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1 INTRODUCTION

Snow crystals consist of many different types of ice
particles. Typical radar measurements observe only
bulk properties of all types of ice particles present in a
radar volume. Due to their difference in cross-section,
large particles will reflect more power of the transmit-
ted radar signal than small particles. If small and large
particles are present in the same radar volume with
comparable volume concentrations, the radar mea-
surements will be dominated by larger particles. Be-
cause of this, it is difficult to obtain microphysical prop-
erties of both large and small particle types, based on
reflectivity alone.

In this work, application of spectral dual polariza-
tion analysis for retrieval of microphysical properties
of ice particles in stratiform precipitation is presented.
Based on literature research a selection on the parti-
cle types that are predominantly present in radar mea-
surements is done. The selection is based on radar
cross-sections of the different particles and on meteo-
rological conditions as well. The radar cross-sections
are calculated with a model derived from literature.
With the obtained knowledge, it is shown that only ag-
gregates and plates dominate spectral radar retrievals
above the melting layer of stratiform precipitation.

A model is created to simulate spectral radar ob-
servables of plates and aggregates. This model is de-
pendent on the parameters of the drop size distribu-
tion of plates and aggregates, ambient wind velocity
and spectral broadening. The simulated radar spectra
are fitted to radar measurements using a non-linear
least squares optimization technique. The data is ob-
tained at the measurement site Cabauw, The Nether-
lands by TARA (Transportable Atmospheric Radar)
(Heijnen et al. 2000). TARA is an S-band FM-CW dual
polarization Doppler radar. The measurements are
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Figure 1: The goal of the work is to retrieve
drop size distribution parameters of ice crystals in
stratiform precipitation from spectral radar mea-
surements

taken in stratiform precipitation. It is shown that un-
der certain assumptions, the parameters of the drop
size distributions of plates and aggregates, the ambi-
ent wind velocity and the spectral broadening can be
retrieved from spectral radar measurements.

2 PROPERTIES OF SNOW PARTICLES

Previous research on ice particles came up with more
than 60 different types of ice particles (Magono and
Lee 1966). In this part of the work, properties of ice
particles are given, which are necessary to determine
the radar cross-sections of the different types. Impor-
tant properties of the particles are size, shape, den-
sity, permittivity and fall velocity. Based on the derived
radar cross-sections, the particle types that dominate
radar measurements are selected.

The different ice particle types given by Magono
and Lee (1966), can be divided in three different
groups, depending on their size. The most important
ice particle types that represent the different groups
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are: plates, dendrites and columns for small ice
particles; rimed particles and aggregates for the
intermediate particles and graupel and hail for the
large particles. An overview of these particles is given
in figure 2.

The occurrence of the different ice particles de-
pends on temperature, pressure and humidity of the
atmosphere. Based on the atmospheric conditions
above the melting layer during the measurements, it
is not likely that columns are present (Gold and Power
1954). Next to that, the data is selected in a region
well above the melting layer. With the assumption that
no large updrafts are present, riming of ice particles
is not likely.

Aggregates are a combination of pristine ice parti-
cles. Based on the shape of the particles, dendrites
and plates have the largest chance to combine to an-
other particle, which means that aggregates consist of
a combination of plates and dendrites. This coincides
also with the types of aggregates assumed in other
research, see for example (Rajopadhyaya et al. 1994)
and (Szymer and Zawadzki 1999).

A summary of the ice particle types that may be
present, can be found in table 1. The sizes of the
different particles, that are presented in the table as
well, are typical sizes found in literature ((Mitchell
et al. 1990), (Mitchell 1996) and (Pruppacher and
Klett 1978)). It has to be taken into account that these
boundaries aren’t strict boundaries, which means that
it is also possible that particles exist outside these
boundaries.

2.1 Shape of the ice crystals

It is very common to model the shape of hydromete-
ors as oblate spheroids, with the exception of graupel,
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Figure 2: Typical forms of snow in the different
size regions (Magono and Lee 1966)

Table 1: Types and typical sizes of snow parti-
cles

Type Diameter [mm]

Plates 0.015 . D . 3
Dendrites 0.3 . D . 4
Aggregates 0.5 . D . 8
Graupel 2 . D . 8
Hail 5 . D . 25

which has a conical shape (Wang 1982).

Spheroidal shape According to Matrosov et al.
(1996), the shape of snow crystals can be approxi-
mated by an oblate spheroid. The relation between
the smallest and biggest particle dimensions are given
by a power law,

w(D) = ξDζ (1)

where w is the smallest dimension of the spheroid,
and D the largest dimension. Values for ξ and ζ can
be found in (Matrosov et al. 1996) and (Auer and Veal
1970) for plates, dendrites and aggregates. The re-
lation for hail is given by Bringi and Chandrasekar
(2001). All parameters used in this work are summa-
rized in the appendix.

Conical shape A conical shape can be described by
(Wang 1982),

x, y = ±a[1 − (z2/C2)]
1

2 cos−1(z/λC) (2)

where x, y and z are the coordinates of the surface
and λ is a shape parameter and assumed to be
equal to 2, according to Wang (1982). C is equal
to half the intersection of the particle with the z axis
and it can easily be verified that L equals π/a and
2x (Wang 1982). The relation between C and L is
assumed to be constant for all diameters and is equal
to L = 0.9C, according to Wang (1982).

Based on equations (1) and (2) the axis ratio, de-
fined as the ratio of smallest and largest particle di-
mension, can be determined. In figure 3, the axis ratio
is given as function of particle size. As can be seen
in the figure, the axis ratio of hail, graupel and aggre-
gates is constant over diameter. In reality these par-
ticles have very irregular shapes. It is common to fit
these irregular shapes into spheroids, which are close
to spheres, to simplify calculations. From the figure, it
can also be noticed that plates and dendrites have a
more oblate shape.
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Figure 3: Dependence of axis ratio on particle
size for different ice particles.

2.2 Density of the ice crystals

The density of ice particles can be modeled, accord-
ing to Pruppacher and Klett (1978), as function of
maximum particle dimension D,

ρe = kDl (3)

Pruppacher and Klett (1978) gives values for the vari-
ables k and l for plates and dendrites. The density for
conical graupel and hail is taken from El-Magd et al.
(2000). Because aggregates occur in many different
appearances, their density is very difficult to model.
However, Fabry and Szymer (1999) provide a com-
parison on the density relations found in literature and
gives a relation which reproduces reality best. The re-
lations investigated in (Fabry and Szymer 1999) are
given in figure 4. The diameter-density relations for
the different particles are given in figure 5.

2.3 Relative permittivity of the ice crystals

The different ice particle types all consist of a differ-
ent mixture of air and ice, which has an effect on their
density as can be seen in figure 5. The permittivity
for these mixtures of air and ice can be calculated
using the Maxwell-Garnett formula (Bringi and Chan-
drasekar 2001). This equation gives the effective di-
electric constant for mixtures depending on their vol-
ume concentrations. This formula calculates the di-
electric constant based on the volume concentration

Figure 4: Different density relations for aggre-
gates, dependent on diameter.The different re-
lations are investigated in (Fabry and Szymer
1999). In this work, it is concluded the relation
ρ=0.015D−1 fits reality best.

Figure 5: Dependence of particle density on par-
ticle size for different ice particle types.
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of ice in air.

ǫeff

ǫair

=
1 + 2cF

1 − cF

F =
ǫice − ǫair

ǫice + 2ǫair

(4)

c =
ρparticle

ρice

ǫice

with ǫeff the permittivity of the ice particle, c the volume
concentration of the inclusion of ice in air, ǫice and
ǫair are the permittivities of ice and air respectively.

The permittivity of ice is dependent on temperature
and frequency. Ray (1972) gives a way to calculate
the permittivity of ice over a broad spectral range.
The imaginary part of the dielectric constant is very
small (1%) compared to the real part and is therefore
neglected.

Due to the high correlation of permittivity with den-
sity, the figure of the permittivity-size relation is com-
parable to figure 5 and is therefore not provided.

2.4 Velocity of the ice crystals

The derivation of terminal fall velocity of hydrometeors
is taken from (Mitchell 1996).

When an ice particle falls, an aerodynamic drag
force acts upon it. This drag force is given by

FD =
1

2
ρav2ACD (5)

where v is the velocity, A the area projected to the
normal flow of the ice particle. ρa is the density of air,
and CD is the drag coefficient.

The drag force acting upon the particle is equal to
the gravitational force, which gives a terminal velocity
of

vt =

(

2mg

ρaACD

)
1

2

(6)

where m is the mass of the particle and g is the gravi-
tational constant. However, using this equation is diffi-
cult because it is not possible to characterize the drag
coefficient independently of velocity (Mitchell 1996).

Therefore, in practice, the terminal velocity is often
calculated by making use of Best (X) and Reynolds
(Re) number. They are given by

X =
2mgρaD2

Aη2
(7)

Re =
vDρa

η
(8)

where D is the largest dimension of the particle and
η is the dynamic viscosity of air. Best number gives a
relation for the microphysical properties of the ice par-
ticle and Reynolds number is related to velocity and
the viscous forces on the ice particle. Relating Best
and Reynolds number makes it possible to establish
a relation between the microphysical properties and
the velocity of the particle. Many experimental stud-
ies have shown, according to Mitchell (1996), that this
relation exists and is given by a power law,

Re = aXb (9)

Combining equations [6-9], the terminal velocity is
given by

vt =
aν

D

(

2mD2g

ρaν2A

)2

(10)

where is made use of the property ν = η/ρa, which
is the kinematic viscosity of air.

To obtain speed-size relations of ice particles de-
pendent on their diameter, mass and area of these
particles need to be parameterized as a function of di-
ameter. For these parameterizations power laws are
used (Mitchell 1996). They can be expressed as a
function of maximum particle dimension D,

m(D) = αDβ (11)

A(D) = γDσ (12)

Combining equations [10-12], the following equa-
tion is obtained for the terminal velocity of ice parti-
cles,

vt = aν

(

2αg

ρaν2γ

)b

Db(β+2−σ)−1 (13)

The values of α, β, γ and σ, for the different types of
ice particles (except conical graupel), can be found
in Mitchell (1996). The values for conical graupel are
given by Heymsfield and Kajikawa (1987).

The values of a and b are derived in (Khvorostyanov
and Curry 2002) as continuous function of X over the
whole dimension range of the ice particles.

b(X) =
1
2c1X

1

2

[

(

1 + c1X
1

2

)
1

2 − 1

]

(

1 + c1X
1

2

)
1

2

(14)

a(X) =
σ2

0

4

[

(

1 + c1X
1

2

)
1

2 − 1

]2

X−b(X) (15)
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Figure 6: Velocity for different ice particles de-
pending on their size.

where σ0 and c1 are constants.
Now a relation is derived for velocity dependent on
maximum particle dimension D,

vt(D) = ADB (16)

A = aν

(

2αg

ρaν2γ

)b

(17)

B = b(β + 2 − σ) − 1 (18)

The fall velocities for the different particle types are
shown in figure 6. From this plot it can be concluded
that the different particles exist in different velocity re-
gions. In the velocity region 0-2 ms−1 only plates,
dendrites and aggregates exist. Graupel is observed
in the region above 2 ms−1 and hail exists above 10
ms−1.

2.5 Selection of particle types

With the given description of the properties of snow
particles, it is possible to calculate the radar cross-
section of the different types of snow particles, us-
ing Rayleigh scattering theory for spheroidal parti-
cles (Russchenberg 1992) and the T-matrix method
for conical shaped particles (Mishchenko et al. 2000).
The radar cross-section for the different types of snow
particles depending on their velocity is given in figure
7.

Selection based on cross-sections Radar re-
trievals of precipitation are commonly expressed in the

Figure 7: Radar cross-section for different ice
particles types depending on their velocity. The
elevation angle is 45o and the frequency is 3 GHz

radar observables horizontal reflectivity and differen-
tial reflectivity. If only one type of particle is present
in the radar volume, the spectral representations are
given by (Skaropoulos and Russchenberg 2003),

sZHH(v)dv = N(D{v})σHH(D{v})
∣

∣

∣

∣

dD

dv

∣

∣

∣

∣

dv (19)

sZDR(v)dv =
N(D{v})σHH(D{v})

∣

∣

dD
dv

∣

∣ dv

N(D{v})σV V (D{v})
∣

∣

dD
dv

∣

∣ dv
(20)

Because the drop size distribution, N(D), and the
radar cross-section are given as functions of diameter,
the Jacobian

∣

∣

dD
dv

∣

∣ is needed to take the change of
variables, from diameter to velocity, into account.

As already stated, precipitation above the melting
layer consists of multiple particle types and the radar
observables are therefore given by a summation over
the n types present in the radar volume,

sZHH(v)dv = (21)
n

∑

i=1

N(Di{v})σHH,i(Di{v})
∣

∣

∣

∣

dD

dv

∣

∣

∣

∣

dv

sZDR(v)dv = (22)
∑n

i=1 N(Di{v})σHH,i(Di{v})
∣

∣

dD
dv

∣

∣ dv
∑n

i=1 N(Di{v})σV V,i(Di{v})
∣

∣

dD
dv

∣

∣ dv

From equation (21) it can be concluded that if the
number of particles of different particle types are the
same and one of the respective radar cross-sections
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is significantly smaller, the scattering by this particle
type will not be noticed.

Referring to figure 7, where the different cross-
sections are shown, the following can be concluded:

• The radar cross-section of plates is significantly
larger than the radar-cross section of dendrites
for larger diameters.

• For small diameters their radar cross-sections
become similar. Though, the microphysical prop-
erties for plates and dendrites are similar in this
region as well (see figures 3, 5 and 6).

The second conclusion can be imagined easily as
well, if dendrites become very small there will be
hardly any air between the branches and the dendrite
will look like plate crystals.

Because it is not likely that concentrations of den-
drites and plates will be significantly different from
each other (Cotton 2004), the radar backscattering
from an ensemble of plates and dendrites will be dom-
inated by plates and dendrites will not be noticed.

Selection based on velocity During the measure-
ments with TARA only low fall velocities and spectral
widths are observed. Considering the high fall velocity
of hail and graupel, it is not likely that hail and graupel
will be present in the radar data. Therefore they are
excluded from the model from now on.

This leaves only plates and aggregates as particle
types that dominate the radar retrievals. It has to be
kept in mind that if higher velocities are observed the
scattering by graupel and hail also effects the radar
retrievals.

3 RETRIEVAL OF DSD PARAMETERS

In this part an algorithm is developed which extracts
microphysical properties of plates and aggregates
from spectral radar measurements above the melting
layer in stratiform precipitation. The model described
above, is extended to a model which produces the
spectral moments. These simulated spectra are fitted
to the measurements using a non-linear least squares
optimization.

Using (21) and (22), spectral radar observables of
precipitation above the melting layer can be created.
To be able to create spectra, a suitable form of the

drop size distribution has to be selected first. In lit-
erature, two forms of drop size distributions are com-
monly used, the gamma distribution and the exponen-
tial distribution. The main difference between these
two distributions is an extra shape parameter which is
included in the gamma distribution to take deviations
into account for small particles. In the exponential dis-
tribution this shape parameter is set to zero.
Since both distributions are generally accepted and
there is no well defined argument to prefer one above
the other, the exponential distribution is used in this
work. The main reason is, the parameters of the drop
size distribution have to be retrieved by a retrieval al-
gorithm. This will be significantly more easy if one de-
gree of freedom is left out. However, there is no good
reason to set the shape parameter to zero instead
of e.g four. Therefore dependence on the choice of
the shape parameter has to be investigated at a later
stage.

The exponential distribution is given by

N(D) = Nw exp

[

−(3.67)
D

D0

]

(23)

with Nw the intercept parameter [mm−1m−3] and D0

the median volume diameter [mm].

Because radar measurements are affected by spec-
tral broadening, this parameter is included in the
model as well. According to Doviak and Zrnic (1993),
spectral broadening can be modeled as a convolution
of the spectral radar observables with a gaussian con-
volution kernel,

sZHHmod(v) = sZbroad(v) ∗ sZHH(v) (24)

=
1√

2πσ0

∫

exp

[

− (v − ṽ)2

2σ2
0

]

sZHH(v)dṽ

where ∗ denotes the convolution operator, σ0 is the
width of the broadening spectrum [ms−1] and sZHH

the spectrum given by equation (21).

A final parameter which effects radar measure-
ments is ambient wind velocity. Due to wind velocity
the observed velocity is shifted with respect to the real
fall velocity by

vobs = vfall + v0 (25)

The description given above, gives a model for
spectral radar observables dependent on 6 parame-
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Figure 8: Dependence of sZHH and sZDR on
the parameters of the drop size distribution for
aggregates. Units are mm for D0, mm−1m−3 for
Nw and ms−1 for σ0.

ters,

sZmod
HH = (26)

sZHH(v,Nagg
w ,Dagg

0 , Npla
w ,Dpla

0 , v0, σ0)

sZmod
DR = (27)

sZDR(v,Nagg
w ,Dagg

0 , Npla
w ,Dpla

0 , v0, σ0)

3.1 Dependence on DSD parameters

To get insight in the dependence of sZHH and sZDR

on the 6 parameters given in (26) and (27) a sensitivity
study is carried out. By changing the parameters one
by one, and keeping the other five constant, a good in-
sight can be provided on the dependence of the radar
observables on the different parameters.

In figures 8-10 the plots are shown for changing the
different variables over a realistic range. The plots
on the dependence of v0 are left out because v0 only
generates a shift of the spectrum which can be easily
imagined. From the figures the following can be con-
cluded:
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Figure 9: Dependence of sZHH and sZDR on
the parameters of the drop size distribution for
plates. Units are mm for D0, mm−1m−3 for Nw

and ms−1 for σ0.
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Figure 10: Dependence of sZHH and sZDR on
the spectral broadening factor. Units are mm for
D0, mm−1m−3 for Nw and ms−1 for σ0.
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• An increase in Nw for aggregates leads to an in-
crease in sZHH and a decrease in sZDR. The
more aggregates there are, the more the total
sZDR tends to the differential reflectivity of ag-
gregates, which is close to zero dB, due to the
near spherical shape of aggregates (see figure
3).

• An increase in D0 for aggregates leads to an in-
crease and a wider spectrum for sZHH . sZDR

decreases for the same reason as explained for a
change in Nw because the contribution of aggre-
gates to the total spectrum becomes more domi-
nant.

• An increase in Nw for plates hardly effects the
observed sZHH . This is due to the fact that
the radar cross-section for plates is significantly
smaller with respect to the cross-section of ag-
gregates (see figure 7). On the other hand sZDR

increases with an increasing Nw. This is a result
of the high sZDR for plates due to their oblate
shape (see figure 3). With an increasing partici-
pation of plates in the observed differential reflec-
tivity it tends more to the differential reflectivity of
plates.

• An increase in D0 for plates generates a similar
effect as an increase of Nw for plates.

• The effect of spectral broadening on horizontal
reflectivity is that the maximum of the spectrum
becomes lower and the spectrum becomes wider
and more symmetric as well. Next to that, an in-
crease of spectral broadening flattens the profile
of differential reflectivity.

3.2 Retrieval of parameters

With spectra created by (26) and (27), it is possible to
develop a retrieval algorithm which obtains the six pa-
rameters from sZHH and sZDR. The parameters will
be retrieved by fitting simulated spectra to measured
spectra. Therefore an optimization can be used which
minimizes the difference between the fitted spectrum
and the measured spectrum by varying the six input
parameters,

min
Dagg

0 , Dpla
0 , σ0,

Nagg
w , Npla

w , v0

vmax
∑

v=vmin

[

sZmeas
XX (v) − sZmod

XX

]2

(28)
where the ’XX’ denotes spectral horizontal reflectivity
or spectral differential reflectivity. This minimization
can be done using a non-linear least squares algo-

rithm which minimizes the error,

error(Ψ) =
∑

[

sZmeas
XX (v) − sZmod

XX (v,Ψ)
]2

(29)

where Ψ is a vector containing all six parameters. The
error as function of Ψ is often called the cost function.

Such six parameter non-linear least squares opti-
mizations are very difficult to solve and time consum-
ing. Therefore it is necessary to simplify (28). For
that, the knowledge obtained on the dependence of
the spectral radar observables on the six parameters
will be used. From figures 8-10 it can be concluded,
the shape of sZHH is largely determined by the drop
size distribution parameters of aggregates, ambient
wind velocity and spectral broadening. sZDR on the
other hand, is determined by a combination of all six
parameters. Therefore, a good approach to simplify
(28) is to separate the six parameter optimization into
two stages,

• determining the DSD parameters of aggregates,
ambient wind velocity and spectral broadening
based on sZHH

• determining the DSD parameters of plates on
sZDR using retrieved values from previous step

Optimization based on sZHH This separation sim-
plifies the six parameter optimization into a four and a
two parameter optimization. The first routine is given
by

min
Λ

∑

[

sZmeas
HH (v) − sZmod

HH (v,Λ)
]2

(30)

where Λ is a vector containing Nagg
w ,Dagg

0 ,σ0 and v0.
And the second optimization is given by

min
Γ

∑

[

sZmeas
DR (v) − sZmod

HH (v,Γ)|Λ
]2

(31)

with Γ a vector containing Dpla
0 and Npla

w .

The 4 parameter optimization can even by simpli-
fied to a two parameter optimization by separating
Nagg

w and v0 from Dagg
0 and σ0.

Nagg
w can be set apart from the other parameters

by rewriting equation (30) to

sZmeas
HH = sZmod

HH (v, 1,Dagg
0 , v0, σ0)N

agg
w + ǫ (32)
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Figure 11: Example of output of cost function
give by (34).

where ǫ are random errors. The equation above, is
just a linear combination of two vectors and therefore
solvable using a least squares solution. (Equation 31
can be simplified in a similar way to a one parameter
optimization over Dpla

0 .)

Now assuming Dagg
0 , Nagg

w and σ0 to be known,
v0 can be estimated by calculating a reference spec-
trum with v0 equal to zero and determining the lag of
the cross-correlation between the measured spectrum
and the reference spectrum

v0 = max
{

sZmod
HH (v,Nagg

w ,Dagg
0 , σ0) ⋆ sZmeas

HH (v)
}

(33)
where ⋆ denotes the cross-correlation.

To be able to get insight in the quality of the de-
scribed optimization routine, the error between a sim-
ulated spectrum and a fitted spectrum is calculated
varying Dagg

0 . This error is given by

error(Λ) =
∑

[

sZsim
HH (v) − sZmod

HH (v,Λ)
]2

(34)

It turns out that this cost function has no unique min-
imum as is illustrated with figure 11. This is due to the
fact that for increasing Dagg

0 the spectral horizontal
reflectivity becomes too symmetric. Therefore there
is too little difference in spectra obtained for different
Dagg

0 and as a consequence, the error between simu-
lated and fitted spectrum will be constant over Dagg

0 .

Unfortunately, the output of the cost function of (30)
has no minimum even if Dpla

0 is known. This means
that if a minimization is performed there is no guar-
antee the correct values of the six parameters will be
obtained.

Optimization based on sZDR Because the de-
scribed routine didn’t give satisfactory results, a differ-
ent approach to solve (28) is needed. Instead of defin-
ing a cost function based on sZHH , the error between
measured and fitted spectral differential reflectivity will
be minimized. This routine is given by

min
Ψ

∑

[

sZmeas
DR (v) − sZmod

DR (v,Ψ)
]2

(35)

Again this routine will be splitted up for simplification.
Nagg

w , Npla
w will be calculated comparable to (32),

though calculation is now based on sZDR

sZmeas
DR =

∑2
n=1 sZmod

HH (v, 1,Dn
0 , v0, σ0)N

n
w

∑2
n=1 sZmod

V V (v, 1,Dn
0 , v0, σ0)Nn

w

+ ǫ

(36)
where the summation is done over the two particle
types, aggregates and plates.

Comparable to equation 33, v0 is calculated by

v0 = max
{

sZmod
HH (v,Ψ) ⋆ sZmeas

HH (v)
}

(37)

It turned out, the retrieval routine works best if opti-
mization of σ0 is separated from Dagg

0 and Dpla
0 . So,

assuming all six parameters except σ0 to be known,
σ0 can be calculated by the least squares optimiza-
tion of

min
σ0

∑

[

sZmeas
HH (v) − sZmod

HH (v,Ψ)
]2

(38)

The total routine is now given by

min
D

agg
0

,D
pla
0

min
σ0

min
v0

min
N

agg
w ,N

pla
w

(39)

∑

[

sZmeas
DR (v) − sZmod

DR (v,Ψ)
]2

with the optimization for σ0 and v0 based on sZHH .

3.3 Quality of retrieval technique

To test the quality of the retrieval technique the routine
is applied to simulated spectra obtained with (26) and
(27). To generate signals with real statistical proper-
ties, noise is added according to Chandrasekar et al.
(1986). The values of the parameters are changed in
the regions given in table 2.
It has to be noted that the estimation of the variables
is only executed if sZHH exceeds -15 dB and if sZDR

is larger than 0.6 dB. The first threshold is to ensure
the spectrum has a sufficient signal-to-noise ratio to
perform the optimization. The second threshold is to
ensure that the amount of plates is detectable.
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Table 2: Regions of variables

Parameter Region

Dagg
0 0.5 - 3 mm

Nagg
w 0 - 8000 mm−1m−3

Dpla
0 0.2 - 1.8 mm

Npla
w 0 - 8000 mm−1m−3

σ0 0.1 - 0.7 ms−1

v0 0 - 1 ms−1
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Figure 12: Retrieved values vs input values of
DSD parameters of aggregates.

In figures 12-14 the results of the optimization for
the six parameters are shown. On the horizontal axes
the input parameter values are given and the retrieved
values are plotted on the vertical axes.

4 APPLICATION TO TARA DATA

The developed retrieval technique is also applied
to real measurements. These measurements are
taken in a stratiform precipitation by TARA at Cabauw,
The Netherlands. A moderate rain event is selected
with reflectivity values of rain varying from 20 to 35
dBz. The event took place at September 19th, 2001.
The elevation angle of the radar was 45 degrees
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Figure 13: Retrieved values vs input values of
DSD parameters of plates
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Figure 15: Spectral radar observables obtained

with TARA at September 19th, 2001. a) spectral
horizontal reflectivity and b) spectral differential.
reflectivity

and a range resolution of 15 m was used for the
measurement. The measurements are carried out
in alternating polarization mode where HH, VV, HV
and two offset beams are collected in a block of five
sweeps with duration of 1 ms. To calculate 1 Doppler
spectrum, 10 spectra are averaged, with each spec-
trum estimated by applying a 512 sample FFT with a
Hamming window. In figure 15 the spectral horizontal
reflectivity and spectral differential reflectivity are
shown.

The spectra are selected in a range from 150 to 250
m above the top of the melting layer. After clipping the
data to remove the noise part of the measurements,
the retrieval routine given by (39) is applied on the ob-
tained spectra. In figures 16 - 21 plots are given of the
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Figure 16: Obtained Doppler spectra at 2036 m
with obtained fit. The measurement is given by
the solid line and the obtained fit is given with the
dashed line.
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Figure 17: Obtained Doppler spectra at 2057 m
with obtained fit. The measurement is given by
the solid line and the obtained fit is given with the
dashed line.

Doppler spectra with the obtained fits.

4.1 Discussion

To be able to draw conclusions on the retrieved val-
ues by the retrieval algorithm, it is necessary to calcu-
late an integral parameter, like the Ice Water Content.
This is due to the fact that there is little knowledge
on microphysical properties of ice crystals above the
melting layer in stratiform precipitation. The Ice Water
Content is given by (Hogan et al. 2005),

IWC =

∫

∞

0

N(D)m(D)dD = αβNw(
D0

3.67
)β+1

(40)

with IWC, the Ice Water Content [kg m−3], Nw in
m−4 and D0 in m. α and β are the parameters of the
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Figure 18: Obtained Doppler spectra at 2078 m
with obtained fit. The measurement is given by
the solid line and the obtained fit is given with the
dashed line.
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Figure 19: Obtained Doppler spectra at 2100 m
with obtained fit. The measurement is given by
the solid line and the obtained fit is given with the
dashed line.
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Figure 20: Obtained Doppler spectra at 2121 m
with obtained fit. The measurement is given by
the solid line and the obtained fit is given with the
dashed line.
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Figure 21: Obtained Doppler spectra at 2142 m
with obtained fit. The measurement is given by
the solid line and the obtained fit is given with the
dashed line.

Table 3: Values of measured reflectivity values
and retrieved Ice Water Content for spectra given
in figures 16-21

Height [m] Ze [dBz] ZDR [dB] IWC [gm−3]

2036.5 26.0 0.071 0.6199
2057.7 26.3 0.004 0.6954
2078.9 24.8 0.007 0.4315
2100.1 24.3 0.047 21.436
2121.3 23.8 -0.03 0.2275
2142.5 23.0 -0.02 0.3486

exponential mass-diameter power law given in (11).
To obtain the total Ice Water Content a summation
has to be done over (40) for plates and aggregates. In
table 3 the values for the Ice Water Content obtained
with the retrieved DSD values are given.

From the retrieved Ice Water Content values it is
noticed, the optimization on the fourth measurement
(height 2100.1 m, figure 19) is conspicuous. A rea-
son can be found in the value of sZDR. Because the
retrieval routine is based on this radar parameter it is
necessary that the value of sZDR is significant. In the
case of the fourth measurement the sZDR looks very
noisy and will therefore be neglected.
Because the value and shape of sZDR is important,
the focus will be on the first, second and sixth mea-
surement (figures 16, 17 and 21), because the value
of sZDR exceeds 0.5 dB in those cases. Regarding
the retrieved values some conclusions can be drawn,

• First of all, the retrieval algorithm is stable. This
is seen from the correlation of retrieved values.
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• There is a relation between the equivalent reflec-
tivity and the Ice Water Content. If the reflectiv-
ity decreases, the Ice Water Content decreases
as well. Which is obvious because a smaller re-
flectivity means less or smaller particles, so less
ice will be present in the volume. The reflectivity
is mainly dependent on the DSD values for ag-
gregates and it is good to notice the correspon-
dence of this hypothesis with the retrieved values
for Dagg

0 and Nagg
w .

• The values for the retrieved Nw are quite high.
This has its explanation in the value of sZHH . If
the level of sZHH of the model is compared to
the level of sZHH in the measurement (figures
8-10 and 16-21) it is noticed there is a significant
difference. This difference has its influence on
the scaling parameter Nw. Two reasons can ex-
plain this difference

- Some large particles are present in the
radar volume. This doesn’t effect the mean
volume diameter, however they are ’re-
placed’ by a large number of small particles
to take into account there large reflectivity

- The spectra are selected too close to melt-
ing layer and melted particles are present in
the radar volume as well.

5 CONLUSIONS

The goal of the research is to use dual polarization
spectral analysis to retrieve drop size distributions
of precipitation above the melting layer. Therefore
a literature study is carried out to get insight in the
microphysical properties of typical types of snow
particles; plates, dendrites, aggregates, graupel and
hail. Based on this research, radar cross-sections
are calculated and a selection is made on the types
of snow particles that dominate the radar retrievals.
This assumption is also based on the fall velocity of
the different particle types. It is observed that the
backscattering of plates and aggregates dominate
spectral radar measurements.

A dual polarization spectral analysis is carried
out to investigate the dependence of the spectral
radar retrievals sZHH and sZDR on the drop size
distribution parameters of plates and aggregates.
With this knowledge, a retrieval technique is devel-
oped which estimates the parameters of the drop
size distributions, the spectral broadening factor

and the ambient wind velocity. The routine uses a
least squares minimization. The developed retrieval
technique is illustrated on real measurements as
well. It is noticed the measurements must contain
significant values for sZDR, if not the retrieved values
will be unreliable.

The work presented in this article shows, that with
the addition of spectral analysis it is possible to differ-
entiate between different types of snow particles. It
also demonstrates that it is possible to estimate the
parameters of their drop size distributions.

Appendix

Table 4: Parameters of the shape-diameter rela-
tions for different ice crystals given by (1). Data
taken from (Matrosov et al. 1996), (Auer and Veal
1970) and (Bringi and Chandrasekar 2001).

Size [cm] Shape
from to ξ ζ

Plates 0.0015 0.3 0.0141 0.449
Dendrites 0.03 0.4 0.00902 0.377
Aggregates 0.05 0.8 0.8 1
Hail 0.5 2.5 0.8 1

Table 5: Parameters of the density-diameter re-
lations for different ice crystals given by (3). Data
taken from (Pruppacher and Klett 1978), (El-
Magd et al. 2000) and (Fabry and Szymer 1999).

Size [cm] Density [gcc−1]
from to k l

Plates 0.0015 0.3 0.9 0
Dendrites 0.03 0.4 0.2468 -0,377
Aggregates 0.05 0.8 0.015 -1
Graupel 0.2 0.8 0.55 0
Hail 0.5 2.5 0.9 0
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Table 6: Parameters of the mass-diameter rela-
tions for different ice crystals given by (11). Data
taken from (Mitchell 1996) and (Heymsfield and
Kajikawa 1987).

Size [cm] Mass [g]
from to α β

Plates 0.0015 0.3 0.00739 2.45
Dendrites 0.03 0.4 0.003 2.3
Aggregates 0.05 0.8 0.003 2.1
Graupel 0.2 0.8 0.049 3.06
Hail 0.5 2.5 0.466 3

Table 7: Parameters of the area-diameter rela-
tions for different ice crystals given by (12). Data
taken from (Mitchell 1996) and (Heymsfield and
Kajikawa 1987).

Size [cm] Area [cm2]
from to γ σ

Plates 0.0015 0.01 0.24 1.85
Plates 0.01 0.3 0.65 2
Dendrites 0.03 0.4 0.21 1.76
Aggregates 0.05 0.8 0.2285 1.88
Graupel 0.2 0.8 0.5 2
Hail 0.5 2.5 0.625 2
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