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1. INTRODUCTION 
 
       In writing the integral equations for the median mass 
diameter and number concentration, or comparable 
parameters of the raindrop size distribution, it is 
apparent that the form of the equations for polarimetric 
and dual-wavelength radars are identical when 
attenuation effects are included.  The differential 
backscattering and extinction coefficients appear in both 
sets of equations: for the polarimetric equations, the 
differences are taken with respect polarization at a fixed 
frequency while for the dual-wavelength equations, the 
differences are taken with respect to frequency at a fixed 
polarization.     
 
The similarity also extends to the way these equations 
are solved.  The forward recursion procedure tends to be 
unstable as the attenuation out to the range of interest 
becomes ‘large’ in some sense.  This is analogous to the 
case of a single attenuating-wavelength radar where the 
forward solution to the Hitschfeld-Bordan [Hitschfeld and 
Bordan, 1954] equation becomes unstable as the 
attenuation increases.  To circumvent this problem, the 
equations can be expressed in the form of a final-value 
problem so that the recursion begins at the far range 
gate and proceeds inward towards the radar.   
 
Solving the problem in this way traditionally requires 
estimates of path attenuation to the final gate: in the 
case of orthogonal linear polarizations, the attenuations 
at horizontal and vertical polarizations (same frequency) 
are required while in the dual-wavelength case, 
attenuations at the two frequencies (same polarization) 
are required.   
 
As an alternative to using the constrained version of the 
equations, Mardiana et al. [2004], have shown that the 
backward integral equations can be solved in many 
cases by an iterative procedure.  In this approach 
independent estimates of path attenuation are not 
needed.   
 
An objective of the paper is to begin to make clear the 
relationships between the polarimetric and dual-
wavelength equations so that they can be treated in a 
common theoretical framework.  A second objective is to 
study the robustness of the solutions when constraints 
are available and when they are not.  We begin by 
writing the integral equations for the median mass 
diameter, 0D , and number concentration, tN , for the 
polarimetric and dual-wavelength radar returns.    
Simulations of the retrieval are presented for the case of 

an X-band polarimetric radar.  In the final section of the 
paper, we discuss the relationship of the integral 
equation approach to an established method for 
attenuation correction of polarimetric data.    
 
2.  INTEGRAL EQUATIONS 
 
     The integral equations can be written in a relatively 
simple form but at the expense of requiring a number of 
definitions.  The measured radar reflectivity factor at 
range r and frequency f, when the transmit and receive 
polarization are along the direction p, can be defined in 
terms of the radar return power by 
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where C is the radar constant and |Kw|2 is the dielectric 
factor of water which, by convention, is taken to be equal 
to its approximate value (0.93) for frequencies between 
3 GHz and 10 GHz and for temperatures between 0 C 
and 20 C.  The non-attenuated effective radar reflectivity 
factor, or simply radar reflectivity factor, Z, is related to 
Zm by: 
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where kr, kc, and kv are the specific attenuations from 
precipitation, cloud water, and water vapor respectively, 
and where the precipitation may include rain, snow and 
mixed-phase hydrometeors.  Throughout the paper, the 
co-polarized return powers are denoted by the 
subscripts ppwhere },{ vvhhpp = .  Since the cloud 
and water vapor attenuation are polarization 
independent, we omit subscripts on these quantities. 
The units of k are taken to be dB km-1 so that 
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where the two-way path attenuation from r1 to r2 is: 
 

∫ ++=
2

1

)],(),(),([2);,( ,21

r

r
vcpprpp dsfskfskfskfrrA

);,();,();,( 212121, frrAfrrAfrrA vcppr ++≡          (5) 

 
 
In the equations below, the notation 

),();,0( frAfrA pppp =  is used.  Next, the raindrop 

diameter distribution, ),( sDN [m-3 mm-1] is expressed 
as the product of the particle number concentration, 

tN (m-3), and a normalized size distribution, )(Dn   
(mm-1): 
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where, for the Gamma distribution,  
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In general, Λ, µ are functions of the radar range. In the 
numerical results presented later, we use the median 
mass diameter, D0 (mm), related to Λ, µ  by  
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Finally, we introduce the backscattering and extinction 
integrals that are independent of tN : 
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where 0c  is the speed of light.  Note also that 
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Integral equations for 0D  and tN  for the dual-

polarization case are obtained by writing ),(~
, frZ ppm  

and ),(~),(~
,, frZfrZ vvmhhm −  in terms of 0D and 

tN and expressing the path attenuation to range r in 
the form [Meneghini et al., 1992]: 
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Note that the path-integrated attenuation, PIA, is 
identified with the term App(rn, f), where the path is  
terminated at the nth gate.  In (11), the attenuation from r 
to rn is written in terms of the DSD parameters at the 
range gates within this range interval.  This is the 
essence of the integral equation approach, where path 
attenuation to range r is found from an estimate of the 
total path attenuation and the DSD parameters in the 
range from r to rn.  The equations can be written in the 
following form: 
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For the dual-wavelength case, (13) remains the same 
but (12) is replaced with: 
 

)),(),(()),(),((

)],(),()[(2)),(),((

)),(~),(~(),(),(

2121

2121

2121

frAfrAfrAfrA

dsfsIfsIsNfrAfrA

frZfrZfrIfrI

vvcc

r

r
eetnrnr

mmbb

n

−+−+

+−−−+

+−=−

∫   

                             (15) 
 
Note that the last four terms on the right-hand side of  
(15) are absent in (12).  The difference arises from the 
fact that cloud and water vapor attenuation are 
frequency dependent but polarization independent.  Note 
also that we have used the convention of suppressing 
the polarimetric (or frequency) dependence if all 
quantities in the equation are at the same polarization 
(or frequency).  For example, in (12) all quantities are at 
the same frequency while in (15) all quantities are at the 



same polarization; in (13) all quantities are measured or 
evaluated at the same frequency and polarization.    
 
Eqs. (12)-(15) can be written in a form that makes 
explicit the unknown parameters of the drop size 
distribution and includes both dual-frequency and dual-
polarization cases: 
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where δ  is a difference operator, defined in the case of 
dual-polarization radar  by vvhhp XXXX −≡≡ δδ  and 

in the case of a dual-frequency radar by 
)()( 21 fXfXXX f −≡≡ δδ .  Note that in the case of 

the polarimetric radar,  .0)( =+ vc AAδ   Using the 

definition of bI  given by (9), the usual differential 
reflectivity (in dB) with respect to polarization is 

drb ZI =δ while the dual-frequency ratio (in dB) 

is DFRIb =δ .   
 
The constraints in the above equations are assumed to 
be the precipitation path attenuations at the 2 
frequencies or 2 polarizations.  If the constraint is total 
path attenuation from precipitation, cloud and water 
vapor, then h1, h2 should be changed to: 
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where, as before, 
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The two forms for h1 and h2 in (18) and (19) are identical.  
However, if an independent estimate is made of the 
precipitation attenuation only, Ar(rn), then contributions 
from cloud water and water vapor to range r must be 
added in, as in (18).  If an independent estimate is made 
of total attenuation, then contributions from cloud water 
and water vapor over the range interval (r, rn) must be 
subtracted out, as in (19).  To simplify the equations, we 
assume for the remainder of the paper that attenuation 
from cloud and water vapor can be neglected. 
   
If the path attenuation is known or assumed, then from 
(16) and (17) it can be seen that the range profiles of 

0D and tN can be obtained by starting at the far range, 

nr , continuing inward towards the radar.  At nrr = , the 

integrals appearing in (16) and (17) are zero so that 0D  
can be found by numerically solving the equation 

101 ),( hDg =µ ; once 0D is determined, it is substituted 

into (17) to give tN .  Proceeding to the thn )1( −  gate, 

the values of 0D and tN from the nth gate are 
substituted into the integrals in (16) and (17); since the 
right-hand side of (16) is determined, 0D  can be solved 

numerically.  Substituting this into (17) gives 2h  

and tN .   The recursion continues in this way until the 
full path is traversed.   
 
In solving the equations numerically, the discrete forms 
of (16) and (17) take the form of non-linear algebraic 
equations for 0D and tN that can be solved by Broyden’s 
method [Press et al., 1992].  For example, at the final 
gate, both (16) and (17) are functions of )(0 nrD and 

)( nt rN if the contributions from the last gate are 
included.  However, if the attenuation per range gate is 
small, the approximate and general procedures yield 
nearly identical results. It should also be pointed out that 
in some cases, such as the dual-wavelength radar 
returns in rain or mixed-phase hydrometeors, there can 
be more than one value of 0D that satisfies (16).  
Procedures exist to reduce the ambiguities but not 
eliminate them entirely [Liao and Meneghini, 2005].  
Note also that as  there are only two equations, the 
‘shape’ parameter µ must either be fixed or expressed 
as a function of the other DSD parameters [Zhang et al., 
2001; Seifert, 2005].   
 
As pointed out by Mardiana et al. (2004), consistency 
requires that the estimated parameters of the size 
distribution give back the path-integrated attenuations 
used in the integral equations. In other words, the input 
and output path attenuations must be equal. Although 
this condition was originally imposed for the 
unconstrained solution, it can be applied generally since 
there exist other parameters that can be adjusted even 
in the constrained case.  Let 



)),(ˆ),,(ˆ( 0 µµ rDrNt represent the range profiles of the 
particle number concentration and median mass 
diameter obtained from (16) and (17).  As these values 
depend on the value of µ used in (16) and (17), they 
have been written explicitly with this dependence.  Then 
the estimated path attenuations can be written:  
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Eq. (21) represents two path attenuations either for two 
polarizations at a fixed frequency or two frequencies at a 
fixed polarization.  If we let );,( µinpp frA represent the 

input values to (16) and (17), then the objective is to 
obtain agreement between the input and output values:   
 

);,();,(ˆ µµ inppinpp frAfrA ↔              (22) 

 
If independent estimates of the PIA values are not 
available, the values used in the (16) and (17) are initial 
guesses (e.g., both zero).  In this case, it is reasonable 
to compute the DSD parameters from (16) and (17) then 
use (21) to update the PIA values and to continue the 
procedure until consistency is attained.  This is 
essentially the iterative procedure of Mardiana et al. 
(2004).  On the other hand, if the path attenuations are 
estimated from independent data, then it is possible to 
iterate on other parameters.  For example, a possible 
way of obtaining consistency is to modify the assumed 

value of µ until );,();,(ˆ µµ inppinpp frAfrA ≈ . In cases 

where mixed-phase particles are present along the 
beam or if cloud water and water vapor attenuation are 
not negligible, then a larger set of variables would be 
available for adjustment to satisfy the consistency 
condition.  Clearly, as the number of potential 
adjustment parameters increase, the ‘dimensionality’ of 
the ambiguity will also increase so that, potentially, many 
sets of such parameters will approximately satisfy (22).  
Another possibility, however, is that adjustment of 
certain parameters leave the input and output path 
attenuations unchanged so that consistency condition 
provides no additional information.  Finally, it is worth 
noting that in the unconstrained case, it is not possible to 
optimize over any other parameter because the 
consistency conditions are used to obtain the path 
attenuations.    
 
3.  SIMULATION RESULTS 
 
     To illustrate some aspects of the solutions to the 
integral equations, we construct a simulation for an X-
band polarimetric radar using disdrometer-measured 
raindrop size distributions.  For the cases shown, we 
have assumed a 50-km path consisting of 250 gates with 
range resolution 0.2 km.   A sequence of 250 30 s-
averaged drop size distributions provide the particle 
number concentration and median mass diameter at 

each range gate.  Assuming the Beard and Chuang 
[1987]  shape-size relationship and a fixed µ value along 
the path, the simulated range profiles at the two 
polarizations are calculated, i.e., 

njrZrZ jvvmjhhm ,..,1)};(),({ ,, =  where .250=n  To 

simplify the discussion, we assume that the data are 
unbiased and without fluctuations from finite sampling.  
We also assume either that the values of the path 
attenuation are known and equal to the true value 
(constrained) or they are not known (unconstrained).  In 
the latter case, iteration is performed.  The iteration 
begins with the assumption that the path attenuations at 
the two polarizations are zero and finishes when the 
input and output path attenuations in (22) agree to within 
a certain tolerance.  However, if the difference between 
input and output path attenuations increases at any 
stage, the iteration is terminated. 
 
In Fig. 1, the black curves represent the range profiles of 
rain rate, median mass diameter and number 
concentration as derived from the raindrop size 
distributions along the path.  Retrieved values of these 
same parameters for the constrained and unconstrained 
solutions to (16) and (17) are shown by the red and blue 
curves, respectively.  In this relatively light rain rate case  
 

 
 
Fig. 1. Comparisons of the assumed or ‘true’ (black), 
with the iterative (blue) and constrained (red) estimates 
for rain rate, median mass diameter, D0, and particle 
number concentration, Nt,  for a light rain rate case.  In  
the lower right panel, the true differential phase is 
compared with values of the differential phase calculated 
from the DSD parameters derived from the iterative 
(blue) and constrained (red) retrievals. 



and at the ‘mildly’ attenuated frequency of 10 GHz, the 
results from the two approaches are nearly identical and 
nearly indistinguishable from the true values.  The 
results  llustrate  an  important  property  of  the  iterative  
solution: in cases where the path attenuation is small, 
stable solutions can be obtained without a path-
attenuation constraint.  As a check of the results, we 
show in the lower right panel, the true differential phase 
compared with values of the differential phase calculated 
from the DSD parameters derived from the iterative 
(blue) and constrained (red) retrievals.  
        
A second case with higher rain rates along the path is 
shown in Fig. 2.  For this profile, the iteration shows 
some instabilities (blue curves) where the rain rates and 
number concentrations tend to be positively biased while  
the median mass diameter tends to be negatively 
biased.  On the other hand, the range profiles of the 
various quantities using the PIA constraints remain 
nearly identical to the true profiles.  In Figs. 1 and 2 the 
value of µ  used to generate the simulated data is the 

same as that used in the retrieval: 2== Tµµ .  For the 
results in Figs. 3 and 4, we have kept the simulated data 
data the same as in Fig. 2 ( 2=Tµ ) but have changed 

the value of µ  used in the retrieval: for Fig. 3, 0=µ  

and for Fig. 4,  6=µ .  Inspection of the results show 

that for Tµµ <  the constrained and unconstrained 
methods overestimate the rain rate  and    number 
concentration 
  

 
 
Fig. 2.  Same as Fig. 1 but for a moderate rain rate case. 

 
 
Fig. 3.  Same as Fig. 2 but for .0,2 == µµT  
 

 
 
Fig. 4.  Same as Fig. 2 but .6,2 == µµT  



and underestimate the median mass diameter.  For 

Tµµ < , the opposite behavior is generally seen apart 
from occasional instabilities in the unconstrained 
profiles.  
 
It is worth noting that a search over the constrained 
solutions for the best µ  value is ineffective in these 
cases because the output path attenuation is nearly 
independent of µ .  This can be seen in the comparisons 
of the true and retrieved values of Φdp in Figs. 2 through 
4 which show that the DSD parameters from the 
constrained solution (red curves) are able to reproduce 
accurately the true Φdp profile (black curve) in all cases.  
In other words, even when µ is incorrect, the estimated 
DSD parameters yield approximately the same path 
attenuation and same Φdp profile.  It is also worth noting 
that while the integral equations given here have   
number concentration and median mass diameter as the 
unknowns, they also can be written using the  
parameters of the “normalized” size distribution [Testud 
et al., 2001].  Whether this would lead to smaller 
variations in the rain rate estimates with changes in µ is 
an open question.   
 
 
4. COMPARISON WITH AN ALTERNATIVE METHOD 
 
     Testud et al. (2000) and Bringi et al. (2001) 
recognized that techniques developed for single 
attenuating-wavelength radars can be applied to 
polarimetric radar data at attenuating wavelengths.  
Although a detailed comparison of this type of method 
with that given here is beyond the scope of the paper, it 
is worth pointing out some similarities and differences.  
These methods are a subset of a larger class of 
polarimetric attenuation correction methods reviewed by 
Bringi and Chandrasekar (2001).  Extensions of the 
basic approach have been proposed as well, e.g., Lim 
and Chandrasekar (2005).         
 
Although most formulations begin with the final-value 
solution of Marzoug and Amayenc (1991, 1994), an 
equivalent form follows directly from the ‘α-adjustment’ 
solution [Meneghini et al., 1983; Iguchi and Meneghini, 
1994] where, taking 10log10 of (19) of Iguchi and 
Meneghini, and assuming that the coefficient α in the k-Z 
relationship is constant, gives (r ≤ rn): 
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It is worth noting that (23) also holds if α varies with 
range (e.g., both stratiform and convective rain are 
present along the path or the path contains separate 
regions of frozen, mixed phase and liquid precipitation).  
In this case, however, S must be replaced with the 
original definition: 
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For constant α along the path, Eq. (23) can also be 
obtained by taking the expression for k from the final-
value solution ((24) of Testud et al. (2000)), integrating it 
from 0 to r and using the definition of Zm:  
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For polarimetric applications, the 2-way path attenuation, 
A(rn), can be expressed as a function of the differential 
phase shift over the path, ∆Φdp, by using a relationship 
between k and κdp [Testud et al., 2000].  In the case of a 
linear k-κdp relationship:  
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To compare with the results given previously, we will use 
the 2-way path attenuation, A(rn), instead of ∆Φdp.   
 
It is first convenient to write Q in (24) as: 
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so that (23) becomes 
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Using (32), equations analogous to (12) and (13) can be 
obtained, as before, by expressing  ),(~

, frZ ppm  and 
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where, as before, 
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Also, as before, we have suppressed the subscripts in 
(35) since all relevant quantities are evaluated at the 
same polarization.  Other quantities in (34) and (35) are 
defined above but without subscripts. Explicitly: 
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In (37) we have used the more general definition of S; 
however, if α is assumed constant then because S 
appears only in a ratio, the α dependence is eliminated. 
 
Comparisons of (12) and (13) with (34) and (35) (and 
neglecting attenuation from cloud and water vapor as 
these contributions are not included in (34) and (35)) 
show that the only differences between the two sets of 
equations are the terms: 
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The right and left-hand sides of (38) represent the 
different ways that the algorithms account for the 
attenuation and differential attenuation in the range 
interval from r to rn.  In the integral equation approach, 
the interval attenuations are expressed as functions of 
the DSD parameters obtained from previous steps in the 
recursion.  In the single-wavelength approach, the 
attenuations are estimated by means of the k-Z 
parameterization. In both cases, these contributions are 
subtracted from the total path attenuation to obtain an 

estimate of attenuation to range r.  Note that in the 
single-wavelength algorithm, upon which (34) and (35) 
are based, profiles of a 2-parameter DSD can not be 
obtained from a single path-attenuation constraint.   
 
How this basic difference translates into differences in 
performance is difficult to assess without a detailed error 
analysis.  A few obvious differences can be pointed out, 
however.  The single-wavelength approach relies on the 
parameters of the k-Z relationship, although for constant 
α, the estimate is independent of this parameter.  The 
integral equations are independent of the k-Z 
relationship.  On the other hand, if the DSD 
parameterization depends on more than 2 parameters, 
an assumption regarding the third parameter must be 
made.  Figs. 3 and 4 show that errors in µ can produce 
significant errors in the estimates; moreover, the 
consistency condition in this case does not help to 
identify the correct value because the DSD parameters 
that are produced under the different µ assumptions all 
yield approximately self-consistent results.    
 
Another difference between the two approaches is that 
the single-wavelength constraints used in (34) and (35) 
seem to require estimates of the path attenuation at the 
two polarizations.  Although the integral equations were 
originally formulated to be used with the same type of 
constraints, Mardiana et al. (2004) have shown that  this 
is not required.  (Whether a similar property holds for 
(34) and (35) is an open question.)  In practice, however, 
it appears that the iteration converges only when the 
path attenuation is not too large.  In fact, even when 
accurate path attenuations are used as constraints, it is 
not difficult to find rain rate profiles in which both 
formulations fail to converge over the full path.  The k-Z 
parameterization used in (34) and (35) does not depend 
on the explicit DSD retrievals in the range from r to rn; as 
a consequence, these equations may be more robust 
than are the integral equations.  Clearly, however, a 
detailed error analysis is needed before the relative 
advantages of the various formulations can be 
assessed.    
 
 
 
5.  SUMMARY AND CONCLUSIONS 
 
     Integral equations for the parameters of the particle 
size distribution have several useful features in that they 
explicitly include path attenuation constraints and 
provide attenuation correction in terms of the particle 
size distribution parameters in the far range gates.  
Because the dual-wavelength and dual-polarization 
radar are governed by essentially the same equations, a 
common theoretical framework is provided by which 
errors in the retrievals can be assessed.   This may be of 
some benefit to the proposed Global Precipitation 
Measurement Mission [Iguchi et al., 2002] where 
quantities derived from a dual-wavelength spaceborne 
radar can be expected to be compared with similar 
quantities derived from ground-based dual-polarization 
radars.  Making good use of these data will depend on 



an understanding of the inherent errors in both 
spaceborne and ground-based algorithms.    
 
It is worth noting that apart from the integral equation 
approach, many dual-wavelength techniques have been 
proposed [e.g., Marzoug and Amayenc, 1994; Adhikari 
and Nakamura, 2003; Grecu and Anagnostou, 2004].  In 
view of the close relationship between dual-wavelength 
and dual-polarization algorithms, these formulations may 
also be applicable to dual-polarization data at 
attenuating wavelengths.  
 
Although the integral equation approach has been used 
to analyze airborne dual-wavelength data, its utility for 
dual-polarization applications at an attenuating-
wavelength has not been assessed.  This work, along 
with comparisons to existing attenuation correction 
methods, is needed to demonstrate that the formulation 
is useful for practical applications.     
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