
JP1J.17    ASSIMILATION OF MULTIPLE-DOPPLER RADAR DATA WITH  
WRF-3DVAR SYSTEM: PRELIMINARY RESULTS IN OBSERVING  
SYSTEM SIMULATION EXPERIMENTS 

 
Soichiro Sugimoto* 1, 2, N. Andrew Crook2, Juanzhen Sun2, Dale M. Barker2, and Qingnong Xiao2 

1. Central Research Institute of Electric Power Industry, Abiko, Chiba, JAPAN 
2. National Center for Atmospheric Research, Boulder, Colorado, USA 

 
1. INTRODUCTION 
 

Dynamic and microphysical retrieval at the 
convective scale is a great challenge for quantitative 
precipitation forecasting of convective weather. 
Doppler radar provides an unrivalled data source of 
convective fields at high spatial and temporal 
resolution. The use of four-dimensional variational 
data assimilation (4DVAR) with radar data has been 
demonstrated to be promising (Sun and Crook (1998)) 
and seems to be most accurate for the retrieval.  
    However, application of 4DVAR data assimilation 
to a large domain requires huge computational 
resources and is not likely easy to implement under an 
operational environment. During the past few years, 
the development of a 3DVAR system, designed for the 
Weather and Research Forecast (WRF) model 
(Skamarock et al. (2005)), has been accelerated. The 
WRF-3DVAR could play an important role as a tool for 
its application and research of radar data assimilation. 
    The main objective of this study is to evaluate the 
capability of WRF-3DVAR for assimilating radar data 
(radial velocity data and reflectivity factor data) to 
recover the three-dimensional wind, temperature, and 
moisture fields. Then, Observing System Simulation 
Experiments (OSSEs) are performed with simulated 
observations. Another aim is the use of a cloud 
analysis scheme to help inserting or removing 
convection is tested. 
 
2. FUNCTION OF 3DVAR IN WRF-VAR SYSTEM 
 
2.1 Overview 
 
   The WRF-VAR is a newly developed variational 
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data assimilation system, which is designed for the 
WRF model. There was a major update from the 
previous version of WRF-3DVAR that originates and 
evolves from MM5-3DVAR. The basic interface is fully 
consistent with the WRF model, and it will provide 
capability for 4DVAR. Some significant improvements 
have been also achieved in WRF-VAR 3DVAR as 
described in Skamarock et al. (2005). Barker et al. 
(2003) and Barker et al. (2004) describe in detail the 
3DVAR algorithm. Here, a few explanations are given 
to help understanding this study. 
   A cost function is defined to measure the difference 
between the model and observations.  
 
 
where 
x is a vector of analysis,  
xb is a vector of background (first-guess),  
B is the background error covariance matrix,  
yo is a vector of observation,  
y is a vector of model-derived observation transformed 
by the observation operator H (y=H(x)), and  
R is the observational and representativeness error 
covariance matrix. 
The incremental cost function is derived by 
preconditioning via a control variable transformation 
x-xb=Uv, where v is a vector of control variable. This 
preconditioning means that the background error 
covariance B is equivalent to UUT if U is well designed. 
Practically, the control variable transform is performed 
by a series of operations U=UpUvUh, where Uh is the 
horizontal transform by recursive filters, Uv the vertical 
transform via an empirical orthogonal function (EOF) 
decomposition, and Up the physical variable 
transformation involving the conservation of control 
variables to model variables increments. A method to 
estimate three components of the control variable 
transformation is noted in section 3.3. This study uses 
the conjugate gradient method to minimize the 
incremental cost function.  
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The above preconditioning serves to compute 
B-1 efficiently under an assumption that error 
correlations among control variables are uncorrelated. 
In the case of assimilating only radial velocity data, 
streamfunction, unbalanced velocity potential, 
unbalanced temperature, pseudo relative humidity, 
and unbalanced surface pressure are used as control 
variables. In the case of additional assimilation of 
reflectivity factor, the total water mixing ratio (sum of 
water vapor, cloud water, and rainwater) is used as a 
moisture control variable instead of pseudo relative 
humidity. 
 
2.2 Assimilation of Radial Velocity Data 
 
    Radial velocity Vr is defined using wind 
components (u,v,w), vertical fallspeed of hydrometeor 
(currently related only with rainwater) Vt, and distance 
R between locations of radar site and data point:  
 
 
 
 
where (x,y,z) represent the location of radar data and 
(xR,yR,zR) the location of a radar site. Vertical fallspeed 
Vt is calculated from the rainwater mixing ratio qr with 
height correction (Sun and Crook (1997)).  

Model-derived radial velocities are based on this 
operator. Observed radial velocities are also simulated 
using this operator in our OSSEs. The details will be 
described in section 3.2. 
 
2.3 Assimilation of Reflectivity Factor Data 
 
    The following equation is used as a relationship 
between rainwater mixing ratio and reflectivity factor. 
 
 
where Z is reflectivity factor in the units of dBZ, and ρ  
is the air density. This is derived assuming the 
Marshall-Palmer type of drop size distribution and 
reflectivity factor contributed only by rainwater (without 
ice phases). Reflectivity factor is directly assimilated 
so that model-derived reflectivity factor is calculated 
with Equation (4) in the cost function of Equation (1). 
Observed reflectivity factor in OSSEs is based on this 
operator as well. 
 

    As noted in section 2.1, the total water mixing 
ratio is used as a moisture control variable. Therefore, 
we need to introduce a partitioning method in the 
physical variable transformation Up. Four processes; 
condensation, autoconversion, accretion, and 
evaporation are considered in a warm rain regime. 
Isobaric process is assumed for transformation 
between water vapor and cloud water in condensation 
process. We used the same empirical equations as the 
ones used in Sun and Crook (1997) for the remaining 
processes. 
   Some difficulty arises if the background has no 
convection but there is rainfall indicated by radar. 
Since radar indicates the existence of precipitation in 
the atmosphere but gives no information about 
temperature and water vapor fields, it is challenging to 
insert or remove convection in the framework of 
3DVAR. In this study, the use of a cloud analysis 
scheme is tested to make the new background for 
3DVAR using the original background.  

First of all, a budget analysis of rainwater on each 
grid point with equation (5) is performed to estimate 
model-derived latent heating as well as 
observation-derived latent heating.  
 
 
 
where Q is source and sink term of rainwater. Here, we 
assume to have observation-derived rainwater in the 
model space by geometrical interpolation. This 
interpolation is only for the cloud analysis. Of course, 
no geometrical transformation is needed for any 
observations in 3DVAR. Then, the difference of latent 
heating between the two fields is estimated from the 
difference of Q, and it is inserted into the “background” 
field to modify temperature.  

Second, observation-derived latent heating is 
used to determine if the air is saturated (that is positive 
latent heat). If the air is not saturated, cloud water 
mixing ratio in the background is set to be zero, and 
humidity is modified to be a threshold when humidity is 
greater than the threshold (e.g., 70 %). Details of the 
method will be described at the presentation. 
    Third, analysis with 3DVAR is performed using the 
modified background. A combined use of the cloud 
analysis and 3DVAR is iterated at several times. Such 
iteration is called the “outer-loop” in the WRF-VAR. 
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3. SETUP OF OSSEs 
 
3.1 Experimental Design 
 

Assimilation with WRF-3DVAR requires both a 
background field plus observations (see equation (1)). 
In our OSSEs, results from two different simulations 
with the WRF model are used for making the 
background and observations. The only difference of 
configuration between two WRF simulations is the 
time of the initial and boundary conditions.  

First of all, we define a “background” field and a 
“true” field. Then, the “background” field is prepared as 
a forecast from one control simulation with the initial 
and boundary conditions at 1200Z, June 12, 2002. 
The forecast will be also referred to as the results of a 
case study called “no assimilation”. Meanwhile, the 
“true” field is prepared as a forecast from another 
simulation which is initiated at a different time (1500Z, 
June 12, 2002). The “true” field is used for making 
radar observations with the operators described in the 
previous section. Simulated radar observations are 
assimilated into the “background” field with 3DVAR. 
   We perform OSSEs at the cold-start mode and the 
cycling-mode for radial velocity assimilation at first. 
Then, idealized data (see section 3.2) are used for the 
cold-start mode 3DVAR to evaluate maximum 
potential of assimilation. For the cycling-mode 3DVAR, 
observations are assimilated at intervals of 1 hour, 30 
minutes, or 15 minutes from 2100Z, June 12 to 0000Z, 
June 13. Only radial velocity data are assimilated for 
the cycling mode 3DVAR, and data are limited within a 
storm region. Next, the cold-start mode 3DVAR using 
radial velocity data within a storm is applied to two 
different timings to evaluate its impact on precipitation 
forecasting. As a final experiment, reflectivity factor 
assimilation is tested with the cold-start mode. 
Experiments are summarized below. 
Experiment 1: Radial velocity assimilation (at 0000Z 

with idealized data). Evaluation of the 
wind retrieval. 

Experiment 2: Radial velocity assimilation (2100Z to 
0000Z at 1-hr, 30-min, or 15-min 
interval with storm data). Evaluation of 
the wind retrieval. 

Experiment 3: Radial velocity assimilation (at 2100Z or 
0000Z with storm data). Evaluation of 
precipitation forecasting. 

Experiment 4: Additional assimilation of reflectivity 
factor (at 0000Z with storm data). 
Evaluation of the retrieval of moisture 
variables and temperature, and 
precipitation forecasting. 

 
3.2 Simulated Observations and Their Errors 
 
   The actual WSR-88D network is considered, and 
radar observations are simulated for 25 radar sites in a 
domain for simulations with the WRF model (Figure 1). 
The domain has horizontal grid spacing of 4 km, and 
36 full sigma levels are contained in the vertical. It is 
noted that no spatial interpolation from radar 
observation space to model grid space or vice versa is 
performed, because the calculation of radar 
observations is done for each model grid point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Though the actual radar beam pattern and 
observation range (200 km radius for each) are 
considered, radar observations are assumed to be 
obtained at all model grid points within the radar 
coverage for Experiment 1. It is an idealized situation 
for evaluation of maximum potential of radial velocity 
assimilation. The total number of radial velocity 
observations to be assimilated is about 6 million in this 
experiment. In the remainder of experiments, lowest 
detectable levels are set to be 20 dBZ for reflectivity 
factor observations and 5 dBZ for radial velocity 
observations to limit data within a storm.  
   The error in radial velocity is assumed to have an 
unbiased normal distribution (standard deviation of 1 
m s-1) is calculated using Box-Muller transformation as 
a random number generator. To avoid an excessively 
large weighting of data, any absolute value of error 

Figure 1: Model domain and the WSR-88D radar 
sites together with the radar coverage (circles). 



smaller than 0.5 m s-1
 is set to be 0.5 m s-1. For 

reflectivity factor, the same setting as above is adopted 
except for the units of dBZ. 
 
3.3 Estimation of Background Error Statistics 
 
   The performance of a VAR system largely depends 
on the plausibility of the background error covariance 
matrix B in equation (1). The matrix contains important 
information about how the impact of assimilating an 
observation spreads in the model space and about 
how the final analysis is physically balanced. The fact 
that we cannot know the true state of the atmosphere 
makes the estimation of the matrix too difficult.  
   It seems that the use of results from ensemble 
forecasts or application of ensemble Kalman filter are 
promising methods, but further investigation is still 
needed. In this study, a statistical analysis via the NMC 
method (Parrish and Derber (1992)) is used for a 
case-specified matrix with a series of ten 
1-day-forecasts which are performed every 12-hrs 
from 10 June, 2002 to 14 June, 2002. Then, each 
12-hrs forecast is compared with 24-hrs forecast for 
the same time to estimate statistics. This is a crude but 
straightforward approach. Note that the time/domain 
averaged estimates are used in this study. 
   The NMC method provides mainly three estimates 
for WRF-3DVAR as follows:  

- Eigenvectors/eigenvalues of the vertical 
component of Uv 

- The recursive filter’s characteristic 
lengthscale for each control variable and for 
each vertical mode (used for Uh) 

- Regression coefficient to calculate the total 
part of variable from the unbalanced part of 
variable (used for Up) 

Eigenvectors/eigenvalues and lengthscale are tuned 
for more reasonable results because the time lag 
between WRF simulations for the “background” and 
“true” fields is 3 hours which is shorter than 12 hours. 
 
3.4 Comparison with Two Simulations for a 
Convective Storm Event 
 
   As noted above, the same setup of the WRF model 
is used for two different model simulations. First of all, 
the WRF model version 2.0.3.1 is used. The setup for 
the model domain is described in section 3.2. The 

model top is located at 50 hPa. Analyses from NCEP’s 
Eta Data Assimilation System (EDAS) are used as the 
initial and boundary conditions. The model is 
integrated with a time step of 20 seconds (5 seconds 
for the acoustic wave) without any diffusion scheme. 
The configuration for parameterization of dynamical 
and microphysical processes is listed as follows: 

- Surface model: Noah Land Surface Model 
- Planetary boundary layer: YSU Model 
- Cumulus scheme: None 
- Microphysics: WRF Single Moment Model 6 

(WSM6) 
   Our OSSEs are performed for a dryline case that 
occurred over the Southern Great Plains. Plots of the 
1-h accumulated precipitation from 2100Z, June 12 to 
0300Z, June 13, 2002 for the background and truth 
simulations are compared in Figure 2. In the “true” field, 
convection is initiated along a dryline at 2100Z. 
However, there is no significant convection in the 
same region for the “background” field. Another big 
difference between forecasts at 2100Z is found in the 
north-east corner of Oklahoma. Convection developed 
in the “background” field is not significant in the “true” 
field. Forecasts in later hours indicate clear differences 
in the evolution and the movement of precipitation 
area. The differences are caused only by a 3-h time 
lag of initial time, which motivates us to assimilate 
radar observations so that the location, timing, and 
evolution of convection in later hours are improved. 
 
4. RESULTS 
 
4.1 Maximum Potential of Radial Velocity 
Assimilation for Wind Retrieval (Experiment 1) 
 
   Throughout this study, observations are simulated 
from the “true” field and assimilated. Therefore, key 
features found in “Observation minus Background 
(O-B)” innovation are retrieved in “Analysis minus 
Background (A-B)” increment if the framework of radial 
velocity assimilation is well designed. Good 
performance also means that the root mean square 
(RMS) error in “Analysis minus Observation (A-O)” 
residual becomes smaller than the RMS error in O-B. 
Furthermore, positive impacts on precipitation 
forecasting are also expected after 3DVAR analysis. 
    Figures 3, 4, and 5 are comparisons for 
Experiment 1 between O-B and A-B at the model level 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: 1-h accumulated precipitation by two 
different simulations (left: the “true” field; right: the 
“background” field or “no-assimilation” case). 

Figure 3: Retrieval of u-wind component at the 
model level of 10 (Experiment 1 at 0000Z, June 13, 
2002) [upper-left: Observation minus Background 
(O-B), upper-right: Analysis minus Background 
(A-B), lower: RMS error for each level]. 

Figure 4: Similar to Figure 3, but for v-component.
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level of 10 for u-, v-, and w-component, respectively. 
The RMS errors in O-B (blue line) and A-O (red line) 
for each vertical level are also plotted. Generally, the 
positive impact is demonstrated in the profile of the 
A-O RMS error. The score is improved by several 
percent from the result (Sugimoto et al. (2005)) with 
the previous version of WRF-3DVAR. The horizontal 
winds are appropriately recovered by the radial 
velocity assimilation. The retrieval is achieved at 
scales larger than the convective scale. This is clearly 
shown in the vertical velocity field in Figure 5. Note 
that the convective-scale structure in O-B is 
considerably smoothed in O-A. These results suggest 
that a sophisticated dynamical framework with the use 
of flow-dependent background error statistics will be 
needed for the successful wind retrieval at the 
convective scale.  
 
4.2 Effects of Using the Cycling Mode 3DVAR 
(Experiment 2) 
 

The maximum performance of radial velocity 
assimilation with WRF-3DVAR is found in the previous 
experiment. The performance evaluated, however, 
would be degraded for assimilation with real data 
because less data is available due to the detectable 
level of a radar system. Since one of the advantages 

of radar observations is that data can be obtained with 
a high temporal resolution (e.g. 5 minutes), the use 
of the cycling mode 3DVAR is considered.  
    Benefits of the cycling mode are evaluated from 
the temporal change of the RMS error of v-wind 
component. Figure 6 shows the RMS errors in the 
cases of “no-assimilation” and “assimilation” for each 
cycling interval. The RMS error is averaged within a 
storm region. Generally, the error increases as time 
progresses for “no-assimilation” case. Each of 
assimilation cycles reduces the RMS error and 
prevents the rapid increase of the error. As more rapid  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Temporal variation of the RMS error in 
v-component wind (Top: 1-h interval, Middle: 
30-min interval, Bottom: 15-min interval). 

Figure 5: Similar to Figure3, but for w-component.
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cycle is used, the error is more effectively reduced. 

It is interesting that a response after assimilation 
differs somewhat according to the evolution stage of 
convection. The accuracy is kept within the 30-min 
time window from 2100Z, but it is gradually degraded 
after 2130Z up to 2300Z. After 2300Z, the accuracy is 
actually improved as assimilation is performed for the 
cycling mode 3DVAR at 15-min interval. 

Figure 7, which shows temporal variation of the 
RMS error of the vertical wind component, suggests 
the possible reason of degradation within a time 
window from 2130Z to 2300Z. Clearly, the RMS error 
increases during the time window. This suggests that 
the retrieval of the vertical wind at the convective scale 
is needed to be improved especially when the stage of 
convection is developing. 
 
4.3 Impact of Radial Velocity Assimilation on 
Precipitation Forecasting (Experiment 3) 
 
   Figure 8 shows the 1-h accumulated precipitation 
forecasted with the final analysis by the cold-start 
mode 3DVAR at 2100Z, together with observations 
from the “true” field. Positive impacts are found in 1-h, 
2-hrs, and 3-hrs forecasts. Deficiencies in the 
background field at 2100Z, which are pointed out in 
section 3.4, are modified so that the location and 
timing of convection initiated along the dryline are 
forecasted better. 
    However, improvements of the wind field are less 
effective for precipitation forecasting in the case of the 
cold-start 3DVAR at 0000Z (Figure 9). Only a slight 
modification is found up to 2-hrs after assimilation. 
Convection along the dryline is also forecasted a little 
better, but benefits are dissipated by convection which 
originally existed in the background. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: 1-h accumulated precipitation forecasted 
with the final analysis at 2100Z (left: observations 
(the “true” field); right: forecasts). 

Figure 9: 1-h accumulated precipitation 
forecasted with the final analysis at 0000Z (left: 
observation (the “true” field); right: forecasts). 

Figure 7: Temporal variation of the RMS error in 
w-component wind (15-min interval). 
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The result from assimilation at 2100Z indicates 
that assimilating radial wind observations can serve for 
triggering convection. In other words, the location of 
convergence along the dryline is relatively important. 
Once convection is developed, the retrieval of water 
vapor and temperature fields is probably crucial to 
control convective activity.  
 
4.4 Preliminary Result of Reflectivity Factor 
Assimilation (Experiment 4) 
 
    Figure 10, 11, 12, and 13 show comparisons 
between O-B and A-B for rainwater, cloud water, water 
vapor, and temperature, respectively. Other than 
rainwater, all variables are unobserved. Note that A-B 
is affected by 3DVAR as well as the cloud analysis 
scheme. First of all, rainwater is recovered 
appropriately. Next, pattern of negative value of cloud 
water in A-B corresponds well in the pattern in O-B. 
This is due to the cloud analysis. However, positive 
value along the dryline cannot be recovered 
satisfactorily. The reason is probably because radar 
data are available mainly in the north side of the 
dryline, but positive value is found just along the 
dryline. Retrieval of temperature field is achieved fairly 
well. Cooling by evaporation in an area of heavy 
precipitation is important in this case and recovered. 
Finally, water vapor is mainly modified by the cloud 
analysis and the modification is appropriate. However, 
there is still a problem in the lower atmosphere. 

Result of precipitation forecasting with the 
analyzed field is shown in Figure 13. Compared with 
the result from radial velocity assimilation (Figure 9), 
shape and evolution of convection are significantly 
improved. This encourages us to develop a 
methodology in which 3DVAR is performed iteratively 
together with a cloud analysis.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Retrieval of rainwater [left: Observation 
minus Background (O-B), right: Analysis minus 
Background (A-B)]. 

Figure 11: Retrieval of cloud water [left: Observation 
minus Background (O-B), right: Analysis minus 
Background (A-B)]. 

Figure 11: Retrieval of temperature [left: O-B, right: 
A-B, upper: level 6, lower: level 12]. 

Figure 12: Retrieval of temperature [left: O-B, right: 
A-B, upper: level 6, lower: level 12]. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. SUMMARY 
 

This study investigates the performance of radar 
data assimilation in terms of the retrieval of convective 
fields and its impact on precipitation forecasting. The 
investigation is done with WRF-VAR 3DVAR system 
via several OSSEs.   

Results for the cold-start 3DVAR mode with 
idealized radial velocity data indicates that the radial 
velocity assimilation works reasonably well in 
recovering the key feature of the wind field at scales 
relatively larger than the convective scale. However, a 
more sophisticated dynamical framework with a 
flow-dependent background error statistics will be 
needed for the retrieval at the convective scale.  

The use of the cycling mode 3DVAR serves to 
prevent the model error increasing rapidly with time. 
This encourages using radar observations with a high 
temporal resolution. At least, the interval of 15 minutes 
likely works well for radial velocity assimilation. Result 
indicates the need of more accurate retrieval of the 
vertical wind component.  

Positive impact on precipitation forecasting is 

found from results of OSSEs with radial velocity within 
a storm region. It is apparent if the convection is in the 
initiation stage. The impact lasts for about 3 hours after 
assimilation. Meanwhile, benefits of radial velocity 
assimilation on precipitation forecasting are less for 
convection in the developing or the mature stage.     

Such a situation is significantly improved by the 
additional assimilation of reflectivity factor. Preliminary 
result suggests that the combined use of 3DVAR and a 
cloud analysis works to some extent for the retrieval of 
unobserved variables even when the background has 
no convection. 
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Figure 13: 1-h accumulated precipitation 
forecasted with the final analysis at 0000Z (left: 
observation (the “true” field); right: forecasts). 
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