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1. Introduction
Symmetric instability (SI) was studied theoretically

as one of the possible mechanisms for the formations of
frontal rainbands (Bennetts and Hoskins 1979; Emanuel
1979, 1983; Xu and Zhou 1982; Miller 1985; Xu 1986,
2004). In the past, the SI theory was developed mainly
in terms of modal growths and structures. The fastest
growing mode, however, does not necessarily account
for all the structures observed in unstable flows
(Trefethen et al. 1993). When the modes are not
orthogonal, certain linear combinations of two or more
modes can grow faster than any individual mode over
physically relevant time scales, and the combined
structures are not time invariant or, say, not modal
(Farrell 1984; Buizza and Palmer 1995; Farrell and
Ioannou 1996). Non-modal structures and growths have
been studied for baroclinic waves, but not much research
has been done on non-modal growths of symmetric
perturbations, so there is a gap between the classic SI
and the non-modal growths of symmetric perturbations.
An effort is made in this paper to fill this gap.

2. Governing equations and normal modes
a. Modal solutions

The basic state has an uniform stratification N2 and
an uniform vertical (thermal-wind) shear Vz (> 0). The
inviscid instabilities of this basic state is controlled by
two external parameters:

Ri = N2/Vz    Richardson number, (2.1a)
r = f/N    inertial-buoyancy frequency ratio. (2.1b)

Denote by H the depth of the domain, then HVz is used
for the horizontal velocity scale, Hf for the vertical
velocity scale, 1/f for the time scale, L = HVz/f for the
horizontal length scale which is the Rossby radius of
deformation associated with the basic shear.

Symmetric perturbations characterized by banded
structures along the basic shear are governed by the
following set of nondimensional equations and boundary
conditions:

∆aψt + Ri bx - vz = 0, (2.2a)
vt + ψz - ψx =0, (2.2b)
bt + ψz/Ri - ψx =0. (2.2c)
ψ = ψz = 0  at z = 0, 1. (2.3)
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Here, ψ is the streamfunction, v the along-band
perturbation velocity, and b the perturbation buoyancy,
∆a = a2( )xx + ( )zz, the subscripts ( )t,x,z  denote their
respective partial differentials, and a = H/L = r√Ri is the
aspect ratio. In this paper, Ri ranges from 0.25 to 1.5,
while r2 is chosen to be 0.02. Since a is small, the
model is close the hydrostatic limit (a →  0) and the
solution is insensitive to a.

The normal modes have the following form

ψ = sin(nπz) exp[σt - ik(x + βz)], (2.4)

where β = (1 + σ2)-1 and n is the (integer) vertical
wavenumber. The normal mode expressions for v and b
can be obtained by substituting (4) into (2b) and (2c),
respectively. Substituting the resulting expressions
with (4) into (2a) gives the following eigen-equation:

Aσ4 + 2Bσ2 + C = 0, (2.5)

where A = 1 + µ2a2, B = 1 + µ2(Ri + a2)/2, C = 1 +
µ2(Ri - 1), and µ = k/(nπ). The roots of (2.5) are σ±2 =
(-B ± √D)/A where D = B2 - AC. Note that D = µ4(Ri -
a2)2/4 + µ2(µ2a2 +1) > (A - B)2 = µ4(Ri - a2)2/4 ≥ 0.
Since D > 0, both σ+2 and σ-2 are real, which means
that the eigenvalue σ is either real or imaginary. Since
√D > |A - B|, we have σ±2 = -1 ± √D/A + (A - B)/A and
thus

σ+2 > -1 > σ-2. (2.6)

Note also that σ+2 > 0 requires D - B2 = -AC > 0 or,
equivalently, C < 0 (since A > 0), which yields 1 ≤ n2

< (k/π)2(1 - Ri). This means that there exist nc growing
modes (with n = 1, 2, ... nc) if

Ri < Rinc = 1 - (ncl/2)2, (2.7)

where l = 2π/k is the horizontal wavelength. Thus, σ+2

> 0 requires, at least, nc = 1 in (2.7), that is, Ri < Ric
= 1 - (l/2)2.

The above solutions are insensitive to r as long as r
<< 1. When r2 is small (or fixed), the squared roots σ+2

and σ-2 of (2.5) depend mainly (or solely) on Ri and µ.
The squared root σ+2 is plotted as a function of (nl, Ri)
for r2 = 0.02 in Fig. 1, where nl = 2nπ/k = 2µ-1. The
mode structures will be examined for selected values of
Ri and l. For this purpose, four parameter points are
selected and marked in Fig. 1; that is, (l, Ri) = (0.2,
0.4) for case 1, (1.0, 0.7) for case 2, (1.5, 0.5) for case
3, and (0.1, 1.1) for case 4.



Fig. 1. s+2 plotted as a function of (nl, Ri) for r2 =
0.02. Here l is the horizontal wavelength and nl = 2m-1.
Contours are every 0.2 with solid for non-negative and
dashed for negative. The + signs mark the parameter
points (with n = 1) for four cases.

b. Mode classification and polarization relationships
For given a, Ri and k, the two pairs of roots of (2.5)

depend on n only and can be denoted by ±s+(n) and ±s-
(n). Paired non-propagating growing and decaying
modes exist for ±s+(n) if n £ nc [see (2.7)]. In this
case, the largest growth rate is given by smax = s+(1)
and the smallest positive growth rate is given by smin
= s+(nc). When n2 > nc, ±s+(n) become imaginary and
the two paired modes become neutral and propagate in
opposite directions. These modes are called slowly
propagating modes. The slowest propagating modes are
associated with ±s+(ns) where ns = nc + 1. Since s-2 is
always negative, ±s- are imaginary and the two paired
modes are neutral and propagate with the same phase
speed but in opposite directions. These modes
[associated with ±s-(n)] are called fast propagating
modes. The fastest propagating modes are associated
with the gravest vertical mode of n = 1 and their phase
speeds are given by ±is-(1)/k.

By substituting the solutions in (2.4) back into
(2.2b) and (2.2c), we obtain the following normal
modes:

y = sin(npz) exp[st - ik(x + bz)], (2.8a)
v = s-1[ik(b - 1)sin(npz) - np cos(npz)]

 exp[st - ik(x + bz)], (2.8b)
b = (sRi)-1[ik(b - Ri)sin(npz) - np cos(npz)]

exp[st - ik(x + bz)]. (2.8c)

Here, the amplitude of y  is set to unity in (2.8a) to
facilitate the later comparisons between different modes.
The normal modes in (2.8) are controlled by two

external parameters (r, Ri) and two internal parameters
(k , n). For a given set of values of these control
parameters, there are four modes associated with the four
roots of (2.5), that is, ±s±. According to (2.8a)-(2.8c),
the two modes associated with each pair of ±s-(n) or
±s+(n) (p 0) have exactly opposite polarization
relationships between y and (v, b). This means that the
two modes have the same structure in y  but the
opposite structures in (v, b) at the initial time (t = 0).

c. Stationary modes
If Ri Æ  Rinc  in (2.7), then C  Æ  0 in (2.5).

Consequently, s Æ s+(nc) = 0 and b Æ 1. In this case,
the polarization relationship of (v, b) in (2.8b,c) with
respect to y in (2.8a) becomes singular. To keep (v, b)
finite, we need to multiply s to the solution in (2.8)
and then let s Æ 0. In this case, the solution reduces to

y = 0, (2.9a)
v = -ncp cos(ncpz) exp[-ik(x + z)], (2.9b)
b = -ncpRi-1[(imc)-1sin(ncpz) + cos(ncpz)]

exp[-ik(x + z)], (2.9c)

where the condition of b - Ri = 1 - Ri = mc-2 = (ncp/k)2

(that is, C = 0) is used. This stationary mode satisfies
(2.7) with nc = 1 and is consistent with the solution in
(2.8) in the limit of s Æ 0. It is easy to see that v and
b in (2.9b,c) satisfy the thermal-wind relationship.

In addition to (2.9), there is another solution, which
can be obtained from (2.8) - (2.9)/s in the limit of s Æ
0 and thus has the following form:

y = sin(ncpz) exp[-ik(x + z)], (2.10a)
v = -t ncp cos(ncpz) exp[-ik(x + z)], (2.10b)
b = -t ncpRi-1[(imc)-1sin(ncpz) + cos(ncpz)]

exp[-ik(x + z)], (2.10c)

where the Taylor expansion exp(st) = 1 + st + ... is
used before taking the limit of s Æ 0. This solution is
a linearly growing mode which satisfies (2.7). It is easy
to see that v and b in (2.10b,c) satisfy the thermal-wind
relationship while they grow linearly with time.

3. Mode structure analyses
a. Formulations for mode structure analyses

The nondimensional system of (2.2a-c) can be
rewritten into the following form:

zt = G, (3.1a)
vt = J(y, M), (3.1b)
bt = J(y, B), (3.1c)

where z = uz - a2wx = Day and J( , ) = ( )x( )z - ( )z( )x
is the Jacobian bracket. Here, M = x + z is the basic-
state along-band absolute-momentum, that is, fx + V
scaled by fL, while B  = x/Ri + z +  constant is the
basic-state buoyancy, that is, gQ/Qo scaled by HN2.
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The vorticity generation term G in (3.1a) represents
a torque imbalance (positive for a clockwise rotation)
between the buoyancy torque -Ribx and the inertial-force
torque vz, where v represents the cross-band Coriolis
force associated with the along-band velocity. In (3.1b),
J(y, M) represents the generation of v due to the cross-
band advection of the basic-state M. In (3.1c), J(y, B)
and -vBy represent the generations of b due to the cross-
band advection and along-band advection of the basic-
state B, respectively. The slope of M-surface is -1 and
the slope of B-surface is -Ri-1 in the cross-band vertical
plane (x, z). It is easy to see that J(y, M) is zero when
the streamline is parallel to the M -surface, and is
positive (or negative) when the streamline is downward
and steeper (or less steep) than the M-surface or when
the streamline is upward and less steep (or steeper) than
the M-surface in the cross-band vertical plane. The sign
of J(y, B) can be determined by the similar rule. These
simple rules are useful for the mode structure analyses.

Fig. 2. y (a) and G (b) plotted (solid for positive, dotted
for zero and dashed for negative) in the cross-band
vertical plane (x/l, z) for the fastest growing mode with
s+ = 1.14 at the parameter point of Ri = 0.4 and l = 0.2
(case 1). The circulation direction is shown by the arrow
in (a). The slopes of M-surface and B-surface are shown
in (a) by the dashed and solid lines, respectively.

b. Growing and decaying modes
Figure 2 shows the structures of y and G for the

fastest growing mode (for which n =1) at the parameter
point of Ri = 0.4 and l = 0.2 for case 1 in Fig. 1. The
growth rate is s+(1) = 1.143. As in (2.8), to facilitate
the comparisons between different modes, the amplitude
of y is set to unity in Fig. 2a, where the dashed and
solid lines are M-surface and B-surface intersected by the
cross-band vertical plane, respectively. As shown by the
arrow along the streamline between the two cells, the
slantwise downdraft is steeper than the M-surface but
less steep than the B-surface in (x, z). Thus, according
to the above simple rules, J(y, M) is positive and J(y,
B) is negative along the downdraft. Since these two
terms are the only generation terms in (3.1b)-(3.1c),
their generated v is positive and b is negative along the
downdraft (not shown). The Coriolis force associated
with the positive v is rightward and the buoyancy
associated with the negative b is downward. Their
combined vector force accelerates the slantwise
downdraft. The slantwise updraft is accelerated similarly
by this type of positive feedback. The overall positive
feedback is indicated by the positive correlation between
the vorticity and vorticity generation or, equivalently,
by the negative correlation between G (Fig. 2b) and y
(Fig. 2a). For the decaying mode at Ri = 0.4 and l =
0.2, the growth rate is negative and given by s+(1) =
-1.143. In this case, the mode structures (not shown)
are the same as those in Fig. 2 except that the G field
changes sign from that in Fig. 2b and thus the feedback
becomes negative.

The above positive (or negative) feedback is seen in
general for all the growing (or decaying) modes.
According to (2.8a), the streamline slope is given by
dz/dx|y = -b-1 along the middle level for n = 1 (or along
the levels of cos(npz) = 0 for n > 1). Note that b-1 = 1
+ s+2 > 1 for s+2 > 0. One can verify that b-1 = 1 +
s+2 < Ri-1. Combining these two conditions gives

-1 > -b-1 > -Ri-1 (3.3)

for any growing or decaying mode. This means that the
streamlines are all slantwise backward (with a slope of
-b-1 at the middle level) between the M-surface (slope of
-1) and B-surface (slope of -Ri-1) for the growing and
decaying modes with n =1. This general feature has been
seen from the example in Fig. 2a. The backward
slantwise streamlines indicate that u  and -w  are
correlated positively and their wave patterns are exactly
in-phase along the middle level. According to (2.8), -v
and b are related to w  = iky  by (1 - b)/s+ and (b -
Ri)/s+, respectively, along the middle level. These two
factors are positive for the growing modes according to
(3.3). Thus, the buoyancy b is in-phase with w and the
Coriolis force associated with v is in-phase with u for
the growing modes. For the decaying modes, the above
in-phase relationships change into completely out-of-
phase ones and thus the feedback becomes negative.

z

x/l

z



c. Fast propagating modes
Figure 3 shows the structure of y  for the fastest

rightward propagating mode (with n =1) at the same
parameter point as that (Ri = 0.4 and l = 0.2 for case 1)
in Fig. 2. For the reason explained in section 2d, the
propagation mechanism can be examined based on the
middle-level phase relationships between the cross-band
motions and restoring forces. As shown in Fig. 3, the
middle-level streamlines are slantwise forward while the
M-surface and B-surface are tilted backward. Thus, J(y,
M) and J(y, B) are both positive following the leftward-
downward motion (shown by the arrow in Fig. 3). Their
generated v and b are positive but lag the leftward-
downward motion by a quarter of wavelength as the
wave propagates rightward (not shown). The associated
Coriolis force and buoyancy are rightward and upward,
respectively. The reverse motion produced by this vector
force is thus lagged by a half wavelength with respect to
the motion that generates this vector force. This
explains how the modes propagate. The propagation
mechanism is also indicated by the lagged correlation
(by a quarter of wavelength) between the vorticity and
vorticity generation, or equivalently, between G (not
shown) and y.

Fig. 3. As in Fig. 2a but for the fastest rightward
propagating mode. The phase speed is -is-(1)/k = 5.0.

The above mechanism holds for all the fast
propagating modes associated with s-(n). Since s-2 < -1
for all s- = s-(n) (with n = 1, 2, ...), we have

-b-1 > 0 (3.4)

for any fast propagating modes. This means that the
streamlines are tilted forward along the middle level as
seen from the example in Fig. 3. The forward slantwise
streamlines indicate that u  and w  are correlated
positively and their wave patterns are exactly in-phase
along the middle level. According to (2.8), v and b are

related to w  = iky by (b  - 1)/s - and (b  - Ri)/s -,
respectively, along the middle level (for n = 1). Here, s-
is purely imaginary, b - 1 and b - Ri are both negative
according to (3.4). This means that v and b are exactly
in phase along the middle level and their wave patterns
lead those of u and w by 90o (a quarter of wavelength in
the direction of the mode propagation). Along the
middle level, px = 0 (not shown), the Coriolis force
associated with v is the only horizontal restoring force
and its wave pattern leads that of u  by 90o. The
buoyancy b is partially offset by the vertical pressure
gradient force and thus the middle-level wave pattern of
the net vertical restoring force b - pz leads that of w by
90o. These phase relationships support the above
analysis of the propagation mechanism.

Fig. 4. As in Fig. 3 but for the slowest leftward
propagating mode at the parameter point of Ri = 0.5 and
l = 1.5 (case 3 in Fig 1). The phase speed is -is+(1)/k =
0.20.

d. Slowly propagating modes
Figure 4 shows the structure of y for the slowest

leftward propagating mode (with n = ns = nc + 1 = 1) at
the parameter point of Ri = 0.5 and l = 1.5 for case 3 in
Fig 1. As shown in Fig. 4, the middle-level streamlines
are slantwise slightly more backward than the M-surface
and much more backward than B-surface. Thus, J(y, M)
is slightly negative and J(y, B) is strongly negative
following the downward motion (shown by the arrow in
Fig. 4). Their generated v and b are negative and lag the
downward motion by a quarter of wavelength as the
wave propagates rightward (not shown). The associated
Coriolis force is weak but still leftward. The associated
buoyancy is downward but the vertical gradient of the
perturbation pressure is upward according to (3.2b). The
combined vector force, plus the perturbation pressure
gradient, is weak but still tends to reverse the motion
and thus makes the wave propagating slowly. The
propagation mechanism is also indicated by the lagged
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correlation (by a quarter of wavelength) between G (not
shown) and ψ. The structures for the slowest leftward
propagating mode (not shown) are the same as those for
the rightward propagating mode in Fig. 4 except that
the v, b and G fields are shifted by a half of wavelength.

The above mechanism holds for all the slowly
propagating modes associated with σ+(n) < 0. Note that
0 > σ+2 > -1 for n > nc [see (2.7)], so 1 > β-1 = 1 +
σ+2 > 0  or, equivalently,

0 > -β-1 > -1   (3.5)

for any slowly propagating modes. This means that the
middle-level streamlines are tilted backward and more
slantwise than the M-surface and B-surface along the
middle level as seen from the example in Fig. 4. The
backward slantwise streamlines indicate that u and w are
correlated negatively and their middle-level wave
patterns are completely out-of-phase. Along the middle
level, v and b are related to w by (β -1)/σ+ and (β -
Ri)/σ+, respectively. Here, σ+ is purely imaginary, but
β - 1 and β - Ri are positive according to (3.5). This
means that the middle-level wave pattern of v leads that
of u by 90o but the middle-level wave pattern of b lags
that of w by 90o. Here, the phase relationship between
v and u is similar to that for the fast propagating modes
and the Coriolis force associated with v is still the only
horizontal restoring force along the middle level. The
phase relationship between b and w , however, is
opposite to that for the fast propagating modes. The
buoyancy b is overly offset by the vertical pressure
gradient force -pz, so the middle-level wave pattern of
the net vertical restoring force b - pz leads that of w by
90o. This net vertical restoring force, however, is
weaker than that for the fast propagating modes.

Since the horizontal perturbation pressure gradient
force vanishes along the middle level (for n = 1), the
middle-level cross-band horizontal motion and restoring
forcing are related to each other quite similarly for the
fast and slowly propagating modes. The middle-level
vertical motion and restoring forcing, however, are
related to each other in different ways for the fast and
slowly propagating modes. The vertical motion is
positively (or negatively correlated to the cross-band
horizontal motion for the fast (or slowly) propagating
modes. The perturbation buoyancy is only partially
offset by the vertical perturbation pressure gradient force
for the fast propagating modes but is overly offset by
the vertical perturbation pressure gradient force for the
slowly propagating modes. These differences are tied up
with the slopes of the middle-level streamlines. For the
fast propagating modes, the streamlines are tilted
forward in the opposite direction with respect to the M-
surface and B-surface according to (3.4). For the slowly
propagating modes, the streamlines are tilted backward
and more slantwise than the M-surface and B-surface
according to (3.5). The above differences suggest that
the propagation of the fast propagating modes is driven

by both the Coriolis inertial restoring force and
perturbation buoyancy restoring force, while the
propagation of the slowly propagating modes is driven
by the Coriolis inertial restoring force but is slowed by
the perturbation buoyancy restoring force (because the
perturbation buoyancy tends to drive the wave
propagation in the opposite direction). This explains
why the slowly propagating modes propagate more
slowly than the fast propagating modes (for n = 1]. The
above analysis can be done similarly for any n > 1,
because the mode structure in each layer between two
adjacent levels of w = 0 [sin(nπz) = 0] is similar to that
for n = 1.

4. Partial orthogonality
The normal modes obtained in (2.8) can be

conveniently numbered by j = 2(n - 1)sgn(m) + m ,
where n (= 1, 2, ...) is the vertical-mode number n (= 1,
2, ...) and m (= ±1, ±2) is the root number for the four
roots (±σ+, ±σ -) of (2.5). Here, j = j(n , m ) can be
viewed as an integer function of n and m. According to
this and (2.8a), the j-th ψ-component mode is then
given by ψ jexp (σ jt), where ψ j = exp[ - ik (x  +
βjz)]sin(nπz) is the mode structure at the initial time (t
= 0) with σ j  = σ (n , m ) and β j  = (1 + σ j2 ) - 1 .
Substituting ψjexp(σjt) back into (2.2) gives

(σj2∆a + P)ψj = 0, (4.1a)
ψj = 0  at z = 0, 1. (4.1b)

where P( ) = Ri ( )xx - 2( )xz + ( )zz. Note that ∆a and
P are self-adjoint and σj2 is real, so the eigenvalue
problem in (4.1) is self-adjoint and a partial-
orthogonality condition can be derived for ψj (j = ±1,
±2, ...) below.

Denote by ψj* the complex conjugate of ψj, so the
complex conjugate of (4.1) is

(σj2∆a + P)ψj*= 0, (4.2a)
ψj* = 0  at z = 0, 1. (4.2b)

By averaging ψj'(4.2a) over one-wavelength area in the
cross-band vertical section and using integration by
parts with the boundary conditions (4.1b) and (4.2b) and
periodic conditions in the horizontal, we obtain

σj2{<(∇aψj)H(∇aψj')>} = {<ψj'Pψj*>}
= {<ψj*Pψj'>}, (4.3a)

where {( )} denotes the vertical average and <( )>
denotes the horizontal average of ( ) in the cross-band
vertical section over one wavelength, ∇a = (a( )x, ( )z)T

denotes the scaled gradient operator, ( )H = ( )*T the
Hermit transpose of the vector ( ), and ( )T the transpose
of ( ). Similarly, by setting the mode number to j' (in
place of j) in (4.1a) and averaging ψj*(4.1a), we obtain



σj'2{<(∇aψj)H(∇aψj')>} = {<ψj*Pψj'>}. (4.3b)

The difference between (4.3a) and (4.3b) yields

(σj2 - σj'2)[ψj, ψj']K2 = 0, (4.4a)

where [ψj, ψj']K2 = {<(∇aψj)H(∇aψj')>} = {<(uj*uj' +
a2wj*wj'>} is the inner product associated with the
cross-band kinetic energy defined by

{K2} = {<|u|2 + a2|w|2>/2}. (4.4b)

Note that σj2 - σj'2 ≠ 0 unless |j| = |j'|, so (4.4a) leads to
the following orthogonality:

[ψj, ψj']K2 = 0  for  |j| ≠ |j'|.  (4.5a)

This result can be also derived by substituting the
analytical expressions of ψj* and ψj' into [ψj, ψj']. One
can verify that

[ψj, ψj']K2 = pj = [(nπ)2 + (a2 + βj2)k2]/2
                   for  |j| = |j'|.  (4.5b)

As shown in (4.5), measured by the inner product
defined in (4.4), ψj and ψj' are orthogonal between
different pairs but parallel within each pair. Because of
this and the reason explained below, the orthogonality
is considered to be partial. Note that [ψ jexp(σ jt) ,
ψ j'exp(σ j't)]K2 = exp(σ j*t + σ j't)[ψ j, ψ j']K2, so the
orthogonality in (4.5a) is equally applicable for the ψ-
component modes at any given time (not limited to the
initial time).

Note from  j = 2(n - 1)sgn(m ) + m  that j = -j' is
equivalent to n = n ' and m  = -m ', so ψ j and ψ -j are
identical. This means that the two ψ-component modes
ψjexp(σjt) and ψ-jexp(σ-jt) are identical at the initial
time and thus cannot be separated from each other in the
initial field of ψ without utilizing the time tendency
information provided by ψ t which is contained
implicitly in the initial conditions for (2.2). Because ψj
and ψ -j are identical, the streamfunction space is
spanned by ψj with j going through either all positive
or all negative integers but not both. This space is
complete for ψ-component fields (of wavelength l at
any given time) but is incomplete for the full-
component fields in the initial conditions, such as (ψ,
v, b) in (2.2). To utilize all the information in the
model initial conditions, it is necessary to expand the
streamfunction space to a vector-function space spanned
by (ψj, σjψj)T or (ψj, vj, bj)T with j going through all
positive and negative integers. Here, (vj, bj) denotes the
initial fields of the j-th (v, b)-component modes in
(2.8b,c). In such an expanded vector-function space, the
inner product defined in (4.4) is no longer a full metric.

However, a full metric can be given by the total
perturbation energy defined by

E = {K2} + {Kv + Pb}, (4.6)

where Kv = <|v|2>/2 the kinetic energy associated with
the along-band velocity perturbation (called along-band
kinetic energy) and Pb = <|b|2>Ri/2 is the potential
energy associated with the buoyancy perturbation (called
buoyancy energy). With this metric, the full-component
modes in (2.8) are non-orthogonal (at any given time).
This further explains why the orthogonality in (4.5) is
considered to be partial.

5. Non-modal solutions and singular vectors
Consider that the non-modal solutions are periodic

with a given wavenumber k in the horizontal, so the
non-modal solution can be constructed by

ψ(x, z, t) = ∑jcjψjexp(σjt) = cHψψψψ , (5.1)

where ψjexp(σjt) = exp[σjt - ik(x + βjz)]sin(nπz) is the
j-th streamfunction mode as in (4.1), βj = (1 + σj2)-1, cj
is a complex coefficient for the j-th mode, the
summation ∑j is over j (= ±1, ±2, ...), c is the vector
composed of cj, cH is the Hermitian transpose of c, and
ψψψψ is the vector composed of ψjexp(σjt). As in section
4, the mode is numbered by j = 2(n - 1)sgn(m) + m,, so
j = -j' is equivalent to n = n' and m = -m'. This implies
that σ-j = -σj, β-j = βj, and ψ-j = ψj.

Substituting (5.1) into (u , w ) = (ψ z, -ψ x) and
(2.2b)-(2.2c) gives

(u, w, v, b) = cH(u, w, v, b) (5.2)

where (u, w, v, b) are the vectors composed of (uj, wj,
vj, bj)exp(σjt), uj = ψjz, wj = -ψjx, vj = (ψjx - ψjz)/σj,

and bj = (ψjx - Ri-1ψjz)/σj. Substituting (5.2) into the
squared norm defined by the total perturbation energy in
(4.6) gives

E = E(t) = cHA(t)c, (5.3)

where A(t) = {<uuH + a2wwH + vvH + bbHRi>}/2 is a
matrix function of t. Measured by the inner product
associated with the total perturbation energy norm, the
normal modes in (5.2) are not orthogonal, so A(t)
contains non-diagonal terms. This implies that the non-
modal energy growths can be larger than the modal
growths. The non-modal energy growth from t = 0 to a
specified optimization time t = τ is measured by

λ = λ(τ) = E(τ)/E(0)
= cHA(τ)c[cHA(0)c]-1. (5.4)



The energy growth is maximized when c  is the
eigenvector associated with the largest eigenvalue of the
following eigenvalue problem:

[A(t) - lA(0)]c = 0. (5.5)

The largest eigenvalue denoted by lmax is called the
leading singular value, while the associated eigenvector
is called the leading singular vector and is denoted by
cls. The solution given by y = clsHyyyy  or (u, w, v, b) =
c lsH (u , w , v , b ) is called the leading singular
perturbation that has the maximum energy growth at
the optimization time t = t. According to the numerical
solutions of (5.5) (not shown), the maximum non-
modal growth is often produced dominantly by two
paired modes. Non-modal growths produced by paired
modes are examined analytically in the next section.

6. Non-modal growths produced by paired
modes
a. Paired propagating modes

Consider a pair of propagating modes, say, the j-th
pair composed of the j-th and j'-th modes with j = -j' >
0. According to (2.8), these two modes have the same,
exactly in-phase, spatial structures in (u, w) but the
opposite, exactly 180o out-of-phase, spatial structures
in (v, b). These two modes propagate in opposite
horizontal directions and their phase speeds are given by
wj/k (> 0) and wj'/k = -wj/k (< 0), respectively, where
wj = sj/i and wj' = sj'/i are their respective frequencies.
Denote by Aj(t) the 2x2 submatrix of A(t) associated
with the j-th subspace spanned by the j-th and j'-th
modes with j = -j' > 0. By using the analytical form of
the normal-mode solution in (2.8), one can show that
Aj(t) has the following form:

Aj(t) = Xj
1 exp(i2w jt)

exp(-i2w jt) 1
Ê
Ë
Á

ˆ
¯
˜

+ Y j
1 - exp(i2w jt)

- exp(-i2w jt) 1
Ê
Ë
Á

ˆ
¯
˜ , (6.1)

where

Xj = {<|uj|2 + a2|wj|2>}/2
= [(np)2 + (a2 + bj2)k2]/4,  (6.2a)

Yj = {<|vj|2> + Ri<|bj|2>}/2
= Zj/|wj|2, (6.2b)

Zj = [Xj + (Ri - a2)k2/4](1 + Ri-1) - bjk2. (6.2c)

Here, w j = s j/i = -s j'/i = -w j' > 0, b j = b j' and the
aforementioned opposite polarization relationships
between the two paired propagating modes are used in
the derivation of (6.1)-(6.2). According to (4.6), Xj is
the cross-band kinetic energy and Yj is the along-band
kinetic energy plus the buoyancy energy for the j-th

mode at the initial time. In the j-th subspace, the
eigenvalue problem in (5.5) reduces to

[Aj(t) - ljAj(0)]cj = 0, (6.3)

where cj = (cj, cj')T = (cj, c-j)T is the vector coefficient
for the j-th and j'-th modes and ( )T denotes the transpose
of ( ). Here, l j denotes the eigenvalue in the j-th
subspace. Since the solution will be considered only the
subspace, the subscript j will be dropped from lj as
long as the meaning is clearly understood.

One can verify that (6.3) has two eigenvalues given
by

l± = qj ± (qj2 - 1)1/2,                                 (6.4)

where
qj = [1 - g2cos(2wjt)]/(1 - g2)               (6.5)

and g = (X j - Yj)/(X j + Yj).                       (6.6)

Here, qj and l± are periodic functions of t. The function
forms of l+ are plotted in Fig. 5 (for  g2 = 0, 0.2, 0.4,
0.6, 0.8) over one period (0 £ 2w jt £ 2p). When t
increases from 0 to p/(2w j), l+ increases from 1 to
m a x ( X j/Y j, Y j/X j) and l -  decreases from 1 to
min(X j/Yj, Y j/Xj). Thus, as long as X j p Y j, a non-
modal energy growth can be caused by the paired
propagating modes and the maximum growth is l+ =
max(X j/Y j, Y j/X j) as t  = p/(2w j). The associated
eigenvector is cj = (cj, cj')T m  (1, -1)T if Xj > Yj or cj =
(cj, cj')T m  (1, 1)T if X j < Y j. For the paired fastest
propagating modes, l+ = Yj/Xj > 1 always. For the
paired slowest modes, l+ = = Yj/Xj = 1 occurs only
when the parameter point is at the zero g contour (not
shown but in the region of Ri > 1).

Fig. 5. l+ plotted for different values of g2 (= 0, 0.2,
0.4, 0.6, 0.8) over one period (0 £ 2wjt £ 2p). Here,
l+ is the leading singular value in the subspace spanned
by a pair of propagating modes.
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As explained at the beginning of this section, the
two paired propagating modes have exactly opposite
polarization relationships between ψ and (v, b). As the
two modes propagate toward each other in opposite
horizontal directions, their associated ψ and (u, w) fields
become exactly in-phase (or out-of-phase) when their
two associated (v, b) fields become exactly out-of-phase
(or in-phase). Thus, the composed (v, b) fields oscillate
with the same frequency ωj as the composed (u, w)
fields but the oscillations of the (v, b) fields are lagged
by 90o with respect to the oscillations of the (u, w)
fields. Note that {K2} and {Kv + Pb} are integrated
squares of (u , w ) and (v, b), respectively, so they
oscillate between 0 and their respective maxima, with
the same frequency of 2ωj and the phase difference
between the oscillations of {K2} and {Kv + Pb} is just
180o. Since the amplitudes of the composed (u, w) and
(v, b) are twice of those for the j-th or j'-th mode, the
maxima of {K 2} and {Kv + Pb} are 4X j and 4Y j,
respectively. When Xj = Yj, the oscillation of {K2}
offsets the oscillation of {Kv + Pb}, so the total energy
E = {K2} + {Kv + Pb} keeps constant in time. This
explains why the paired propagating modes produce no
energy growth (that is, λ+ = λ− = 1) when Xj = Yj.

However, when Xj > Yj (or Xj < Yj), the oscillation
of {K2} (or {Kv + Pb}) becomes dominant and thus the
total energy oscillates between 4Yj ≤ E ≤ 4Xj, (or 4Xj
≤ E ≤ 4Yj). In particular, if Xj > Yj and cj ∝ (1, -1)T,
then {K2}= 0 and thus E = {Kv + Pb} = 4Yj at t = 0.
As t increases from 0 to π/2ωj (that is, one quarter of
the wave period of the j-th mode), {K2} increases from 0
to the maximum (= 4Xj) but {Kv + Pb} decreases from
the maximum (= 4Yj) to 0, so E increases maximally
from 4Y j to 4X j. Similarly, if X j < Y j and cj ∝  (1,
1)T, then E increases maximally from 4Xj to 4Yj as t
increases from 0 to π/2ωj. This explains why and how
the paired propagating modes produce the energy growth
of λ+ = X j/Yj for X j > Yj (or λ+ = Yj/Xj for X j < Yj)
as t increases from 0 to τ = π/2ωj. Note from (6.2) that

Y j/Xj is proportional to |σ j|
-2 = ω j-2, so λ+  can be

very large when ωj is very small.

b. Paired growing and decaying modes
Consider a pair of growing and decaying modes, say,

the j-th pair. Denote by Aj(t) the 2x2 submatrix of A(t)
associated with the j-th subspace spanned by the j-th
pair of modes (with  j = -j' > 0). By using (2.8) and
considering the aforementioned polarization
relationships, one can show that

Aj(t) = Xj
exp(2σ jt) 1

1 exp(−2σ jt)








+ Y j
exp(2σ jt) −1

−1 exp(−2σ jt)






 , (6.7)

where Xj and Yj are as in (6.2) but |ωj| = |σj|
 = σj = -σj'

> 0. In the j-th subspace, the eigenvalue problem in
(5.5) reduces to the same form as that in (6.3) but Aj(τ)
and A j(0) are given by (6.7) instead of (6.1). The
reduced eigenvalue problem with (6.7) has two
eigenvalues given by λ± = qj ± (qj2 - 1)1/2 as in (6.4)
but with

qj = [cosh(2σjτ) - γ2]/(1 - γ2), (6.8)

where γ is as in (6.6). If Xj = Yj, then γ = 0 and the
two eigenvalues reduce to λ± = exp(±2σjτ). In this
case, the energy growth is supported solely by the
growing mode and thus is not affected by the decaying
mode. This occurs only when the parameter point is on
the zero γ-contour line inside the unstable region (not
shown). Away from the zero γ-contour line, we have Xj
≠ Yj and (1 - γ2)-1 =1 + (Xj - Yj)2/(4XjYj) > 1 within
the unstable region. The scaled non-modal growth,
λ+exp(-2σjτ), increases from 1 to the asymptotic limit,
(1 - γ2)-1, as τ increases from 0 to infinity.

The eigenvector associated with λ+ is given by cj =
(cj, cj')T ∝ (1, -γ)T ∝ (Xj + Yj, Yj - Xj)T. By setting cj
= Xj + Yj and cj' = Yj - Xj, the initial non-modal fields
are given by cj(uj, wj) + cj'(uj', wj') = 2Yj(uj, wj) and
cj(vj, bj) + cj'(vj', bj') = 2Xj(vj, bj), so the initial total
energy is E (0) = {K 2} + {K v + Pb} = (2Y j)2X j +
(2Xj)2Yj = 4XjYj(Xj + Yj) according to (5.3), (6.2) and
(6.7). The initial total energy for the growing mode
only, however, is cj2(Xj + Yj) = (Xj + Yj)2(Xj + Yj).
Thus, the total energy E is reduced at the initial time by
a factor of 4XjYj(Xj + Yj)-2 = 1 - γ2 (< 1) due to the
inclusion of the decaying mode. Thus, as t → τ → ∞,
the decaying mode diminishes and exp(-2σjτ)E(τ)/E(0)
→ (Xj + Yj)2(4XjYj)-1 = (1 - γ2)-1. This is precisely
the above derived asymptotic limit of the scaled non-
modal growth.

In the above analysis, cj = Xj + Yj is the coefficient
for the growing mode and is always positive, while cj' =
Yj - Xj.is the coefficient for the decaying mode. Since
these two paired modes have opposite polarization
relationships between (u, w) and (v, b), we have (uj, wj)
= (uj', wj') and (vj, bj) = -(vj', bj'). When Xj > Yj, cj' is
negative, the initial fields cj'(uj', wj') for the decaying
mode and c j(u j, w j) for the growing mode are
completely out of phase. This causes an decrease in
{K2} that overly offsets the increase in {Kv + Pb}
caused by the in-phase relationship between cj(vj, bj)
and cj'(vj', bj') at the initial time. When Xj < Yj, cj' is
positive, so the initial fields cj(vj, bj) and cj'(vj', bj') are
completely out off phase. This causes an decrease in



{Kv + Pb} that overly offsets the increase in {K2}
caused by the in-phase relationship between cj'(uj', wj')
and cj(uj, wj) at the initial time. Thus, as long as Xj ≠
Yj, the decaying mode can reduce the initial total energy
and enhance the non-modal growth.

c. Paired stationary modes
As shown in section 2c, when Ri →  Rinc = 1 -

(ncl/2)2, σ+(nc) → 0 and the associated pair of modes
degenerated into a pair of stationary modes. For such a
pair of stationary modes, we have j = 2(n - 1)sgn(m) +
m = ±(2nc + 1). Denote by Aj(t) the 2x2 submatrix of
A(t) associated with the j-th subspace spanned by this
pair of stationary modes. By using the analytical forms
of the two stationary modes in (2.9)-(2.10), one can
show that Aj(t) has the following form:

Aj(t) = Xj
0 0

0 1







  + Zj

1 t

t t2






, (6.9)

where Xj and Zj are defined as in (6.2) but with Ri =
Rinc, n = nc and βj2 = 1 since |ω j| = |σj| = 0. In this
case, the eigenvalue problem in (5.5) reduces to the
same form as that in (6.3) but Aj(τ) and Aj(0) are given
by (6.9). The reduced eigenvalue problem with (6.9) has
two eigenvalues given by λ± = qj ± (qj2 - 1)1/2 as in
(6.4) but with

qj = 1 +  ρ2τ2/2, (6.10)

where ρ2 = Zj/Xj. Note that λ+ →  ρ2τ2 →  ∞ as τ →
∞. In this limit, the energy growth λ+ (in the subspace
spanned by the paired stationary modes) is produced
entirely by the second stationary mode [see (2.10)].

The result in (6.10) can be also derived from (6.5) or
(6.8) in the limit of |ωj| = |σj|  → 0. Note that γ = (Xj -
Yj)/(Xj + Yj) →  -1 + 2|σj|2Xj/Zj + O(|σj|4) as |σj| →
0. Using this result and the Taylor expansion of
cos(2ωjτ) with ωj2 = -σj2 (> 0), one can verify that
(6.5) degenerates into (6.10) in the limit of |ωj|→ 0.  It
is also easy to verify that (6.8) degenerates into (6.10)
in the limit of |σj| → 0.

7. Non-modal growth classification
By using (6.4)-(6.6), (6.8) and (6.10), λ+ can be

precisely obtained in any subspace spanned by any
paired modes in the complete set of normal modes
obtained in section 2. Denote by λj+ the maximum
non-modal growth in the j-th subspace (spanned by the
j-th paired modes). Denote by max(λj+)N = max{λj+| j
= 1, 2, ... 2N} the maximum among all λj+ for j = 1,
2, ... 2N. The maximum non-modal growth is scaled by
exp(2Reσ1τ) and plotted in Fig. 6a for τ = 0.5. Here,

Reσ1 is the real part of σ1 = σ+(1), so Reσ1 = σmax in
the unstable region and Reσ1 = 0 in the stable region.

The non-modal growth in Fig. 6a has nearly the
same pattern as the numerical result (not shown)
obtained from (5.5) in the truncated space with n ≤ N =
15, especially over the broad region of l > 0.5. This
means that the maximum non-modal growth is produced
dominantly by the paired fastest propagating modes
(with  j = 2). When l is smaller than 0.5 and decreases
continuously (toward zero), max(λj+)N is given by λ4+,
λ6+, λ8+, ... consecutively. For 1.2 > Ri > 0.8, the
maximum non-modal growth is produced ma inly by
the j-th paired fast propagating modes with j = 4, 6, 8,
... consecutively as l decreases (from 0.5 to 0.1). In the
upper-left corner region (Ri > 1.2 and l < 0.5) and
lower-left (Ri < 0.8 and l < 0.5) corner region, the non-
modal growth in Fig. 6a is significantly smaller than
the numerical result (not shown).

When the optimization time is increased from τ =
0.5 to 1.0, the scaled non-modal growth is increased
significantly in two regions, as shown by Fig. 6b in
comparison with Fig. 6a. One region is in the vicinity
of the curved boundary of the unstable region below Ri
=1, while the other region is marked by the semi-circle
counter (of 2.0) centered at l = 0.1 and Ri =1.2. In the
upper part (1> Ri  > 0.7) of the curved region,
max(λj+)N is given by λ4+, λ6+, λ8+, ... as l becomes
smaller than 2.0, 1.0, 0.5, ..., respectively. In the lower
part (Ri < 0.7) of the curved region, max(λj+)N is given
by λ1+. Note that λ1+ is the maximum non-modal
growth produced by the paired slowest propagating
modes (or by the paired fastest growing and decaying
modes) when the parameter point (Ri, l) is outside (or
inside) the unstable region.

When the optimization time is increased further to τ
= 5.0, the scaled non-modal growth is increased sharply
in the banana-shaped region along the boundary of the
unstable region (see Fig. 6c). The scaled non-modal
growth is also increased by 3 times in the semi-circle
region, while the center of the semi-circle region is
shifted slightly down to Ri =1.1 (Fig. 6c). In these two
regions and outside the unstable region, the scaled
growth is very close to that (not shown) computed in
the truncated space (with n ≤ N  = 15). In this case,
max(λj+)N is given by λ1+, so the maximum non-
modal growth is produced almost solely by the paired
slowest propagating modes. Inside the unstable region,
max(λj+)N is also given by λ1+, but λ1+ is produced
by the paired fastest growing and decaying modes.

Note that the semi-circle region (marked by the
contour of 2.5) in Fig. 6c largely coincides with the
semi-circle region of γ > 0.8 centered at l = 0.1 and Ri
=1.1 (not shown). In this region, we have γ > 0.7 and
thus Xj/Yj = (1 + γ)/(1 - γ) > 9.0 for j = ±1 according
to (5.6). In this case, since X j > Y j, the non-modal
growth of the total perturbation energy (produced by the
paired slowest propagating modes with j = ±1) is



characterized by the increase of the cross-band
circulation kinetic energy {K2} that overly offsets the
decrease of {Kv + Pb}. In particular, as shown in
section 6a, this type of non-modal growth reaches the
maximum of l+ = Xj/Yj, as t = p/(2wj). In this case,
{K2} increases from 0 to 4Xj and {Kv + Pb} decreases
from 4Y j to 0 as t increases from 0 to t = p/(2w j) .
This type of non-modal growth requires Xj > Yj and is
classified as PP1 for paired propagating modes.

The banana-shaped region in Fig. 6c largely
coincides with the region of g < -0.7 (not shown). In
this region, we have -1 £ g < -0.8 and thus 0 £ Yj/Xj =
(1 + g ) /(1 - g ) < 0.11 for j = ±1. Here, g  = -1
corresponds to Yj/Xj = 0 for j = ±1 while the latter
corresponds to s1 = 0 for parameter points along the
boundary of the unstable region (see Fig. 1) or,
equivalently, along the ridge of the banana-shaped
region in Fig. 6c. Immediately outside the unstable
region on the long-wavelength side from the ridge of the
banana-shaped region in Fig. 6c, the non-modal growth
of the total perturbation energy (produced by the paired
slowest propagating modes with j = ±1) is characterized
by the increase of {Kv + Pb} that overly offsets the
decrease of {K2}. This type of non-modal growth
requires X j < Yj and is classified as PP2 for paired
propagating modes. The PP2 non-modal growth reaches
the maximum of l+ = Yj/Xj, as t = p/(2wj). Clearly,
the physical mechanism for the PP2 non-modal growth
is opposite to that for PP1, although both types of
growths are produced by paired propagating modes.

Immediately inside the unstable region on the short-
wavelength side from the ridge of the banana-shaped
region in Fig. 6c, the non-modal growth (produced by
the paired fastest growing and decaying modes) is much
larger than the fastest modal growth and the scaled non-
modal growth is much larger than one. In this region,
-1 < g < -0.8 and •  > (1 - g2)-1 >  2.7, so the scaled
non-modal growth can be very large and very close to
its asymptotic limit (1 - g2)-1 as t is sufficiently large.
In this case, as explained in section 4b, since g < 0 and
thus Xj < Yj, the non-modal growth is caused by the
reduction of {Kv + Pb} that overly offsets the increase
in {K2} at the initial time due to the inclusion of the
decaying mode. This type of non-modal growth requires
Xj < Yj and is classified as GD2 for paired growing and
decaying modes.

There is another semi-circle region in Fig. 6c that
largely coincides with the semi-circle region of g > 0.8
centered at l = 0.1 and Ri =0.9 (not shown). In this
region, the scaled non-modal growth has a local
maximum at l = 0.1 and Ri =0.9 but this maximum is
below 2.5 and thus is not shown by the contours (every
2.5) in Fig. 6c. Since g > 0 and thus X j > Yj in this
region, the non-modal growth is caused by the reduction
of {K2} that overly offsets the increase in {Kv + Pb} at
the initial time due to the inclusion of the decaying

mode. This type of non-modal growth requires Xj > Yj
and is classified as GD1 for paired growing and decaying
modes.

Fig. 6. Contours of max(lj+)Nexp(-2Res1t) with N =
15 plotted in the parameter space of (l, Ri) for t = 0.5
(a), 1.0 (b), and 5.0 (c). The contour intervals are 0.2 in
(a), 0.5 in (b), and 2.5 in (c).
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8. Conclusions
In this paper, a complete set of normal modes is

derived for symmetric perturbations in a vertically
sheared basic flow between two horizontal boundaries.
The modes can be classified into three types: paired
growing and decaying modes, paired slowly propagating
modes, and paired fast propagating modes. By rewriting
the model system into a two-equation system for the
streamfunction ψ and vorticity generation G caused by
the thermal-wind imbalance, the interaction between
cross-band circulation and its induced perturbation
(Coriolis and buoyancy) forces [see (3.1)] becomes
intuitive for each type of mode. In particular, for a
growing (or decaying mode), the circulation is tilted
between the M-surface and B-surface, so the growth (or
decay) of the mode is caused by the positive (negative)
feedback between ψ and G. For a slowly propagating
mode, the circulation is tilted more slantwise than the
M-surface and B-surface, so the mode propagation is
driven by the inertial restoring force but slowed by the
buoyancy restoring force (because the perturbation
buoyancy tends to drive the wave propagation in the
opposite direction). For a fast propagating mode, the
circulation is tilted in the opposite direction with
respect to the M-surface and B-surface, so the mode
propagation is driven by both the inertial and buoyancy
restoring forces.

The cross-band streamfunction component modes are
shown to be orthogonal between different pairs in the
scalar-function space in which the orthogonality is
measured by the inner product associated with the cross-
band kinetic energy [see (4.4)]. The streamfunction
alone, however, is insufficient to provide a complete
description of the model initial state unless its time
tendency information is also utilized. The required time
tendency is imbedded in the polarization relationship
[see (2.8)]. To utilize the time tendency information, it
is necessary to expand the streamfunction space to a
vector-function space. The expanded vector-function
space is complete for all admissible initial fields. In this
space, the full-component normal modes provide a
complete set of basis functions and thus can be used to
construct any solutions for the initial-boundary value
problem governed by the model system.

Measured by the inner-product associated with the
total perturbation energy, the full-component modes are
non-orthogonal. This implies that the non-modal energy
growth produced by a certain linear combination of the
normal modes can be larger than the maximum modal
growth over a finite time period. Any two paired modes
have exactly the opposite polarization relationships.
Their cross-band streamfunction component modes are
initially identical and thus parallel in the same direction
in the associated subspace, and their along-band velocity
and buoyancy component modes are also initially
parallel but in the opposite directions in the associated
subspace. This implies that large non-modal energy
growths can be produced by paired normal modes.

The non-modal growths produced by paired modes
can be classified into four types. The basic mechanisms
for the four types of non-modal energy growths can be
summarized, in terms of their initial modal cross-band
kinetic energy Xj and along-band kinetic and buoyancy
energy Yj [see (6.2)], as follows:
(i)  If X j > Y j (or X j < Y j) for a pair of propagating

modes, then the two modes can be combined to
offset each other's cross-band velocity (or along-band
velocity and buoyancy) and thus to minimize the
total perturbation energy to 4Y j (or 4X j) at the
initial time. As the two modes propagate toward
each other through one half of the wavelength (by
one quarter of the wave oscillation time period), their
associated cross-band velocity (or along-band
velocity and buoyancy) fields become exactly in
phase, so the total perturbation energy is increased to
4Xj (or 4Yj) and the non-modal growth reaches the
maximum value of Xj/Yj (or Yj/Xj). The non-modal
growth produced by paired propagating modes is
classified as PP1 type if Xj > Yj or as PP2 type if
Xj < Yj. The PP1 growth is characterized by the
increase of the cross-band kinetic energy that overly
offsets the decrease of the along-band kinetic and
buoyancy energy. The situation is opposite for the
PP2 growth.

(ii) For a pair of growing and decaying modes, the two
modes can be also combined to reduce the cross-band
kinetic energy if Xj > Yj (or the along-band kinetic
and buoyancy energy if Xj < Yj) at the initial time
and thus to enhance the growth of the total
perturbation energy at the optimization time (see
section 4b). In this case, the inclusion of the
decaying mode reduces the total energy more at the
initial time than at the optimization time, so the
non-modal energy growth can be enhanced by a
factor up to (Xj + Yj)2/(4XjYj) as the optimization
time approaches infinity. The non-modal growth
produced by paired growing and decaying modes is
classified as GD1 type if Xj > Yj or as GD2 type if
X j < Y j.

When the optimization time is sufficiently short, the
maximum non-modal growth is produced mainly by the
paired fastest propagating modes (PP2 type). When the
optimization time is large, the maximum non-modal
growth is produced mainly by the paired slowest
propagating modes (or fastest growing and decaying
modes) if the parameter point (Ri, l) is outside (or
inside) the unstable region. Outside the unstable region,
the maximum non-modal growth is the PP1 type on the
short-wavelength side with a local maximum (about 10)
in the vicinity of Ri = 1.1, but changes to the PP2 type
and becomes very large as Ri < 1 and l is immediately
outside the unstable region (see Fig. 6c). Inside the
unstable region, the maximum non-modal growth is the
GD1 type on the short-wavelength side but changes to



the GD2 type on the long-wavelength side immediately
inside the unstable region.

The GD1 or GD2 non-modal growth is larger than
the energy growth produced by the fastest growing
mode, but the non-modal growth rate always approaches
the constant modal growth rate as the optimization time
increases. Unless the parameter point is immediately
inside the unstable region (see Fig. 6c), the transient
non-modal growth rate is not much larger than the
modal growth rate and rapidly approaches the modal
growth rate (within about two e-folding time periods).
Because of this, the GD1 or GD2 non-modal growth (if
it occurs) will play essentially the same role as the
model growth in generating symmetric perturbations.

The PP1 non-modal energy growth produced by
paired slowest propagating modes (with l ≤ 0.1) is large
(close to 10 for τ = 5 as shown in Fig. 6c) when Ri is
in the vicinity of 1.1. As this type of non-modal
growth is characterized by the increase of the cross-band
kinetic energy, it may generate strong cross-band
vertical circulation over a wide range of optimization
time. The PP2 non-modal energy growth produced by
paired fastest propagating modes is not significant
because the growth is small (between 1 and 2.4 for τ =
0.5 as shown in Fig. 6a) and lasts only for a short time
(τ < 1). The PP2 non-modal energy growth produced by
paired slowest propagating modes (with l > 1),
however, can be very large and last for a long time,
especially when the parameter point is near the unstable
region. This type of non-modal growth is characterized
by the increase of the along-band kinetic and buoyancy
energy. Note that the vertical displacement (obtained by
the time-integration of the vertical component of the
cross-band velocity) is proportional to the along-band
velocity and buoyancy, so this PP2 type of non-modal
growth may provide a large vertical lift in the lower
troposphere to trigger moist convection. Moist
convection and convective storms can be triggered by
propagating inertia-gravity waves in many different
ways in the atmosphere and the related wave dynamics
often appear to be approximately linear and more or less
non-modal as suggested by observational studies
(Uccellini 1975; Korch et al. 1988; Fovell et al. 2004).
The energy norm used in this paper, however, does not
directly measure the vertical displacement. To study the
non-modal growth of the vertical displacement generated
by inertia-gravity waves (including the propagating
modes studied in this paper) in terms of triggering
moist convection, a new metric needs to be introduced.
This problem is under our investigation.
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