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1 INTRODUCTION

Today the weather radar is an indispensable
tool in the field of meteorology and hydrology. Its
gapless spatial coverage and high temporal
resolution are among its most evident advantages
when detecting precipitation. But other than rain
gauges which measure the rain rate R directly on
the ground, the radar measures the reflectivity Z
aloft and the rain rate has to be determined over a
Z-to-R relationship. Besides the fact that the rain
rate has to be calculated from the reflectivity many
other sources of possible errors are inherent to the
radar system: underestimation of the rainfall
because of shielding effects and partial beam
filling, attenuation caused by water present on the
radome during and shortly after rainfall at the
radar site (Germann, 1999). Worth mentioning are
especially errors caused by the vertical
precipitation structure and profile of reflectivity
(VPR).

Because of the sources of errors mentioned
above, the accuracy of the radar often is not
sufficient for quantitative applications, and the
development of methods to enhance the
measuring accuracy has been a field of research
for many years. To mention in this connection are
methods to adjust radar estimates of rainfall to rain
gauge measurements (e.g. Kdck, 1999). Also
artificial neural network (ANN) techniques have
been used for ground rainfall estimations. Xiao
and Chandrasekar (1997) trained a
backpropagation neural network (BPNN) to predict
ground rainfall. Liu et al. (2001) and Xu and
Chandrasekar (2005) developed radial basis
function (RBF) neural networks for radar rainfall
estimation.

This paper presents a method to use the VRP
over rain gauge sites to train a BPNN to predict
the rainfall depth measured at ground level.
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Extensive analysis of rain gauge and weather
radar data in Austria has shown that the metering
precision of the radar largely depends upon the
type of rainfall. Therefore the adjustment
methodology takes into account the type of rainfall
present. The VRP provides this information. The
results indicate that the relationship determined by
the neural network model between VRP and rain
rate measured on the ground, is also
representative for sites with similar elevation and
distance from the radar. Therefore the model can
provide better estimations for ground rainfall also
for areas without rain gauge.

2 DATA AVAILABLE

For the processing rain-gauge and radar data
were available. The data sets extend over a 30-
month period from April 2002 to October 2004.
The rain gauges are working on the tipping bucket
principle with a resolution of 0.1 mm. Their
temporal resolution is 15 minutes. Referring to the
abovementioned sources of errors of the radar
system, it should be noted that naturally also rain
gauges feature measuring errors. The rain gauge
data used here are officially controlled and verified
by the Hydrographische Landesabteilung
Steiermark (Department for Hydrography of the
Province of Styria).

Reflectivity measurements are gained from the
Doppler weather radar station on Mt. Zirbitzkogel.
The designated radar is a high-resolution C-band
weather-radar situated on an altitude of 2372 m
(above Mean Sea Level, MSL). The distance
between rain gauge and weather radar is about 70
km. Table 1 shows the radar specifications.

Table 1: Technical specifications of the weather
radar on Mt. Zirbitzkogel

Time interval between

measurements 5 minutes

Resolution in measured reflectivity 14 levels of
rain-rate

3-dB-Beamwidth 1°




Table 1: (continued)

Minimum elevation angle 0.8 °

Spatial resolution of the volume

element 1x 1 x1km3
Applied Z-to-R relationship Z=200 R1.6
Instrumented range 220 km

3 NEURAL NETWORK MODEL

According to Liu et al. (2001) the rainfall
estimation can be viewed as a complex function
approximation problem where the ground rainfall
can be potentially dependent on the four-
dimensional structure (three spatial dimensions
and time) of precipitation aloft.

An artificial neural network is a data-driven
technique that characterises the behaviour of a
system by finding a relationship between an input
and a target time series. In this case the VRP
above a rain gauge forms the input and the rain
gauge measurement the output of the network.
The neural network performs the function
approximation based on historic volumetric radar
and rain gauge data. As ANNs are in principle
capable of performing any input-output
relationship, it has to be ensured that the model is
able to generalize. This means that the ANN
describes not only the relationship between the
training input and target data sets but that the
relation found can also be applied to new data
sets. This can be guaranteed by dividing the data
available into training, validation and test sub sets,
and to stop the training when the error on the
validation data set increases. For this study one
half of the data sets available were used for
training and one quarter each for validation and
training. The selection was carried out randomly.
Though it was ensured that all subsets contained
data from all seasons.

An analysis was carried out to define an
appropriate input vector. As the lowest visible
elevation level above the rain gauge site is 3.5 km
(below denoted by level 1) a time lag between
radar and rain gauge measurements was
expected. The analysis showed that the
correlation of the radar reflectivity at level 1 with
the rain gauge measurements 5-minutes shifted is
highest (see Table 2) and the root mean square
error is lowest (Table 3). Therefore the network
was trained on the 5-minutes shifted rain gauge
values. Reflectivity values from level 1 to level 4
(3.5 to 6.5 km elevation) were included into the

input vector. Another input parameter was the
highest level where reflectivity unlike zero was
measured. This parameter was taken as an
indicator concerning the type of rainfall present.

Table 2: Correlation coefficient between radar and
rain gauge measurements at different elevation
levels and time lags. The distance between the

levels equals 1 km.

Time shift Level1 Level2 Level3 Level4
[min]

0 0.4685 0.3706 0.2998 0.2919

5 0.5011 0.4153 0.3175 0.3072

10 0.4848 0.4200 0.3092 0.2854

15 0.4570 0.4019 0.3240 0.2564

20 0.4212 0.3777 0.3202 0.2673

Table 3: Root mean square error (RMSE) of the
radar data at different elevation levels and time
lags with respect to the rain gauge measurements.
The distance between the levels equals 1 km.

Time shift Level1 Level2 Level3 Level4
[min]
0 0.1699 0.1787 0.1835 0.1855
5 0.1683 0.1771 0.1838 0.1863
10 0.1698 0.1771  0.1841 0.1868
15 0.1718 0.1777 0.1834 0.1875
20 0.1744 0.1789 0.1832 0.1870
4 RESULTS AND DISCUSSION
Several BPNNs have been ftrained to

determine the network architecture showing the
best performance on the validation data. A
configuration with 3 layers and 7 neurons in the
hidden layer exhibited the best performance as
measured by the RMSE. Then the model was
applied to the test data. Both correlation and root
mean square error could be improved compared
with the pristine radar data of Level 1. Table 4
shows the figures.

Table 4: Improvement of the ANN-Model
compared to pristine radar data.

Pristine radar data ANN-Model
0.5675 0.5941
0.1538 0.1285

Correlation
RMSE

It was also examined if the ANN-Model is also
applicable to other sites. For this purpose the



model was tested with radar data over an other
rain gauge site and the corresponding rainfall
measurements. Data series from the weather
station Gleinstatten, were used. The sites exhibit
similar elevation and distance from the radar.
Table 5 shows that both correlation and RMSE
could be improved. The figures refer to the whole
investigation period (from April 2002 to October
2004).

Table 5: Application of the ANN-Model to an other
site (Gleinstatten).

Pristine radar data ANN-Model
0.3016 0.3748
0.1958 0.1902

Correlation
RMSE

It is notable that the model that was calibrated
for the site at Kitzeck shows also good results
when applied to site Gleinstatten about 10 km far.
This makes the model applicable to an area
around the station calibrated.
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