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1 INTRODUCTION 

 
 Today the weather radar is an indispensable 
tool in the field of meteorology and hydrology. Its 
gapless spatial coverage and high temporal 
resolution are among its most evident advantages 
when detecting precipitation. But other than rain 
gauges which measure the rain rate R directly on 
the ground, the radar measures the reflectivity Z 
aloft and the rain rate has to be determined over a 
Z-to-R relationship. Besides the fact that the rain 
rate has to be calculated from the reflectivity many 
other sources of possible errors are inherent to the 
radar system: underestimation of the rainfall 
because of shielding effects and partial beam 
filling, attenuation caused by water present on the 
radome during and shortly after rainfall at the 
radar site (Germann, 1999). Worth mentioning are 
especially errors caused by the vertical 
precipitation structure and profile of reflectivity 
(VPR).  
 
 Because of the sources of errors mentioned 
above, the accuracy of the radar often is not 
sufficient for quantitative applications, and the 
development of methods to enhance the 
measuring accuracy has been a field of research 
for many years. To mention in this connection are 
methods to adjust radar estimates of rainfall to rain 
gauge measurements (e.g. Köck, 1999). Also 
artificial neural network (ANN) techniques have 
been used for ground rainfall estimations. Xiao 
and Chandrasekar (1997) trained a 
backpropagation neural network (BPNN) to predict 
ground rainfall. Liu et al. (2001) and Xu and 
Chandrasekar (2005) developed radial basis 
function (RBF) neural networks for radar rainfall 
estimation.  
 
 This paper presents a method to use the VRP 
over rain gauge sites to train a BPNN to predict 
the rainfall depth measured at ground level.  
__________________ 
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 Extensive analysis of rain gauge and weather 
radar data in Austria has shown that the metering 
precision of the radar largely depends upon the 
type of rainfall. Therefore the adjustment 
methodology takes into account the type of rainfall 
present. The VRP provides this information. The 
results indicate that the relationship determined by 
the neural network model between VRP and rain 
rate measured on the ground, is also 
representative for sites with similar elevation and 
distance from the radar. Therefore the model can 
provide better estimations for ground rainfall also 
for areas without rain gauge. 
 

 

2 DATA AVAILABLE 

 
 For the processing rain-gauge and radar data 
were available. The data sets extend over a 30-
month period from April 2002 to October 2004. 
The rain gauges are working on the tipping bucket 
principle with a resolution of 0.1 mm. Their 
temporal resolution is 15 minutes. Referring to the 
abovementioned sources of errors of the radar 
system, it should be noted that naturally also rain 
gauges feature measuring errors. The rain gauge 
data used here are officially controlled and verified 
by the Hydrographische Landesabteilung 
Steiermark (Department for Hydrography of the 
Province of Styria). 
 
 Reflectivity measurements are gained from the 
Doppler weather radar station on Mt. Zirbitzkogel. 
The designated radar is a high-resolution C-band 
weather-radar situated on an altitude of  2372 m 
(above Mean Sea Level, MSL). The distance 
between rain gauge and weather radar is about 70 
km. Table 1 shows the radar specifications.  
 

Table 1: Technical specifications of the weather 
radar on Mt. Zirbitzkogel 

 
Time interval between 
measurements 
Resolution in measured reflectivity 
 
3-dB-Beamwidth 

 
5 minutes 
14 levels of 
rain-rate  
1° 



Table 1: (continued) 
 

Minimum elevation angle 
Spatial resolution of the volume 
element 
Applied Z-to-R relationship  
Instrumented range  

0.8 ° 
 
1x 1 x 1 km³ 
Z = 200  R1.6 
220 km 

 
 
3 NEURAL NETWORK MODEL 

 
 According to Liu et al. (2001) the rainfall 
estimation can be viewed as a complex function 
approximation problem where the ground rainfall 
can be potentially dependent on the four-
dimensional structure (three spatial dimensions 
and time) of precipitation aloft.  
 
 An artificial neural network is a data-driven 
technique that characterises the behaviour of a 
system by finding a relationship between an input 
and a target time series. In this case the VRP 
above a rain gauge forms the input and the rain 
gauge measurement the output of the network. 
The neural network performs the function 
approximation based on historic volumetric radar 
and rain gauge data. As ANNs are in principle 
capable of performing any input-output 
relationship, it has to be ensured that the model is 
able to generalize. This means that the ANN 
describes not only the relationship between the 
training input and target data sets but that the 
relation found can also be applied to new data 
sets. This can be guaranteed by dividing the data 
available into training, validation and test sub sets, 
and to stop the training when the error on the 
validation data set increases. For this study one 
half of the data sets available were used for 
training and one quarter each for validation and 
training. The selection was carried out randomly. 
Though it was ensured that all subsets contained 
data from all seasons. 
 
 An analysis was carried out to define an 
appropriate input vector. As the lowest visible 
elevation level above the rain gauge site is 3.5 km 
(below denoted by level 1) a time lag between 
radar and rain gauge measurements was 
expected.  The analysis showed that the 
correlation of the radar reflectivity at level 1 with 
the rain gauge measurements 5-minutes shifted is 
highest (see Table 2) and the root mean square 
error is lowest (Table 3). Therefore the network 
was trained on the 5-minutes shifted rain gauge 
values.  Reflectivity values from level 1 to level 4 
(3.5 to 6.5 km elevation) were included into the 

input vector. Another input parameter was the 
highest level where reflectivity unlike zero was 
measured. This parameter was taken as an 
indicator concerning the type of rainfall present.   
 
 
Table 2: Correlation coefficient between radar and 

rain gauge measurements at different elevation 
levels and time lags. The distance between the 

levels equals 1 km. 
 

Time shift 
[min] 

Level 1 Level 2 Level 3 Level 4 

0 0.4685 0.3706 0.2998 0.2919 
5 0.5011 0.4153 0.3175 0.3072 

10 0.4848 0.4200 0.3092 0.2854 
15 0.4570 0.4019 0.3240 0.2564 
20 0.4212 0.3777 0.3202 0.2673 

 
 

Table 3: Root mean square error (RMSE) of the 
radar data at different elevation levels and time 

lags with respect to the rain gauge measurements. 
The distance between the levels equals 1 km. 

  
Time shift 

[min] 
Level 1 Level 2 Level 3 Level 4 

0 0.1699 0.1787 0.1835 0.1855 
5 0.1683 0.1771 0.1838 0.1863 

10 0.1698 0.1771 0.1841 0.1868 
15 0.1718 0.1777 0.1834 0.1875 
20 0.1744 0.1789 0.1832 0.1870 

 
 
4 RESULTS AND DISCUSSION 

 
 Several BPNNs have been trained to 
determine the network architecture showing the 
best performance on the validation data.  A 
configuration with 3 layers and 7 neurons in the 
hidden layer exhibited the best performance as 
measured by the RMSE.  Then the model was 
applied to the test data. Both correlation and root 
mean square error could be improved compared 
with the pristine radar data of Level 1. Table 4 
shows the figures. 
 

Table 4: Improvement of the ANN-Model 
compared to pristine radar data. 

 
 Pristine radar data ANN-Model 
Correlation 0.5675 0.5941 
RMSE 0.1538 0.1285 

 
 
 It was also examined if the ANN-Model is also 
applicable to other sites. For this purpose the 



model was tested with radar data over an other 
rain gauge site and the corresponding rainfall 
measurements. Data series from the weather 
station Gleinstätten, were used. The sites exhibit 
similar elevation and distance from the radar. 
Table 5 shows that both correlation and RMSE 
could be improved. The figures refer to the whole 
investigation period (from April 2002 to October 
2004).   
 
 
Table 5: Application of the ANN-Model to an other 

site (Gleinstätten). 
 

 Pristine radar data ANN-Model 
Correlation 0.3016 0.3748 
RMSE 0.1958 0.1902 

 
 
 It is notable that the model that was calibrated 
for the site at Kitzeck shows also good results 
when applied to site Gleinstätten about 10 km far. 
This makes the model applicable to an area 
around the station calibrated. 
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