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1. INTRODUCTION

Radar data encounter increasing interest for Numerical
Weather Prediction (NWP), and in particular for the next
generation of high-resolution NWP models. Indeed, most
meteorological centers plan to run operational nonhydro-
static models with resolution 1–4 km before the end of this
decade. Radar data will be well placed to provide high-
resolution information about wind and precipitation which
the verification and initialization of such high-resolution
models require. Our aim is to prepare the use of radar
data in the future high-resolution nonhydrostatic NWP
model (named Arome) of Météo-France. We are devel-
oping the framework for assimilating both reflectivity and
Doppler velocity radar data, focusing in a first time on the
assimilation of reflectivity data.

Reflectivities or reflectivity-derived quantities are al-
ready assimilated in some models. For instance, a la-
tent heat nudging (LHN) technique is used to assimilate
radar-derived precipitation rates into the UK Met. Office
Mesoscale Model, at a horizontal resolution of approxi-
mately 17 km (Jones and Macpherson, 1997). The as-
similation of radar-derived 2D precipitation rates with an
LHN technique into the Lokal-Modell Kürzestfrist (LMK),
a high-resolution (2.8 km) NWP model based on the Ger-
man LM model, is currently being tested (Stephan et al.,
2005).

At present, promising studies about the assimilation of
radar reflectivities into high-resolution limited area mod-
els focus on variational data assimilation (see e.g., Sun
and Crook, 1997, 1998; Xiao et al., 2004) and Ensemble
Kalman Filter (EnKF, see e.g., Tong and Xue, 2005).

We also follow this approach for the Arome model, but
with a 1D retrieval step that provides profiles of model
variables such as humidity (q), temperature (T ), verti-
cal velocity (w),. . . prior to the 3DVAR assimilation of
these profiles. Fig. 1 sketches the 1D+3DVAR assim-
ilation scheme adopted for ground-based reflectivities.
The Arome model will possess a sophisticated micro-
physical scheme with explicit mixing ratios of various hy-
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drometeor types that allow to derive simulated reflectiv-
ities. However, it is believed that a model forecast is
more affected by a change in humidity and other model
variables rather than by a correction of microphysical
fields (Ducrocq et al., 2000). This method is similar to
what has been done by Marécal and Mahfouf (2000) at
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) with Tropical Rainfall Measuring Mission
(TRMM) satellite-derived surface rainfall rain rates, ex-
cept that the 1D inversion is based on a 1DVAR and is
applied to a larger scale model with a less sophisticated
physical package.

The Arome model is developed from building blocks
originating from several existing models: same 3DVAR
assimilation system and dynamic core as the Aladin
model, same microphysical package as the Meso-NH
model. Further developments are needed in order to as-
similate new observation types like radar data which are
presented here.

Sec. 2. presents the work done concerning the pro-
cessing of data before the 1D inversion (part denoted A
in Fig.1): pre-processing, observation operator, and qual-
ity control.

In Sec.3., first tests of a Bayesian 1D inversion through
twin experiments are presented (part denoted B in
Fig. 1).

2. DATA PROCESSING

A new processing chain was set up to handle raw reflec-
tivity data and make them available to the assimilation
system: these data are first pre-processed in order to re-
move artefacts and weight each pixel by a quality flag. For
instance, ground clutter is detected by comparing obser-
vations with a climatological map of ground echoes and
comparing the standard deviation of reflectivities with a
threshold (Parent du Châtelet et al., 2001). The Surfillum
software (Delrieu et al., 1995) is used to identify beam
blockage.

Besides, an observation operator for radar reflectivi-
ties has been implemented in the 3DVAR assimilation
system. This observation operator simulates reflectivities
from model hydrometeors (rainwater, snow, graupel, and
primary ice) taking into account the radar beam shape
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Figure 1: Strategy for the assimilation of reflectivities into the
Arome model.

(Caumont et al., 2005). Model hydrometeors can be prog-
nostic variables as in Arome/Meso-NH models or diag-
nosed from precipitation fluxes and empirical distributions
of hydrometeors as it is done for the Aladin model.

Fig. 2 provides a comparison of the observed and sim-
ulated reflectivities for an extreme flash-flood event that
occurred on 8 September 2002 in southeastern France.
The observations are shown at 18 UTC for the 1.2°-PPI
scan of the Bollène S-band radar from the Météo-France
Aramis radar network. The simulated reflectivities come
from a 6-hour range forecast from the Aladin-France op-
erational model. The comparison of the observed and
simulated reflectivities shows that the observation oper-
ator is able to produce reflectivities of the same order of
intensity as the observed ones. The Aladin model failed
on this case to produce the maximum of surface precipi-
tation at the good location (not shown); this failure is also
evidenced for the simulated reflectivities.

Following the pre-processing of the observed reflectiv-
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Figure 2: Observed and simulated reflectivity data. 8 Septem-
ber 2002 18 UTC. (a) observed data from a 1.2°-PPI scan of
the Bollène radar (reflectivity converted in instantaneous pre-
cipitation rate, in mm · h−1). (b) simulated 1.2°-PPI scan of the
Bollène radar from a 6-hour Aladin forecast.

ities and the simulation of the reflectivities from model
variables, a quality control is performed. The quality
control ensures that wrong observations are not assim-
ilated by removing those that depart too much from the
model simulations and those with a “bad quality” flag. At
present, a lot of good pixels are rejected by the quality
control, and work is underway to perform superobbing
and allow to keep more reliable pixels.

3. 1D INVERSION

The following step of the radar data assimilation con-
sists in deriving pseudo-observations of humidity profiles
from observed radar reflectivity columns. The retrieval of
pseudo-observations of temperature and vertical velocity
profiles will be tested in a second time. The purpose of
this section is to describe the 1D inversion method that
we are currently testing on a case study of isolated con-
vection.

3.1 The inversion method

A Bayesian approach is used to retrieve vertical profiles
of model parameters from observed reflectivities. Broadly



Figure 3: Reflectivities (in dBZ ) at 4-km height (a: reference; b: first guess). The circles represent the location of the fictious radar
(44.7°N, 1.2°E, 230 m MSL).

speaking, each (q,T ,w , . . . ) vertical profile xpo is com-
puted as a linear combination of (q,T ,w , . . . ) vertical pro-
files from the model with coefficients that are function of
their departure from the observed reflectivity profile. In a
similar manner to what has been derived by Olson et al.
(1996), each vertical profile of model parameters at an
observed location is given by

xpo = E(x) =
Z
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(1)
where x , xi , and xj are model vertical profiles of model
parameters at observation locations, and the cost func-
tion J is defined by

J(x) .= (yZ −HZ (x))TR−1
Z (yZ −HZ (x)) . (2)

In Eq. (2), yZ is the observed vertical profile of reflectiv-
ity, HZ is the observation operator for radar reflectivities,
and RZ is the observation+radar observation operator er-
ror covariance matrix. In Eq. (1), the i and j indices refer
to vertical profiles that are located in the neighborhood of
the vertical column that one wants to retrieve. In practice,
each vertical column was retrieved as a linear combina-
tion of all available model profiles within a 60×60 km2

square window centered to the column to be retrieved.
The expected value E(x) is approximated by the last term
of Eq. (1) under the assumptions that

• simulated and observed errors are Gaussian, uncor-
related, and their mean is zero,

• computed profiles have the same probability to oc-
cur as in nature.

This method has the advantage over 1DVAR that it
does not require the development of the adjoint of the
physical parameterization. The main drawback is that re-
sulting vertical profiles will be limited to what the model is
able to produce at the time of assimilation. For instance,
if developed convective cells are observed, while no con-
vection is triggered in the model, the method will not be
able to find neighboring columns with significant reflectiv-
ities. So as to prevent this effect, the value of relative hu-
midity is raised to 100% where reflectivities are observed
(i.e. > 0 dBZ ), but none is simulated. This correction is
not applied below the model condensation level.

3.2 Twin experiments

We run two experiments that differ in their initial condi-
tions. The first one is the reference and provides the ob-
servations that will be assimilated to correct the second
one. A « good » assimilation scheme is thus supposed
to make the experiment using assimilation converge to-
wards the reference experiment. This method allows to
get rid of measurement errors and provides a quantita-
tive way of assessing the assimilation efficiency.

The two experiments have been performed using the
nonhydrostatic Meso-NH model, which shares the same
microphysical parameterization as Arome, in a two-way
grid-nesting configuration (Stein et al., 2000), with 10-km
and 2.5-km resolution domains. The reference simulation
starts from a mesoscale surface data analysis (Ducrocq
et al., 2000) at 12 UTC 9 October 2004. The first guess
simulation starts from the large-scale Arpege analysis at
the same time. Fig.3 displays reflectivity fields at a height
of 4 km MSL at 1615 UTC. In the first guess, convection
is not developed at 1615 UTC, while it is already fully de-



Figure 4: Vertical cross section of relative humidity (in %) along
the axis shown on Fig. 3. (a) reference; (b) first guess; (c) 1D-
retrieved relative humidity applied to the first guess.

Figure 5: Relative humidity (in %) at 4-km height. (a) Reference;
(b) first guess; (c) 1D-retrieved relative humidity applied to the
first guess. The domain corresponds to the squares shown on
Fig. 3.



veloped in the reference simulation. On Figs. 3a, one
can see that the reference experiment simulates three
deep convective cells which are moving northeastwards,
whereas the first guess simulation only simulates weak
and shallow cells.

3.3 Results

The Bayesian inversion described above is applied on
the first guess experiment at 1615 UTC, using observa-
tions generated from the corresponding reference fields.
For that, we consider a radar arbitrary located north to
Toulouse (circles on Fig. 3) scanning the troposphere at
13 elevations.

Fig. 4 compares relative humidity derived from the 1D
inversion with the first guess and reference experiments.
Only 1D retrieval of humidity profiles is considered here.
The 1D inversion moistens the atmosphere up to the
tropopause where reflectivity is observed in the reference
experiment. Conversely, in regions where the first guess
simulates reflectivities whereas no significant reflectivi-
ties are observed, the Bayesian scheme averages vertical
profiles without reflectivities and thus removes wrong sat-
urated points: the three little reflectivity spots on Fig. 3b
are not observed; on Fig. 5, one can see that the corre-
sponding (small) area is desaturated by the 1D-inversion
scheme.

Note that, in areas where both model and observation
reflectivities are not significant, the 1D inversion does not
modify the moisture field.

These first tests have shown that the 1D inversion
method is able to dry up saturated areas where no reflec-
tivity is observed and to moisten areas where reflectivities
are observed.

4. CONCLUSIONS & OUTLOOK

An original 1D+3DVAR radar reflectivity assimilation is
being developed at Météo-France for its next operational
high-resolution Arome model. So far an adequate ob-
servation operator for radar reflectivities has been imple-
mented in the 3DVAR assimilation system that is shared
by Aladin and Arome. This observation operator gives re-
flectivities that are consistent with observations. A new
pre-processing chain has been set up to attribute quality
flags to each reflectivity observations. Work is in progress
to tune the quality control step so that more reliable pixels
are not rejected.

Concerning the 1D part of the assimilation algorithm,
this study showed that a Bayes-based scheme is able to
correct for model humidity profiles in a consistent man-
ner, so that 3DVAR assimilation of these profiles can be
envisaged in a near future.
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