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1. Introduction 
Many data assimilation techniques have 

been developed to assimilate radar velocity and 
reflectivity data into storm scale numerical 
prediction model (i.e. Sun et al. 1991; Sun and 
Crook 1997,1998; Gao et al. 2002; 2004; Snyder 
and Zhang 2003; Zhang et al. 2004; Tong and 
Xue 2005). Although these research efforts have 
been generally successful, a clear understanding 
of which data fields have the strongest impact on 
and how much information is needed for storm 
scale data assimilation is lacking. Such 
knowledge is very important for designing 
storm-scale observing systems and developing 
new data assimilation procedures. Weygandt et 
al.(1998) have successfully done some 
experiments to study the relative importance of 
different data fields in a numerically-simulated 
convective storm by withdrawing information 
about each model variable and then rerunning the 
simulation. It is found that the perturbation 
horizontal velocity exerts the greatest influence 
on the convective evolution. Nascimento and 
Droegemeier (2002) conducted experiments 
using the same method, but with an idealized 
numerically-simulated bow echo, instead of 
supercell storm. It confirms that horizontal wind 
field is important on the simulation. Furthermore, 
it is also shown that the water vapor field should 
be correctly initialized in the model initialization 
in order to get reasonable results. Sun (2005) 
examined the relative importance of the initial 
analysis fields in a supercell storm observed 
during STEPS using same method as before and 
found that the prediction is most sensitive to the 

initialization of wind, water vapor and 
temperature perturbations. These results are 
inspiring, but some important questions are still 
left unresolved: What’s the impact of different 
data fields with different intervals? How much 
information, or how many variables are needed 
to get better results? 

In this study, these issues are addressed by 
assimilating the pseudo-observations from 
different model variables separately or 
simultaneously to determine the impact of 
different data field, or a group of data fields on 
storm-scale data assimilation. This is 
accomplished by first creating a control 
simulation of a thunderstorm using a 
nonhydrostatic stormscale numerical model; then 
obtaining different type of simulated 
observations from the control run. The 
observational data are assumed to have some 
types of errors, exist at every model grid point. 
The assimilation experiments are performed 
using a simple variational method for each data 
assimilation cycle. By using different intervals (1 
minutes, 5 minutes, 10 minutes), the different 
types of pseudo observations, and the different 
amount of pseudo-observations, the impact of 
each data fields with different intervals can be 
quantitatively evaluated. 

  
2. Methodology 
 
a. Description of variational methodology 

The standard formulation of variational 
methods was derived from first principles by 
Lorenc using Baysian probabilities and assuming 



Gaussian error distributions (Lorenc 1986). The 
concept of a variational method is to determine 
the analysis by direct minimization of a cost 
function. The cost function can be written as: 
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where BJ  measures the departure of the 

analysis x from the background, and is weighted 
by the inverse of the background error 
covariance matrix B; OJ  measures the 
departure ( )H x , which is the projection of the 

analysis x in observational space, from the 
observation, yo and is weighted by the inverse of 
the observational error covariance matrix R.  
 

In this study, the observations are directly 
drawn from the model variables, so no projection 
or interpolation is needed. Both B and R are 
assumed uncorrelated and are constants for 
different variables based on their corresponding 
standard error deviation.    
 
b. The prediction model and truth simulation 

In this study, we use simulated data from a 
classic May 20, 1977 Del City, Oklahoma 
supercell storm case (Ray et al. 1981). The 
Advanced Regional Prediction System (ARPS) 
(Xue et al 2000; 2001; 2003) is used to simulate 
such a deep convective storm within a 64 x 64 x 
16 km physical domain. The model grid 
comprises of 67 x 67 x 35 grid points. Horizontal 
resolution of 1km and vertical resolution of 
0.5km are used. The truth simulation is 
initialized from a modified real sounding plus a 
+4K ellipsoidal thermal bubble centered at x=48, 
y=16 and z=1.5km, with radii of 10km in x and y 
and 1.5km in z direction. Open conditions are 
used at the lateral boundaries. A wave radiation 
condition is also applied at the top boundary. 

Free-slip conditions are applied to the bottom 
boundary. The length of simulation is up to three 
hours. A constant wind of u=3ms-1and v= ms-1 is 
subtracted from the observed sounding to keep 
the primary storm cell near the center of model 
grid. The evolution of the simulated storms is 
similar to those documented in Xue et al. (2001). 

During the truth run, the supercell 
strengthens over the first 20 minutes. The 
strength of the cell then decreases thereafter. At 
around 55 minutes, the cell splits into two. The 
right moving cell tends to dominate the system. 
Another cell moves northwestward and splits 
again at 95 minutes (Tong and Xue 2005). 

 
c. Data assimilation procedure 

One or several of the following simulated 
observations are assumed to be available on the 
grid points in different data assimilation 
experiments: three components of wind field, u, 
v, and w, perturbation potential temperature 'θ , 
perturbation water vapor mixing ration (qv) and 
rain water mixing ratio (qr). 

The observations are assimilated every 1 
minute, 5 minutes, and 10 minutes separately. 
Observations are obtained by adding Gaussian 
noises with zero mean and standard deviation of 

1σ  to the control run (Table 1).      

Table 1. The standard deviation of observation error ( 1σ ) 
and  background  error  ( 2σ ). 

 1σ  2σ  

u 1m/s 3m/s 
v 1m/s 3m/s 
w 0.667m/s 2m/s 

'θ  0.667K 2K 

qr 0.167g/kg 0.5g/kg 
qv

  0.033g/kg 0.1g/kg 



The background error is also assumed same type 
with zero and standard deviation of 2σ (Table 1). 

The pseudo observations are obtained from 30 
minutes of control run to 120 minutes and all 
assimilation experiments are started from the 
environmental sounding.   

RMS error of composite reflectivity is used 
to analyze the results of different data 
assimilation schemes in order to compare them 
with truth run. When calculating the RMS error, 
only grids which are located in the cloudy region 
(where observed Z ≥ 10dBz) are taken into 
account. 
3. The assimilation experiments 

In order to illustrate effects of different 
assimilation intervals, three types of data 

assimilation experiments are performed with 1 
minute (1m), 5 minutes (5m), and 10 minutes 
(10m) interval respectively. In each type, 14 
experiments—u, v, w, pt, qr, qv, uv, upt, uqr, uqv, 
uvw, uvwpt, uvwqr, uvwqv—are conducted 
separately to show the effect of different amount 
of variables used in observations.  

The changes of RMS error for reflectivity 
with time are shown in Fig 1. At the beginning, 
the background is horizontally homogeneous and 
the reflectivity of assimilation run is zero 
everywhere. The RMS error at this time is 35dBz. 
When the observations derived from control run 
is assimilated into model, the RMS error 
decreases and the structure of the storm is 
gradually recovered. 

 

Fig 1. The reflectivity RMS errors of all experiments, averaged over points at which the reflectivity is greater than 

10 dBz. a) b) c) with 1 minute interval; c) d) e) with 5 minutes interval; f) g) h) with 10 minutes interval. 

 



Table 2, Table 3, Table 4 show all 
experiments and the spin-up time RMS error at 
the end of assimilation cycle. Herein spin-up 
time is defined as the time when RMS error first 
decrease to 10dBz, i. e., the assimilated fields are 
closed enough to the truth run. Blank cells in 
“Spin-up Time” columns means RMS error of 
the corresponding experiment is always above 
10dBz during the experiments. 

In table 2, the RMS errors of experiments u, 
v, w, pt, qr, qv at the end of each experiment are 
generally large, mostly larger than 10dBz. This 
indicates that just assimilating one variable is 

often not enough to recover the full storm, or get 
good results. But when shorten the intervals, 
experiments v, w, qv give relative low RMS 
errors. It is found that in experiment qr with 1 
minute interval the RMS errors quickly decrease 
to 10dBz. This is because qr is directly related to 
the reflectivity, but it does not mean the structure 
of the storm will be constructed very well at that 
time (figures not shown). Another thing is that 
assimilating qv can get better results than other 
variables no matter what the assimilation interval 
is. This shows that qv has great impact on 
stormscale data assimilation. 

 
 
Table 2. Experiments and spin-up time, RMS error for experiment u, v, w, pt, qr, qv (spin-up time is 
defined as the time when RMS error first decrease to 10dBz and RMS error is the value at the end of 
each experiment; blank cells in “Spin-up Time” columns means RMS error of the corresponding 
experiment doesn’t reach below 10dBz during the experiments). 

 

Category 1m 
(interval=1 minute) 

Category 5m 
(interval=5 minutes) 

Category 10m 
(interval=10 minutes) 

 Spin-up 
Time 

(minutes) 

RMS 
error 
(dBz) 

Spin-up 
Time 

(minutes) 

RMS 
error 
(dBz) 

Spin-up 
Time 

(minutes) 

RMS 
error 
(dBz)  

U  10.3  17.2  27.5 

V 51 5.4 85 9.5  20.3 

W 31 5.6  15.6  26.3 

Pt  11.9  13.9  17.2 

qr 1 5.0  12.5  17.9 

qv 28 9.5 70 7.2 88 9.7 

 
 



Table 3.  Same as Table 2, but when two variables are assimilated. 
 

Category 1m 
(interval=1 minute) 

Category 5m 
(interval=5 minutes) 

Category 10m 
(interval=10 minutes) 

 Spin-up 
Time 

(minutes) 

RMS 
error 
(dBz) 

Spin-up 
Time 

(minutes) 

RMS 
error 
(dBz) 

Spin-up 
Time 

(minutes) 

RMS 
error 
(dBz)  

uv 26 2.0 40 5.3 68 8.0 

upt 31 7.8 60 6.1  12.0 

uqr 1 2.5 25 6.1  11.0 

uqv 21 8.5 29 3.6 58 6.2 

 
 

Table 4.  Same as Table 2, but when three and more variables are assimilated. 
 

Category 1m 
(interval=1 minute) 

Category 5m 
(interval=5 minutes) 

Category 10m 
(interval=10 minutes) 

 Spin-up 
Time 

(minutes) 

RMS 
error 
(dBz) 

Spin-up 
Time 

(minutes) 

RMS 
error 
(dBz) 

Spin-up 
Time 

(minutes) 

RMS 
error 
(dBz)  

uvw 22 1.5 29 1.8 52 4.6 

uvwpt 22 1.8 24 2.3 31 3.5 

uvwqr 1 1.6 9 1.3 19 2.6 

uvwqv 18 8.3 21 1.4 23 1.7 

 
In Table 3, the RMS errors of experiments 

uv, upt, uQr, uQv at the end of each experiment 
are generally below 10dBz. It takes longer for 
RMS error of 10 minutes interval assimilation to 
decrease to 10dBz, comparing to 5 minutes 
interval assimilation, and so does 5 minutes 
interval comparing to 1 minutes interval. So 
shorter assimilation interval can speed up the 
spin-up time. 

In Table 4, the RMS error of each 
experiment is rather low, mainly smaller than 2 

dBz. It is not surprise that more variables are 
assimilated, better results can be gotten. From 
Table 4 we can also conclude that given only the 
full wind field is sufficient to recover all the 
detail of the storm. This indicates that the wind 
field is very important for storm scale data 
assimilation (Weygandt et al. 1998; Nascimento 
and Droegemeier 2002; Sun et al. 2005). 

  
4. Conclusion 

In this study we tested the impact of 



different data fields in storm-scale data 
assimilation and the impact of different data 
assimilation window. It is founded that 
observation for only single variable may not be 
sufficient to get the reasonable assimilation 
results. The accurate full wind field contains 
sufficient information for stormscale data 
assimilation. Adding potential temperature ( 'θ ), 
rainwater mixing ratio (qr) or water vapor mixing 
ratio (qv) into observations can speed up spin-up 
time, but may increase the RMS error afterward.  
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