to the interpolated rainfall field and
that the relation between rain gauge and radar data is
linear, we propose the follow methodology in order to
obtain rainfall fields by KED:

1. Calculate a drift map from the rainfall radar field by
ordinary kriging for whole estimation area. This drift

field is computed using only the rainfall radar data
collocated on rain gauge locations. The valid
correlogram map for this initial estimation is computed
from the complete radar rainfall field using the

nonparametric modeling technique. Different
algorithms that the proposed here could be employed
to compute the drift field as well (e.g., by window
average). However posterior use of this drift map to
estimate values conditioned by predefined locations

induces to take account these positions into its
definition process as it is proposed here.
2. Obtain the residual map subtracting the drift map
calculated in step 1 from the radar field.
3. Apply the nonparametric modeling technique to the
residual map in order to calculate a valid residual
correlogram map.
4. With a valid correlogram map from residuals, KED

algorithm can be applied to estimate rainfall fields
using rain gauge data as primary variable, radar data
as secondary variable, and that residual correlogram
map as spatial variability model.

3. RADAR AND RAIN GAUGES DATA

Radar data used in this study were measured with the
C-band radar of the Spanish Meteorological Institute
(INM) located in Corbera de Llobregat (near
Barcelona, Spain). Domain study was defined as a
square region of 140 x 140 km around this radar.
Inside of this domain, data of 77 rain gauges of

Spanish SAIH network were selected as well (Figure
1).
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Figure 1. Map of the Barcelona area, showing the
Barcelona C-band radar location (diamond), rain
gauges (triangles) and range rings at 50 and 100 km

from radar. Dashed square delimits the 140 x 140 km
region that was used as study area.

A database of 275 hourly radar rainfall images
corresponding to six different rainfall events was used
to estimate rainfall fields blending them with hourly
data of the rain gauges. Main characteristics of these
case events are summarized in Table 1. Before

merging radar fields with rain gauges data, some pre-
processing techniques were applied to radar data
sets.  First, ground clutter echoes and partial
screening effects were detected and corrected
(Sánchez-Diezma et al. 2001, Sempere-Torres et al.



2002). Then, Z-R relationship proposed by Marshall
and Palmer (1948) was applied to compute the
intensity values associated with the levels of
reflectivity of first PPI of radar fields. Finally,
accumulated rainfall radar images were computed

using an algorithm (Bellon et al. 1991) where the
precipitation field is assumed to move at constant
velocity and to vary linearly in intensity with time
between each time interval.

TABLE 1. Main Characteristics of Case Studies.

Date Duration (h)
Max. Accum.

Rainfall (mm)

10th June 2000 23 223.8

28th September 2000 18 39.7

19th July 2001 25 38.6

15th November 2001 96 125.4

08th October 2002 38 193.8

30th March 2004 72 96.9

Adjustment between radar fields and rain gauges data

for all time steps is presented in Figure 2. Radar
values correspond with the collocated data on rain
gauges locations. This figure clearly shows that radar
underestimates rainfall values compared with rain
gauges measurements.
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Figure 2. Scatter-plot between observed (rain gauges)
and radar rainfall data. Data of all time steps of the six

case studies are shown. Solid line shows the perfect
agreement line, and dashed line shows the best-fit line
of data.

4. RESULTS

We are looking for estimated rainfall fields with
quantitative characteristics of rain gauge

measurements but with spatial tendencies observed
in radar field. Therefore to analyze the performance of
KED estimator to assent this objective, two different
processes were employed.

First, cross-validation technique was used to evaluate
quantitative performance of KED estimator about to
estimate with accuracy the rain gauges observations.
In this technique, the primary data locations are
systematically suppressed one at a time (one known

rain gauge measurement) and the value at that
location is predicted using only the remaining data
locations via KED. Then the cross validation error,
defined as the difference between estimated and
known (but removed) value, is computed. Cross-
validation estimations were independently calculated
for each case study and for each time step.
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Figure 3. Scatter-plot between observed (rain gauges)

and estimated rainfall from KED. Solid line shows the
perfect agreement line, and dashed line shows the
best-fit line of data

Figure 3 shows the adjustment between cross-
validation estimations with the observed rain gauges
data for all time steps. These KED estimations show a

better agreement with rain gauges observations than
original radar values (shown in Figure 2). Nash-
Sutcliffe’s efficiency of cross-validation estimations is
equal to 0.76 instead of 0.53 for radar data, showing a
best fit with observed rainfall values on rain gauges.
Also, correlation between cross-validation estimations
and rain gauges data is better than that computed
with radar data (0.89 instead of 0.76). Finally, a

reduction of the underestimation tendency of original
radar data is evident on KED estimations. Slope of
best-fit line between KED estimations and rain gauges
(0.87) is more close to one than slope of radar data
(0.47).

Additionally, temporal evolution of mean logarithmic
bias of radar data and cross-validation estimations

was analyzed and compared to illustrate the temporal
performance of KED estimator. Mean field rainfall
logarithmic bias, is defined as:
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(1)

where Gi,t is hourly rain gauge rainfall (mm) at gauge i
for hour t, Ri,t is  the radar rainfall (or cross-validation



KED estimation) (mm) at gauge  i for hour t, and n is
the number of radar-gauge pairs data available for
that hour. Logarithmic mean biases computed for
each time step from cross-validation estimations are
compared with those computed from observed radar

data in Figure 5. A bias of –1 indicates that there are
less than 10 radar-gauge pairs data available for that
hour. From this figure, it can be seen that the scatter
of the estimated bias was less than that of the
observed, and its values were closer to 0 than
observed bias for all events. These results seem
indicate KED estimator have potentiality to compute
values of rainfall close with the observations of some

hypothetical rain gauge at same point.

Finally, rainfall fields were estimated on all study area
using KED, and then were compared with original
radar field values. As estimated rainfall fields would
preserve only general tendencies but not the
particular values of radar fields, comparisons between
rainfall fields were made using spectral analysis. The

comparison skill used is the slope of the best linear fit
to the logarithm of the power spectrum of the rainfall
field. The power spectrum derived from the fields is
supposed to follow a power-law in frequency (see e.g.
Pegram and Clothier 2001). If the power Fourier
spectrums of two different rainfall fields have similar
slopes, their spatial tendencies would be similar.
Therefore, Figure 4 shows the agreement between

the slopes of spectrum of rainfall radar fields and
rainfall fields estimated by KED at each time step.
Time steps with less than 10 radar-gauges pairs data
available for that hour were not included in the figure.
From this figure, it can be seen that the KED-
estimated rainfall fields have values of slopes close
with those obtained of the radar rainfall fields in the
most part of compared time steps. Dispersion of
points is reduced as well.

From these results, we can conclude that KED
estimator with the automatic (nonparametric)
definition of correlograms could estimate rainfall fields
based in rain gauge and radar data with a good

punctual agreements with rain gauges and with
similar spatial patters of those observed in the radar
rainfall fields.
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Figure 4. Comparison between slopes of Fourier
Spectrum of radar rainfall fields and KED rainfall fields.
Each point corresponds with a time step with more than

10 radar-gauge pairs data available for that hour. Solid
line shows the perfect agreement line.
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Figure 5. Comparison of the observed (black cross) and the cross-validation KED estimated (red diamond) mean field

logarithmic bias of the events. A bias value of –1 indicated that there are less than 10 radar-gauge pairs data available for
that hour.



5. CONCLUSIONS

This paper has examined the use of kriging with
external drift (KED) methodology for estimate rainfall
field using radar and rain gauge data. Spatial
variability models (correlogram) for this estimator

were not defined in traditional way, but estimated
automatically using a newly technique based on a
nonparametric FFT-smoothing process.
This automatic technique was used to define a
different valid 2D correlogram for each time step
analyzed. These correlograms guaranteed, in all
cases, the solution of KED equations systems.

Our goal is to estimate rainfall fields with quantitative
characteristics of rain gauge measurements but with
spatial tendencies observed in radar field. Therefore,
cross-validation, temporal logarithmic mean bias, and
spectral analysis were applied to the KED
estimations. Analysis of results seem indicate that
KED technique with the automatic definition of
correlograms could estimate based on rain gauge and

radar data rainfall fields with a good punctual
agreement with rain gauges and with similar spatial
patters of those observed in the radar rainfall fields.

This automatic technique to estimate rainfall fields is
extremely promising, particularly in time real
applications of radar and rain gauge data for
operational purposes.
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