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1. INTRODUCTION 

     Remote sensing measurements are outcome of the 
interaction between instrumental characteristics and 
observed fields. Thus, the quantitative definitions of the 
measurements are affected by the structure of 
precipitation fields as well as by the spatial and temporal 
resolutions. The uncertainty in rain estimates from radar 
measurements is greatly affected by the spatial and 
temporal variability of drop size distributions that is 
responsible for the large stochastic components in an R-
Z scatterplot as compared to the deterministic 
component. We investigate the correlation structure of 
the stochastic component and its connection to 
precipitation physics. We model the space-time 
variability of the stochastic component, to allow the 
study of the characteristics of remote sensing 
measurements and various correction techniques 
(raingage adjustment, attenuation corrections). 

 
2. DATA  

     The McGill dual-polarization S-band Doppler radar 
measures radar reflectivity at 5-minute, 1 km resolutions 
over 24 elevation angles. These volume scan data were 
used to estimate the radar reflectivity at a constant 
height of 2 km above sea level, the lowest elevation that 
is relatively free of ground clutter.  Thereafter the data 
were downscaled to 1-minute, 250 m resolution by sub-
sampling the spatial field and using bi-linear 
interpolation in Lagrangian coordinates to interpolate to 
the required temporal resolution.   
    The raindrop size distributions obtained from a 
Precipitation Occurrence System Sensor (POSS) 
(Sheppard and Joe 1994) are used to derive the 
temporal structure of the stochastic components and 
microphysical parameters. The stochastic model is 
constrained by this point measurement and is validated 
with these derived parameters.  
    The storm of 24 September 2001 was selected as a 
test case because of the long duration of the rainfall 
(over 24 hours) and the range of R-Z relationships that 
were identified during the period.  POSS measurements 
(15 km range and 72 degree azimuth from the radar site) 
show a total rainfall accumulation of 28 mm and a few 
peaks in Z and R associated with convective cells. Total 
rainfall accumulation from POSS Z with a climatological 
R-Z relationship ( 47.1210RZ = : Lee and Zawadzki 2005) 
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is similar to the true value since the derived R-Z 
( 55.1206RZ = ) for the whole period is quite close to the 
climatological one.  However, the deviation ( Rδ ) 
between R and ])210/([ 47.1/1ZR =

)
 shows quite 

interesting features (Fig. 1). For the period from 00 UTC 
25 Sept. to 05 UTC 25 Sept 2005, an R-Z relationship is 
quite similar to the climatological one as indicated by the 
values Rδ  close to zero.  The values of Rδ  are 
systematically positive for the next three hours, and 
negative for the last four hours.  Although the derived R-
Z relationship for the whole period is quite similar to the 
climatology, the R-Z relationships for certain periods 
showed persistent and significant deviation from the 
mean.  The coherence of this deviation can be 
calculated in terms of the q-th generalized structure 
function )(τγ  for a given time lag (τ ): 

     [ ]qRR tt )()()( τδδτγ +−=               (1)   

The calculated second order )(τγ and autocorrelation 
)(τρ  as a function of time lag (τ ) are shown in Fig. 2.  

The de-correlation time is over one hour and structure 
function does not become flat.  In other words, Rδ  does 
not fluctuate as a white noise process but has 
coherence over longer periods and this coherence 
should be considered in the modeling of DSD variability 
in time and space.  

 

3. Model Description 

    The objective is to build a statistical model of )(xRδ , 
the departures in space and time from a climatological 
R-Z relationship, excluding the other significant sources 
of uncertainty.  The model must be constructed in such 
a way that makes it possible to generate stochastic 
realizations of a rain field that are conditioned on radar 
reflectivity observations that were downscaled to 1-
minute, 250 m resolution.   

    The model must also describe the fluctuations in 
space and time in a way that is consistent with the 
observations, which are limited at present to a time 
series at a point (POSS measurements).  Therefore, 
assumptions will have to be made regarding the 
advection of the )(xRδ  field through the area of interest, 
the covariance between )(xRδ  and )(xZ , and the 
structure of )(xRδ  in space and time.  The covariance 
between )(xRδ  and )(xZ is assumed to be zero in the 
interests of simplification and in the absence of 
evidence to the contrary. 
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Fig. 1: Time series of  Rδ  from 
POSS measurements for the 
case of 24-25 Sept. 2001.  Rδ  
is defined as  

)(log10)(log10][ 1010 RRdBR

)
−=δ

 where R
)

 is calculated from Z 
with a climatological R-Z 
relationship 47.1210RZ = . 
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Fig.2: The second order structure function and 
autocorrelation of ][dBRδ  as a function of time lag τ .  
The coherence of structure is over one hour 

     

    It seems reasonable to assume that )(xRδ  and 
)(xZ are advected together since the physical 

processes that are driving the perturbations are likely to 
be embedded in the air mass which is moving at a rate 
which is similar to that observed in the )(xZ field.  Of 
course this is a simplification and is unlikely to be 
correct in cases where the apparent motion of )(xZ is 
due to development and not advection, and in cases 
where the physical processes are related to the 
topography under the air mass, which hopefully is 
stationary.  The perturbation field is advected using the 
velocity field of the observed reflectivity data, which is 
calculated using the optical flow technique of Bowler et 
al. (2004).    

    The statistical nature of the time series of the 
perturbations at a point, )(tRδ in Fig. 1 provides some 
clues regarding the selection of an appropriate model 
for )(xRδ . If  )(tRδ  shows strong evidence of a scaling 
behavior, then a scaling model for )(xRδ  will be 

appropriate. POSS data for the 24-25 September 2001 
were used to estimate Z and R at 1-minute time steps 
over a 24-hour period.  Thereafter )(tRδ  was calculated 
using [ ] 47.1/1210/ZR =

)
, the climatological R-Z 

relationship for Montreal.  The power spectrum of the 
time series of the residuals )(tRδ  was calculated using 
the first 1024 data points in the time series, the resulting 
power spectrum was averaged in octaves as shown in 
Fig. 3a. The spectrum was found to follow a power 
law 04.1−∝ fP , which is consistent with a scaling model 
(Menabde et al. 1997).   

    The generalized structure function was calculated 
and was adjusted with the power law model: 

( )qat ζτγ 0)( =                   (2)  

that is compatible with the scaling hypothesis.  The 
generalized structure functions for moments 0.4 < q < 
2.8 were calculated and the spectra of exponents, ( )qζ , 
were estimated as shown in Fig. 3b.  A straight line fit 
to ( )qζ  explains approximately 90% of the variance, so 
a simple self-affine model with a constant scaling 
exponent can be used to model the time series, at least 
near the origin and over a limited range of moments.  

 

4. Modelling the R-Z fluctuations in space and time 

     The scaling nature of )(tRδ  is quite similar to that 
displayed by a time series of rainfall at a point so the 
space-time model developed to model rainfall by Seed 
et al. (1999) was used to generate )(xRδ  after the radar 
measurement model proposed by Jordan et al. (2003).   

    The space-time model has two components, a model 
to generate a time series of mean field bias over the 
domain of the radar reflectivity observations, and a 
space-time multiplicative cascade to model the small-
scale fluctuations about this mean.   
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Fig. 3: (a) Spectral density for the time series of )(tRδ  from POSS measurements for 24 September 2001 with a fitted 
line (solid line), equation, and determination coefficient (ρ2).  (b) Plot of the exponent of the power law fit to the 
structure function, ζ(q), verses the moment of the structure function, q. The fitted line is shown as the solid line with a 
corresponding equation and determination coefficient (ρ2).     

 

a. Model of mean field bias 

    A simple broken-line model results from the linear 
interpolation between equally spaced independent 
random variables.  Seed et al. [2000] developed a 
multiplicative broken-line model by multiplying N simple 
broken lines together: 

( )∏
=

=
N

p
p(t)ξZ(t)

1

exp               (3) 

where ( )tpξ  is the time series from the pth  broken line in 

the cascade.  
    The variance of each broken line, 2

Tpσ , and the 

spacing between the vertices, ap, for the pth broken line 
are given by  

TpH
TTp q−= 2

0
2 σσ ,     p

p qAa −= 0               (4) 

where 2
0Tσ is the variance of the broken line at the outer 

scale A0, q is the fractional change in the spacing of the 
random numbers between successive broken lines, and 
HT is the exponent for the change in the variance 
between successive broken lines in the cascade (0 < HT 
< 1).  This model is able to generate fractional Gaussian 
noise with a spectral density function that follows a 
power law.  
 
b. Small-scale model 

    The model of Seed et al. [1999] was used to generate 
the space-time fluctuations in the R-Z relationship about 
the mean field bias.  This model uses a multiplicative 
bounded lognormal cascade model for the spatial 
distribution and an auto-regressive model for the 
temporal development in Lagrangian coordinates. 
    A multiplicative cascade field of size (L0, L0) is 
calculated as the product of N fields of correlated 
random variables where the variance of the kth level, 2

Skσ , 
is given by  

kHs
SSk q 22

0
2 −= σσ               (5) 

where q is the ratio of the scales between cascade 
levels, Hs is the spatial scaling parameter, and 2

0Sσ    is 
the variance of the weights at level zero.  
    The correlation length of the random field at level k, 
Lk, is given by 

k
k qLL −= 0

                (6)  

The correlation time in Lagrangian coordinates for level 
k, 

Lkτ , is assumed to follow a scaling relationship 

STkH
LLk q −= 0ττ                 (7) 

where HST is the space-time anisotropy exponent, and 
0Lτ is the Lagrangian lifetime of a structure at spatial 

scale L0.   
    The fields in the cascade are updated in Lagrangian 
coordinates by means of an auto-regressive lag 2 
[AR(2)] model  

kjikkjikkjik tXtXtX δφφ +−+=+ )1()()1( ,,2,,,1,,,
     (8) 

where the model parameters 
2,1, , kk φφ  are functions of kτ , 

and the 
kδ  have a Normal distribution with  

[ ] 0=kE δ                                          (9) 

( )[ ]2
1,

2
2,

2,

2, 1
1
1

)( kk
k

k
kVar φφ

φ
φ

δ −−
−

+
=             (10) 

and spatial correlation length Lk. The cascade levels are 
advected using the advection field estimated from the 
radar reflectivity field. The complete list of model 
parameters is found in Table 1. 
 
5. Case Study 

    The model was run using the parameters shown in 
Table 1 and the downscaled radar reflectivity fields. The 
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ρ2 = 0.9687
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model output was verified using the 2nd order structure 
function of )(tRδ  evaluated at an area of 25 km by 25 
km around the site of the POSS.  The temporal 
generalized structure function was calculated for each 
pixel in the area and the mean and standard deviation of 
the structure function was calculated from 10,000 
structure functions for each lag out to 120 minutes.  The 
structure function for the POSS together with the mean 
and standard deviation of the model is shown in Fig. 4a. 
Estimates of the 2nd order structure function have 
significant uncertainty, particularly for the longer lag 
times, but the modeled structure function closely follows 
the observed structure function for the first thirty minutes. 
The structure function from POSS is within the standard 
deviation up to 110 minutes. The mean spectral 
densities of the input (downscaled) radar rainfall based 
on the R-Z relationship (thick line) and the model output 
fields (thin line) are shown in Fig. 4b. The power laws 
are well preserved in the model (simulation). Spectral 
density from simulated fields shows larger power than 
that from downscaled radar Z fields due to the added 

stochastic components. A slight dip is noticed in the 
spectral density of both the observed and simulated 
fields at 1 km resolution.  This is due to the loss of 
variance due to the downscaling procedure.  
 
 
Table 1: List of model parameters. 
 

Mean dBε µ -0.1 
Variance at pixel resolution (dBε)2 2

0Sσ  1.7 
Spatial Scaling Exponent Hs 0.15 
Lagrangian Space-Time Exponent HST 1.55 
Lagrangian Correlation Time (minutes) 0Lτ  30 
   
Correlation Time of mean field bias 
(minutes) 

T0 420 

Scaling Exponent of mean field bias HT 0.1 
Variance of mean field bias (dBε)2 2

0Tσ  1.25 

 

 

 
Fig. 4: (a) 2nd order structure functions for the POSS (square) and for the model (thick solid line). The structure 
function for the model is an average of 10,000 structure functions at an area of 25 km by 25 km around POSS 
location. The standard deviation is shown as thin lines.  (b) Mean spectral density for the input (downscaled) radar  
and the model (simulated) rainfall fields.  The radar reflectivity field was first converted into R using the 
climatological Z-R relationship and then spectral density was calculated. 

 

    Temporal variation of Z, R and '
mD from POSS, radar 

and, simulation in Fig. 5 shows coherency between 
measurements and simulation, supporting the validity of 
the simulation.  The characteristics diameter is derived 
from R and Z (Lee et al 2004). The mean and variance 
of '

mD  from the simulation and POSS measurements are 
comparable (Table 2). The general trend of '

mD  is well 
simulated although a systematic bias exists due to the 
difference between radar Z and POSS Z. This is 
attributed to the fact that the two measurements have 
different sampling volumes and measurement heights.  
Since we have simulated only the DSD variability 
measured from POSS and do not consider the 
difference between two measurements, a systematic 
bias does not indicate the failure of the simulation.  

Table 2: The mean and variance of '
mD  from POSS 

measurements and model. 
 

 Mean [mm] Variance [mm2] 
Model 1.29 0.08 
POSS 1.34 0.11 

 
    Spatial distributions of radar Z and simulated R in Fig. 
6 illustrate the effects of adding stochastic components 
that represent the variability of DSDs. The structure of 
simulated R and Z fields are similar at the large scale, 
but the small scale fluctuations are more pronounced in 
R fields due to the DSD variability. This was indicated in 
the spectral densities in Fig. 4b which show that the 
simulated field has more variability at the high 
frequencies. Fields of drop size distributions can be 
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calculated given the R and Z fields with a predetermined 
h(x) that is derived from actual data or a specific DSD 
model (Lee et al 2004). In addition, two characteristic 
parameters of DSDs ( '

0N  and '
mD ) can be easily 

obtained from the two fields as shown in Fig. 6. Spatial 
distribution of '

mD  is similar to those of simulated R and 
radar Z. The correlation coefficients for R- '

mD  and Z- '
mD  

are 0.38 and 0.67, respectively (Table 3). Similar 
characteristics have been found from POSS 

measurements. The distribution of '
0N  does not show 

any coherency with R, Z, or '
mD  fields (the correlation 

coefficient is less than 0.2), but the fields do have 
spatial structure. As shown by Lee et al. (2004), the 
correlation coefficient between R and '

0N  is less than 
0.3 whereas '

mD  increases with R.  Testud et al. (2001) 
also found the similar trend in convective rain. Thus, our 
simulation is also quite consistent with their results and 
POSS measurements.       
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Fig. 5: Time series of Z, 
R and '

mD  from POSS, 
radar and, simulation. 

 
 
Table 3: Determination coefficients between DSD 
parameters. 
 

 '
0N - '

mD  '
0N -R '

0N -Z '
mD -R '

mD -Z 

Model 0.20 0.19 0.02 0.38 0.67 
POSS 0.28 0.08 0.00 0.44 0.73 

 
7. Discussion 
    We have demonstrated a way of constructing fields of 
the other moment in space and time that are 
constrained with actual radar and disdrometric 
measurements at a point. Fields of one moment (Z or 6th 
moment) of the DSD is obtained from radar 
measurements and then these reflectivity fields are 
converted into deterministic R fields. Finally, fields of the 
other moment (R) are obtained from the combination of 
the deterministic R fields and stochastic components 
that are derived from the space-time modeling of the 
fluctuation with respect to an R-Z relationship. The 
fluctuations are assumed to be independent of the Z 
field. The stochastic model is validated at a point by 
comparing the second order structure functions and 
characteristic DSD parameters from the model  with 
POSS measurements. The spatial distributions of 

modeled '
mD  are similar to the distributions of radar Z 

and simulated R whereas '
0N  shows completely 

different distributions. However, '
0N  shows the coherent 

structure in space. In addition, the time series of '
mD  

from POSS measurements and modeling have similar 
characteristics, supporting the conclusion that the fields 
of modeled DSDs are realistic.  
    With the two fields (radar Z and simulated R fields), 
the spatial and temporal distribution of DSDs can be 
derived using the double-moment scaling DSDs (Lee et 
al 2004).  The derived DSD fields can be used as a test 
bed for many remote sensing techniques: for example 
attenuation correction techniques, radar-rain gauge 
adjustments, polarimetric rain estimates, etc.  The effect 
of DSD variability in space and time on radar-rain gauge 
adjustments can be investigated in a way that the 
problems of undersampling and drop sorting are fully 
resolved. In addition, all polarimetric and dual-
wavelength parameters, such as differential phase shift, 
different reflectivity, attenuation, can be easily obtained 
through a scattering model using derived DSD fields in 
space and time. With these parameters, several 
methods of attenuation correction, especially 
polarimetric attenuation correction, can be tested and 



the uncertainty of correction methods can be obtained.  
In addition, the modeling can incorporate the initial 
errors in radar quantitative precipitation estimates to 

investigate their importance in precipitation forecasting 
systems. This is a comprehensive way of generating an 
ensemble precipitation forecasting.  

 

 
Fig. 6: Spatial distributions of radar Z, simulated R, derived '

mD , and '
0N  at 01:00 UTC, 25 September, 2001.  
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