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1.  INTRODUCTION 

Satellite systems such as the Tropical Rainfall 
Measuring Mission (TRMM) are complex and rely on the 
proper design and functioning of each of its many 
subsystems—satellite vehicle, ground validation (GV) 
sites, precipitation radar (PR), calibration, and retrieval 
algorithms—to ensure high quality data products.  The 
retrieval algorithms employed in TRMM are based on 
mathematical models and assumptions about the 
microphysics of precipitation.  Errors in the model 
assumptions, variables input to the model, and model 
parameters can lead to errors in the output, which in this 
case, is the retrieved rain rate.   

In general, systems engineering consists of the 
methods and/or processes used to optimize the 
performance of a system given limited time, technology 
and/or resources.  By analyzing the system, the 
designers are able to determine which parts are 
important and which parts contribute little to the overall 
success or outcome.  Likewise, in the TRMM retrieval 
algorithm, some input variables, parameters and model 
assumptions are more important than others.  Global 
Sensitivity analysis (SA) methods and techniques can 
be used to assist in systems engineering analysis by 
providing quantitative insight as to the importance of 
each input factor.  Saltelli (2000, 2004) defined SA as 
the study of how the output of a model (numerical or 
mathematical) varies as a function of its input 
parameters and how to relate the output uncertainty 
(variance) back to the uncertainty in each of the input 
parameters.  

There are at least two main techniques for 
implementing global sensitivity analysis:  Monte Carlo 
(MC);  and variance decomposition.  Each of these 
techniques is sampling based, meaning that samples 
are drawn from the probability density functions (PDFs) 
of each of the factors and the model is executed once 
for each set of sampled values.  A block diagram, 
adapted from Saltelli (1999), of the key components and 
flow of global SA using the variance decomposition 
technique is shown in Figure 1. The model being 
studied, represented by Y = f(Xi),  where Xi = {X1, 
X2,…Xk}, uses sampled values from the distribution 
space of each factor.    
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Figure 1.  Block diagram of the important steps in global 

sensitivity analysis.  Using SA the output variance can be 
decomposed and the relative importance of each of the input 

factors can be determined.   

As shown in Figure 1, the primary output of SA 
(variance decomposition) can be best illustrated by a pie 
chart showing the relative importance of each of the 
factors in relation to the total unconditional output 
variance.  The factor distributions are sampled, the 
model is executed, and the total variance is 
decomposed.  A factor that has a large impact on the 
total variance will be shown in the pie chart with a large 
percentage while a factor that has minimal influence on 
the output variance will have a correspondingly small 
percentage of the pie chart.  Once SA is completed, 
feedback can be provided to the model structure and to 
the underlying assumptions used in the factor 
distributions.  

This paper describes a systems engineering 
analysis of a TRMM-like (TL) retrieval algorithm using 
the SA technique of variance decomposition  to 
determine and quantify the relative importance of each 
of the model input factors.   In this case, the model 
output is estimated rain rate.  The term TL algorithm is 
used to convey the notion that the algorithm studied in 
this paper is based on the TRMM algorithm but deviates 
in select aspects.  The paper is outline is as follows:  
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section 2 provides a background and mathematical 
basis of variance decomposition;  section 3 describes 
the TL retrieval algorithm that is  studied and the 
assumptions made in the model;   section 4 shows the 
SA and UA results from those analyses; section 5 
examines the implications for GPM; and section 6 is a 
summary of this paper.   

2.   VARIANCE DECOMPOSITION 

For a given model with k input factors and function  
f, the output Y can be expressed as 

( )kXXXfY ,...,, 21=  (1) 

where X1, X2, …, Xk are the input factors.  Variance 
decomposition methods include the correlation ratio 
described by McKay (1998), the method of Sobol’, 
Sobol’ (2001), Sobol’ (2003), Saltelli (2002), and the 
Fourier Amplitude Sensitivity Test (FAST) developed by 
Cukier (1978).   

The Method of Sobol’ is used to perform variance 
decomposition more computationally efficient than the 
correlation ratio while yielding more information, Chan 
(1997).  It is based on the decomposition of total 
variance given as  

12...
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k k k
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=

 (2) 

where V is the total unconditional variance, Vi is the 
variance due to each input factor Xi by itself.  Vij is the 
variance due to each pair of input factors, Xij.  
Additionally, higher-order interaction terms are included 
all the way up to V12…k which is the variance due to the 
interaction of all the input factors.  A measure of 
sensitivity Si for a factor can be derived by dividing each 
term in (2) by the total unconditional output variance V 
giving,  
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with the useful property that the sum of all the sensitivity 
indices and interactions sum to one.  The Si variables 
are called the first-order sensitivity indices.  The Sij are 
called the second order indices.  Likewise, Sijm are 
called third order and so on up to the highest order, 
S12..k, which accounts for the interaction of all k input 
factors.  For a model that is additive,  
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meaning the sum of the first-order sensitivity indices is 
one.  If the Si  do not sum to one, then higher-order 
interactions are present.  Rather than directly compute 
all the first and higher-order sensitivity indices, it is often 
sufficient to compute only the Si  and total sensitivity 
indices, STi  for each input factor Xi.  The STi indices 
measure the contribution to the total variance as a result 
of the first and higher-order interactions of each factor 

Xi.  For example, assuming k = 3, the total sensitivity 
index ST1 for factor X1 would be  

123131211 SSSSST +++=  (5) 

which accounts for all the interactions of input factor X1 
with X2 and X3.  Similar expressions can be generated 
for factors X2 and X3. 

3.  TL  RETRIEVAL ALGORITHM 

3.1.  Background 

The retrieval algorithm used to estimate the TRMM 
rainfall rate is designated as 2A25 in the TRMM data 
products and is thoroughly described in Iguchi (2000).   
The underlying assumption of the retrieval method is 
that specific attenuation k(r) in dB/km, at some range r 
from the satellite, can be modelled as 

( ) (rZrk e
βα= )  (6) 

and that the rainfall rate in mm/hr can be found from 

( ) (rZarR b
e= )  (7) 

where α, β, a and b are empirically-derived coefficients 
and the true radar reflectivity factor is designated as 
Ze(r).  Because of attenuation, Ze(r) is masked and must 
be estimated.  The observed or measured radar 
reflectivity factor Zm(r) (mm6 m-3) at range r is related to 
Ze(r) by the two-way attenuation factor A(r),  

( ) ( ) ( )rArZrZ em =  (8) 

and A(r) is given by 
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⎦

⎤
⎢
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⎡
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r

dsskrA
0

10ln2.0exp  (9) 

Using the assumption of (6),  (8) can be solved for Ze(r)  
and written as 

( ) ( )
( )rA
rZ

rZ
HB

m
e =  (10) 

where AHB(r) is the Hitschfeld-Bordan (HB) derived 
attenuation factor, 

( ) ( ) ( )
β
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0
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mHB dssZsqrA  (11) 

with q = 0.2 ln10.  Note that log = log10 and ln = loge.  
Using a hybrid of the HB and an independent surface-
reference technique (SRT), (10) and  (11) can be written 
as 
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The coefficient ε is found from the path-integrated-
attenuation from HB (PIAHB) and SRT (∆σ°) values so 
that Ze can be calculated at each range bin r, Meneghini 
(2000).  In this work, ε is calculated using the simplistic 
linear function from Iguchi (1994) instead of the more 
detailed maximum-likelihood method described by 
Iguchi (2000).    Normally, after the final ε value is 
calculated, the a and b terms in (7) are recalculated 
(adjusted) using second-order logarithmic polynomials  
to provide the final Z-R relationship,  

( ) ( )'b
eR r a Z r′=  (13) 

with R(r) in mm/hr such that ε is linked to the DSD via 
the α-correction process, Kozu (2001).  The adjustment 
for non-uniform beam filling (NUBF) is not implemented 
in this work. 

3.2.  Model 

Using equations (6) through (13),  a model for the 
TL algorithm can be formulated according to the 
sensitivity analysis guidelines of the form 

( ) ( )0,,,,, σβα ∆= baZfrR m  (14) 

where the rain-rate R(r) is a function of the listed input 
factors and range r.  Although the input profile, Zm, is 
many bins high, the sensitivity analysis is performed 
using only the bottom bin nearest the ground.   

3.3.  Input Factors 

Each of the input factors listed in (14) must have a 
specified PDF that can be sampled as part of the SA 
process.   For ocean retrieval, the TL-model factor 
distributions are shown in Table 1.   

Table 1.  List of the input factors and their distributions for the 
TL algorithm rainfall-rate sensitivity analyses over ocean.  The 

nominal values for these factors were obtained from Iguchi 
(2000), assuming 20 ° C stratiform rain. 

Factor Name Probability Distribution 

α U{ 2.851 e-4 ± 20% } 

β constant = 0.792 30 

a U{ 0.022 82 ± 0.014 } 

b U{ 0.672 7 ± 0.036} 

°σ∆ N{ ∆°σtrue , 1 dB } 

Zm (error in each bin) N{ 0, 1 dB} 

 
In this work, α is assumed to be uniform and vary ± 

20% about its nominal value specified for rain, 20° C, 

stratiform.  β is constant and is fixed at its defined value 
for rain, 20° C, stratiform, Iguchi (2000). 

As this paper focuses on a TL algorithm,  the 
calculation and usage of a and b are handled differently 
than the method in the TRMM algorithm.  For low rainfall 
rates, where ε is unity (or close to unity), and α-
correction is not performed, the Z-R relationship of (7) is 
used to calculate rain rate using estimated PDFs 
(shown in Table 1) for a and b.   For higher rainfall rates, 
the a and b method given in the TRMM algorithm (log 
polynomials based on α-correction) is used to calculate 
rain rate instead of sampling the PDFs.  The TL 
algorithm automatically transitions from one method to 
the other.    The uniform PDFs, used in this paper, for a 
and b were derived from global disdrometer data from 
Bringi (2003) using a technique based on the work of 
Kwiatkowski (2002) which performs Z-R curve fits and 
generates multiple a, b pairs, linked to α-correction,  
which can then be statistically analyzed.   Bringi (2001) 
showed that an alternative procedure is to keep b fixed 
and relate all variabilities of Z-R through the concept of 
normalized DSD.  At low rain rates, statistical variation 
(error) from the a, b coefficients propagates through the 
model, and at higher rain rates, variation (error) in Zm 
and ∆σ° propagate through the model and are implicit in 
the calculation of ε and in the values of a′  and b′ .  
Note that even small variations in a and b in (7) (or a′ 
and b′ in (13)) can cause large swings in estimated 
rainfall rate, and consequently, the distributions of a and 
b can be very important to accurate rainfall estimation.   

The value of ∆σ° depends on whether it is over land 
or ocean.  For ocean, it is assumed to be 1-dB, standard 
deviation, mean value equal to true PIA from the 
simulated data sets.   

The input factor, Zm, is a vertical profile (vector) of 
reflectivity values.   It is understood that there is 
measurement error in each bin, and that the error is 
normally distributed, zero mean, with a 1-dB standard 
deviation.   Because the sensitivity and uncertainty 
analysis methods don’t allow for a direct mapping of an 
error vector in the function (14), the Zm profiles must first 
be mapped to another random variable called a trigger 
factor or trigger variable. Saisana (2005) showed that 
the trigger factor serves as an index to select specific Zm  
profiles for SA.  In this way, the error in the Zm profiles 
can be integrated into the model evaluations. 

4. TL-ALGORITHM OCEAN RESULTS 

SA was performed on the TL function (14) for the 
DSD pairs listed in Table 2 for ocean conditions.    Each 
profile is based on a vertical rain column, 3-km high 
assuming 12 bins, each with a radar range resolution of 
0.25 km.  

The first-order indices, Sα, Sa, Sb, S∆σ°, SZm, versus 
rain rate are shown in Figure 2.   
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Table 2.  List of the Nw, Do pairs and rain rate that were used to 
create Zm profiles. 

Do  (mm) Nw Rain Rate (mm/hr) 

0.65 33,800 1.09 

0.75 33,900 2.14 

0.85 34,300 3.87 

0.90 34,600 5.10 

0.95 35,000 6.65 

1.00 35,500 8.56 

1.10 36,700 13.52 

1.15 37,400 17.33 

1.25 38,900 26.64 

1.30 39,700 32.65 

1.35 40,500 39.73 
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Figure 2.  Graph showing the first-order variance 

decomposition of the important factors in the TRMM-like 
algorithm over ocean.   The factors a and b have significant 
impact in the low rainfall region but diminish as the algorithm 

transitions to higher region where the log polynomials are used 
to calculate a and b.    At high rain rates,  the error in ∆σ° 

dominates.   

From the SA results, there is a clear peak in the 
contribution of α to the total output variance around the 
30 mm/hr range.  At low rain rates, the Sa term 
dominates while the contribution from Sα and S∆σ°  are 
negligible.  In the low rain-rate region, the TL algorithm 
uses the HB solution which does not use the ∆σ°  input 
values.  In the higher rain-rate region, the ∆σ°  input is 
used more significantly in the retrieval algorithm.  A 
transition between HB and ∆σ°  methods occurs 
between about 5-8 mm/hr.  In both the lower and upper 
regions, the sum of the three, first-order sensitivity 
factors is approximately 100% at each rain-rate 
indicating that the TL model of (14) is additive.  
However, in the transition region, the model is not purely 
additive and higher-order sensitivity interactions occur.  
Above the transition, S∆σ°  dominates the rain rate 
variance.  As expected, the contribution from the error in 

∆σ° declines with increasing rain rate because the true-
∆σ° values increase and the error associated with this 
variable decreases as a percentage of its true value and 
hence its contribution to output variance decreases.    

5.  GPM IMPLICATIONS 

 SA methods have been applied to a GPM dual-
frequency retrieval algorithm based on profile-
optimization techniques, Rose (2005).  This method 
assumes that the profiles for Do and log(Nw) are linear 
and that an optimization routine can find appropriate top 
and bottom Do, Nw values such that internally calculated 
Zm1, Zm2 profiles match the input profiles.  This GPM 
retrieval algorithm has been adapted to the form, 

( ) ( )1 2,m mR r f Z Z=  (15) 

where Zm1 and Zm2 are the input, measured-reflectivity 
profiles at 13.6 and 35.6 GHz, respectively, and R(r) is 
the rain rate.   In this case, the error associated with the 
Zm1 and Zm2 profiles is zero mean, 0.5-dBZ standard 
deviation, normally distributed, in each bin.  From SA, 
the first and second-order sensitivity indices, SZm1, SZm2, 
SZm12, are shown in Figure 3. 
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Figure 3.  Graph showing the first and higher-order variance 
decomposition of the two input factors for the GPM profile-

optimization method.  At low rain rates, the model is not 
additive where significant higher-order interactions are present.  
At higher rain rates, the model is additive.  The error in Zm2 is 
the primary contributor to total output variance throughout the 

entire rain rate region. 

The analysis shows that at low rain rates, a 
significant higher-order interaction between the input 
factors is present, and at higher rain rates, that the error 
associated with Zm2 (SZM2) dominates.  As with the TL 
algorithm, trigger variables were used with both Zm1 and 
Zm2 to map them to the SA process.    The implication 
for GPM is that the error in Zm2 dominates the output 
variance and more emphasis should be applied to its 
measurement and processing than to that of Zm1. 

6. SUMMARY 

This paper has briefly shown how global sensitivity 
analysis can be applied to a TL algorithm indicating 
which input factors are most important in contributing to 
output variance in the rain-rate retrieval.  We have also 
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shown preliminary SA results and implications for a 
GPM retrieval algorithm based on profile optimization.   
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