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1. INTRODUCTION

One of the remarkable successes of fluid dynamics in
the last century was Prandtl's simple analytical model of
katabatic and anabatic winds along mountains and
valleys of constant slope. Prandtl's one-dimensional
model was a solution of the Boussinesq equations of
motion and thermodynamic energy for laminar flow of a
viscous fluid along a uniformly cooled or heated sloping
planar surface in astably stratified fluid (1942). It had a
boundary-layer character (a low-level jet topped by a
weak reversed flow), and was exact within the
Boussinesq framework: in the thermodynamic energy
equation the along-slope advection of environmental
(mean) temperature balanced thermal diffusion, whilein
the along-slope equation of motion the along-slope
component of buoyancy balanced diffusion of the along-
slope velocity component. With a suitable change of
parameters, this same one-dimensional steady-state
solution also described the along-slope flow and salinity
(density) perturbations in an oceanic mixing layer at a
doping sidewall (Phillips 1970; Wunsch 1970). In this
oceanic context, the flow was generated solenoidally by
isopycnals that are forced to approach the sloping
boundary at aright angle (zero normal flux). This same
solution also described the free convective flow of a
stratified fluid along heated vertical plates (Gill 1966,
Elder 1965), and Ekman flow of a homogeneous
viscous rotating fluid in the presence of an imposed
wind stress or a stationary horizontal boundary
(Pedlosky 1987). The equivalence of the Prandtl and
Ekman models was a consequence of the analogy
between stratified and rotating flows (Veronis 1970).
The Prandtl model has undergone several extensions
and refinements within its one-dimensional framework.
Gutman and Malbackov (1964), Lykosov and Gutman
(1972), Gutman and Melgarejo (1981), and Gutman
(1983) extended the model to include the Coriolis force,
external winds, time dependence and simple but
nonconstant eddy viscosities. Grisogono and Oerlemans
(2001, 2002) considered more general vertical variations
in the eddy viscosity and presented solutions valid in the
WKB approximation. Observations (e.g., Oerlemans,
1998) suggest that despite its simplicity, when the
model has appropriately tuned turbulence parameters, it
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provides a good description of slope flows at night and a
reasonable approximation of the flows during the
daytime. Observations indicate that the boundary layer
depth in katabatic flows can be very small, ranging
from a few hundred meters down to just a few meters.
In the context of oceanic Ekman flows, Madsen (1977)
described an extension of the classical framework to
include a linearly-varying eddy viscosity and provision
for unsteadiness (response to an impulsive surface wind
stress). The imposition of nonconstant eddy viscosities
resulted in more accurate velocity profiles.

In this study we extend the Prandtl framework to
include surface buoyancy forcings that vary linearly
with distance in the along-slope direction. This
extended framework may apply in regions where
buoyancy varies slowly enough in the along-slope
direction that it is well-described locally by a linear
variation. It may also apply to the case of a slowly-
varying transition zone bridging two regions
characterized by different constant katabatic forcings. In
real applications, inhomogeneous surface forcings arise,
for example, from differential snow/ice cover,
differential cloud cover, differential shading (e.g., upper
slopes are shaded while lower slopes are sunlit),
differential soil moisture, and variationsin land use.

The presence of a linearly-varying along-slope
dependence to the surface buoyancy forcing breaks the
symmetry of the classical Prandtl model and gives rise
to flow acceleration, convergence and associated vertical
motions, and horizontal and vertical advection of both
perturbation and base-state temperature fields. Thus, the
model is necessarily two-dimensional and nonlinear.
However, as we will see, a simple scaling hypothesis
(linear dependence of buoyancy and horizontal velocity
components on the along-slope coordinate) removes the
along-slope coordinate from the governing eguations,
and greatly simplifies the problem. With attention
restricted to the steady-state flow structure, the
Boussinesq equations of motion and thermodynamic
energy reduce to a set of coupled nonlinear ordinary
differential equations. Asymptotic solutions for the
steady-state structure above the boundary layer are
obtained. A key result is a formula for the
inflow/outflow through the top of the boundary layer as
a function of surface forcing (and environmental
parameters that are used in the nondimensionalization).
The asymptotic analyses are supplemented with
nonlinear numerical integrations. Both the analytical
and numerical analyses reveal an upper bound to surface
buoyancy forcing (along-slope gradient) beyond which
steady-state solutions do not exist.



2. THE SIMILARITY MODEL AND ITS
COROLLARIES

2.1 Boussinesq Equations for Two-
dimensional Flow

We consider the following Boussinesq equations of
thermodynamic energy, momentum, and mass
conservation for nonhydrostatic buoyancy-driven flows
of astably-stratified fluid:
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Here M= (P-P,)/p; is the normalized perturbation

pressure (P is pressure, Py, is environmental pressure,
which is hydrostetic, py is a constant reference density),

V is the two-dimensional velocity vector, T is time,
and v and K are (constant) eddy viscosity and thermal
diffusivity coefficients, respectively. K* is the unit
vector associated with the Cartesian Z* axis, which
points in the direction opposite the gravity vector g.

=19/ (0-86,,)/6; isthe buoyancy force per unit mass,

and N=,/(lg/6,) d8,/dZ* is the Brunt-Vaisda

frequency (where 6 is potential temperature, 8, is a

height-dependent environmental potential temperature,
O, is a constant reference potential temperature). We

consider 6, to vary linearly with Z*, so N is constant.

Although Coriolis terms are not included in our
analysis, the model framework can be extended to
include such terms. The neglect of the Coriolis terms
is appropriate for flows with large Rossby numbers.
For velocities typical of katabatic flows (say, 10 ms-1)
at mid- or upper-latitudes, our analysis should be
appropriate for horizontal length scales on the order of
10 km or less.

The lower surface is an inclined planar boundary
with slope angle a. We introduce a terrain-following
Cartesian coordinate system (X, Y, Z) obtained from the
original Cartesian system (X*, Y*, Z*) by a rotation
through this slope angle (Fig. 1). The X-axis is the
along (down) slope coordinate, and the Z-axis is the
slope-normal coordinate. The'Y and Y* axes coincide,
and point in the cross-slope (into page) direction. The
flow variables do not vary in the cross-slope direction.
The unit vectors in the X*, Z* directions are | *, K*,
respectively, while the corresponding unit vectorsin the
terrain-following coordinate system are |, K. Writing
V=UI+WK , and noting that K* only projects in

the XZ plane (so K* W =UK* O +WK* [K =
—Usina + W costt ), (2.1)-(2.3) become
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Fig. 1. Terrain-following coordinate system.
In terms of the nondimensional variables
_ N = /' N =
=X./v-,z=2,./35-, t=NT,
X ./ Ve z Ve
(2.8)
_ B _u _ W _ N
= us , W= , TL= ,
N/Nvg' Nve Nve Nvg



equations (2.4) - (2.7) become
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where Pr = vJK ¢ is the Prandtl number.
Introducing the streamfunction ), defined by
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equation (2.12) is automatically satisfied, while (2.9)-
(2.11) become
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2.2 The Similarity Model

We consider idealized flows driven by buoyancy
fields that vary linearly in the along-slope (x) direction.
Such distributions may provide good local
approximations to actual buoyancy fields that vary
sufficiently gradually with x. In view of (2.14), the
corresponding streamfunction should also vary linearly
with x, and so the along-slope velocity divergence
du/ox and associated slope-normal velocity component
w are independent of x. Equations (2.15) and (2.16)

then indicate that the pressure can have up to a quadratic
dependence on x, but the quadratic part must be
independent of z. Such a quadratic term supports
stagnation point flows but probably has little relevance
for katabatic flows and will be omitted. Thus, the
idealized flow is constrained to satisfy the similarity
mode,

WX,z 1) = Pz t) + xPy(z 1), (2.17)
b(x,z1t) = bg(z, 1) + xb,(z 1), (2.18)
T(X,z, 1) = Tp(z, 1) + X1, (2, 1). (2.19)

Although our analysis proceeds in a streamfunction
formulation, it may be useful to keep in mind that the
velocity components consistent with this model are of
the form W=—U(z,1), and u=ug(z t) +xuy(z1) ,
where Ug=0yio/0z and u, =0y, /0z . The functions
Yo, Wy, Ug, Uy, W, bg, by, 1, T, vary with z and t,
but are independent of x. Substituting (2.17)-(2.19)

into (2.14)-(2.16), and collecting terms in common
powers of x, yieldsthe partial differential equations,
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Several features of (2.20)-(2.25) deserve mention.
Firstly, in proceeding from (2.14)-(2.16) to (2.20)-
(2.25), the number of independent variables has been
reduced from three, (X, z, t), to two, (z, t). This greatly
simplifies the problem. In particular, the steady stateis
described by ordinary differential equations rather than



partial differential equations. Secondly, the system
(2.20)-(2.25) is exact within the Boussinesq framework,
that is, for flows constrained to satisfy (2.17)-(2.19),
the governing equations exactly reduce to (2.20)-(2.25).
Analogous similarity models have led to exact solutions
of the Navier-Stokes equations for planar stagnation-
point flows (Schlichting 1979; Yang 1958),
axisymmetric stagnation-point flows (Schlichting 1979;
Williams 1968) and von Kérman-Bédewadt vortices
(Zandbergen & Dijkstra 1987; Shapiro 2001), and to
exact solutions of the nonlinear shallow-water equations
for basins of elliptical cross-section and parabolic depth
variation (Thacker 1981; Cushman-Roisin 1984, 1987,
Cushman-Roisin et al. 1985; Shapiro 1996). Thirdly,
there is a partial decoupling of the equations in (2.20)-
(2.25), and this facilitates their solution. Equations
(2.21) and (2.23) comprise a closed nonlinear system for
P and by that can be solved first. The 1, variable can
then be recovered from (2.25). Equations (2.20) and
(2.22) then form a closed linear system for Y, and bg.
Since Yy always appears differentiated with respect to z,
it will be convenient to solve for 0yg/d0z and by, and
then obtain (g by integration. Finally, (2.24) can be
integrated to obtain 15. Since Y, by, and 1, are
associated with the divergent part of the velocity field,
they will be refered to as divergent flow variables.
Similarly, g, by, and 1y will be referred to as
nondivergent flow variables.

Since the 8%/0x2 diffusion terms in (2.14)-(2.16)
vanish identically within the framework of the
similarity model, the suitability of the model in real
applications hinges, in part, on when these diffusion
terms can be safely neglected. A scale analysis shows
that these terms are much smaller than the
corresponding 02102 diffusion terms and advection
termsif H/L <<1land Re=UL/Vg>>1. Here H and
L are dimensional length scales in the slope-normal and
along-slope directions, respectively, and U, is a
dimensional along-slope velocity scale. Thus, the
model should be suitable for shallow (boundary-layer
type) flows.

2.3 Divergent Flow Variables

Restricting attention to pure katabatic flows,
(katabatic flows without an imposed pressure gradient,
lim, ., Ty, =0 ], three independent parameters appear
in the divergent flow system: a, Pr and a surface
buoyancy parameter (boundary condition). However, an
equivalent system involving only two independent
parameters, Pr and a scaled surface buoyancy parameter
is obtained by the change of variables,
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In terms of these variables, (2.21) and (2.23) become
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equations in which a no longer appears. In the steady
state, (2.27)-(2.28) reduce to the ordinary differential
equations

gf —fg =f +Lg", (2.29)
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where a prime denotes differentiation with respect ton.
The boundary conditions are the remote conditions

Jim fm) = lim,_g(n) =0, (231)
and the surface conditions

f(0) = 0, (impermeability), (2.32)
f'(0) = 0, (no-slip on u-velocity component), (2.33)

9(0) = csca b (0), (along-slope gradient of b). (2.34)

The only appearance of a in the divergent flow system
isin boundary condition (2.34) where it is coupled with
the along-dope buoyancy gradient.

Integrating (2.25) and applying the remote condition
Iimn L 0Ty =0 yields

T, = —COS /Sinal , g(n) dn (2.35)

where an overbar denotes a dummy integration variable.
2.4 Nondivergent Flow Variables

For the nondivergent flow system we introduce the
scaled variables,

Mo
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which reduce (2.20) and (2.22) [with (2.35) for Ty ] to
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Equations (2.37) and (2.38) are linear, but have
inhomogeneous terms and variable coefficients.

In the steady state, (2.37) and (2.38) become the
ordinary differential equations

gk—fh =k+f+Lh" (2.39)
frk—fk' = [n gmdy —h + k" (2.40)

This system is subject to the remote conditions

qli_.mook,(n) = nILmoo h(n) =0, (2.41)
and the surface conditions
k(0) = 0, (no-slip on u-velocity component), (2.42)

h(0) = seca vsina b(0) , (surface buoyancy). (2.43)

Again, a has been removed as an independent parameter
from the differential equations. In this nondivergent
flow system, a only appears in boundary condition
(2.43) where it is coupled with the surface buoyancy.

According to (2.41), the slope-normal derivative of
the u-velocity function (k' rather than k itself) vanishes
at infinity. As will be discussed in the asymptotic
analysis, the remote value of k insures that the remote
flow is parallel to the isentropes.

Once (2.39)-(2.40) have been solved, we obtain Y
from (2.36) and the impermeability condition as

Yo = cota : k(m) dn . (2.44)

3. ASYMPTOTIC ANALYSIS OF THE
STEADY STATE

An asymptotic analysis (valid for large ) of the
divergent and nondivergent flow systems in pure
katabatic flow is conducted for the steady state.
Attention isrestricted to a Prandtl number of unity.

The inhomogeneous surface buoyancy will, in the
nonlinear system, induce an aong-slope velocity
divergence and associated subsidence (or ascent) through
the depth of the boundary layer. The divergence
vanishes at infinity, but its integral, the slope-normal
velocity component, need not vanish:
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This remote slope-normal velocity is analogous to the
axia flow that occursin von Karman-Bodewadt vortices
far above the plate boundary in response to centrifugal
pumping near the boundary (Schlichting 1979). Aswe
will see, it plays a key role in the asymptotic structure
of both the divergent and nondivergent flow variables.
As will be confirmed by the numerical integration of
the full nonlinear system, the asymptotic analysis
provides a good estimate of the remote slope-normal
velocity component. It also yields an intriguing result,
verified in the numerical integration, concerning the
non-existence of steady state solutions for certain
parameter values.

3.1 Asymptotic Analysis of the Divergent
Flow Variables

With the remote slope-normal velocity component
denoted by a=limy _ f(n) , the perturbation slope-

normal velocity component ¢(n) is given by

¢=f-a, (3.1)
The function g is assumed to vanish at infinity, along
with @. For n large enough, ¢ and g are sufficiently
small that their products can be neglected, and (2.29)
and (2.30) (with Pr = 1) linearize as

-ag' =@ +g", (3.2

—a@"=-g+o", (3.3)

Obtaining the solution of (3.2), (3.3) is straightforward
but tedious. After much labor (steps omitted) one finds

g= Aexp—%(a+|a|ﬁ) sin(J%L/y—l n +s) ,
(3.4)
¢=-A/3(ay-lal/y] eXp—g(a+|aW)] x
sin(J%l\/y—lr]+s+6),
(35)

where A and € are as-yet undetermined constants, and y
and the phase-shift parameter o are defined by

VE%( 1+;4+1)>1, (3.6)



5 =tan~1

~2(la/y + ay)

, %<5<n. (3.7)

Care should be taken in the evaluation of the inverse
tangent in (3.7) to insure that & appears in the second
quadrant (1t/2< & < ). For large values of |a| , say,
|al >5,(3.7)is well-approximated by = T2 for a>
0,andby 6= mfora<no.

The asymptotic solutions for ¢ and g are in the
form of a spatially-decaying oscillation. The
wavelength A and e-folding decay length scale L are

A=am/(lal/y-1), and Le=2/(a+lal/y),
respectively. For large values of [a] , A is well-
approximated by A=2m|al, while Lg is well-
approximated by L g=Va fora>0,andL ¢= lal® for
a< 0. For large positive values of a, Lg is very small,
indicating rapid decay of g and ¢. Figure 2 depicts A
and L for smaller valuesof |a] .

Although the asymptotic analysis is valid for large
n, asurprisingly accurate formulafor the remote slope-
normal velocity component can be obtained by carrying
the analysis down to the lower surface where the surface
boundary conditions (2.32) - (2.34) can be imposed. It
can be shown that the no-slip condition and imposed
along-slope buoyancy gradient condition result in
cos =0, Asne=g0). (3.8)
Imposing the impermeability condition (2.32) [in the
form @(0) = - @ in (3.5) yields

a=A %(ay—|a|ﬁ) sin(e +9) . (3.9)

In (3.9) we expand the sin(e + &) term, and impose
(3.8) and a formula for cosd, [an intermediate result
from the derivation of (3.7)] obtaining

a= Lzo)(a—lalﬁ) . (3.10)

Sincey > 1, (3.10) shows that a and g(0) have opposite
signs. This is consistent with the intuitive notion that
a surface buoyancy field that increasesin the down-slope
direction (g > 0) is associated with katabatic winds that
weaken in the down-slope direction, convergence and
rising motion (w > 0; a < 0). Using (3.6) for v,
(3.10) can readily be solved as

-1/4
a= 12{2(1—9(20))2—1]2—1\

\ f

where we take the positive root if g(0) < 0, and the

(3.12)

negative root if g(0) > 0. The remote slope-normal
velocity component obtained from (3.11) and the
corresponding values obtained from numerical
integrations of the full nonlinear system are presented in
Fig. 3.

Equation (3.11) also yields an intriguing result
concerning the non-existence of solutions. If g(0) > 1,
the quantity within curly brackets is negative, and its
1/4 root is complex. Hence a would be a complex
quantity. However, this is physically impossible since
a, which is a velocity component, must be real. This
contradiction indicates a breakdown of the steady-state
asymptotic solution for g(0) > 1.
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Fig. 2. Wavelength A and length scale L g as functions

of the remote slope-normal velocity parameter a. All
quantities are nondimensional.

3.2 Asymptotic Analysis of Nondivergent
Flow Variables

Inthelimitn - o, (2.39) yieldsk +f - 0, or, since
f-a, k- —a. Thesek and f terms originate in the
thermodynamic energy equation (2.20), where they
describe the along-slope and slope-normal advection of
(environmental) potential temperature, respectively. As
N - o these terms cancel. Thus, the remote flow is



parallel to the isentropes and there is no potential
temperature advection.

Defining the perturbation along-slope velocity
component k(n) by

K=k+a, (3.12)

and noting that K vanishes at infinity along with h, g
and ¢, (2.39) and (2.40) with Pr =1 can be approximated
atlargen as

—ag—-ah'=k+¢@+h" (3.13)

—ag' - aK’ = fn gmdi —h+k" . (314

After alengthy derivation (steps omitted) the solution
of (3.13) and (3.14) is obtained as

SEL TR
n exp[—(a+ Ialﬁ)%] COS(J%ij n+e+ u)
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(3.16)

where A is a phase shift (yet to be determined), and
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When evaluating the inverse tangent in (3.17), care
should be taken to insure that if a> 0 then Y appearsin
the first quadrant (0 < p < 10/2), but if a< 0 then p
appears in the second quadrant (TV2 < pu < ).

As in the solutions for the divergent flow variables
g and @, the solutions for k and h are comprised of

oscillations of wavelength A = 41t/ (|al,/y—1) . Since
the envel ope of the waves associated with the first terms
in (3.15), (3.16) is Qenv = N exp[—(a+]al/y) n/2] |,

these waves amplify prior to decaying. In contrast, the
envelope of the g and @ waves provides only
exponential decay. Setting the first and second
derivatives of Qg to zero yields the locations of the
envelope maximum and inflection point as
2/(a+|al/y) and 4/(a+|al/y) , respectively. It can
readily be shown that an envelope width L, defined as
twice the distance between these maximum and
inflection points is identical to the e-folding length
scale in the divergent-flow solutions, that is,

Lw=Le= 2@+lal/y).

4. NUMERICAL ANALYSIS FOR Pr =1

The structure of the divergent flow in the steady
state for Pr = 1 is sought as the terminal state of the
initial value problem consisting of the unsteady
equations (2.27) and (2.28), boundary conditions (2.31)-
(2.34) (imposed for T > 0), and an initial condition of
no motion and no thermal perturbation of the boundary.
The sudden imposition of a honzero surface value of g
and its maintenance for T > 0 [boundary condition
(2.34)] drive the flow.

The initial value problem is solved with a variant of
the Forward Time Centered Space (FTCS) finite
difference algorithm (Fletcher 1988). Rather than work
directly with f, we introduce a new variable F = of/an |

n
in terms of which f becomes f =JO FM)dn . The

FTCS discretization of (2.27), (2.28) on a uniform grid
in n-t space [with trapezoida rule for the discretization

J F(m) d ] yields the update formulas

gftl = gf + At(1 - gh) R +

05aTI% (e —gh-1) *  (51)
S(ofh+1 - 20 * o1,
FRtl = Bl — AT(FR)? — Atgh, +
05T 1f (e — Fiy 1)+ 52

s(FR+1 - 2FR + FR_4),

where

1% = 1% _q +O5(FR_1+F); m=2,

=0 m=1, (5.3
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Fig. 3. Remote slope-normal velocity component as a
function of the along-slope buoyancy gradient at the
surface, g(0), in the steady state. Solid curve is the
analytical solution (3.11) from the asymptotic analysis.
Circles are values from the numerical solution after the
transients had died out. Results are presented for
negative values of g(0).

and i = I]hAn . Here a superscript (n) is a time
index, a subscript (m) is a space index, AT is the time
step, AN is the grid spacing, and S= AT/AN? . The
total number of grid points, my,,, is chosen to be
large enough that any further increase in its value yields
negligible change to the solution throughout the
computational domain. In most of our experiments we
have set s=0.5and &N = 0.02. To these equations we
append the boundary values arising from (2.31) - (2.34)
(imposed for T > 0) and the initial conditions for no
motion and no thermal perturbations. In (2.31) we take
infinity to be any value large enough that any further
increase in its value produces negligible change in the
solution throughout the computational domain.

For the nondivergent flow variables, the FTCS
discretization of (2.37) and (2.38) with Pr = 1 resultsin
the update formulas
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Fig. 4. Asin Fig. 3 but for positive values of g(0).
The value g(0) = 1 marks the onset of solution non-
existence for the steady-state asymptotic solution.
Beginning with g(0) values in the 0.5 - 0.6 range, no
steady state could be reached in the numerical
integrations.

hiFd = b, + Atk (1-gf) +atan 1], +
05aTIH (N, y - hh_q) + (59
s(nf+q = 20, + hD_y),

Khr = K (1-AtFR) + At (Gh - GRy) +

05T (k4 g = kMh_g) - Ath],
+ S(k?n+l - Zk?n + k?n—l)’
(5.5)
where



Gl = GR_1+05An(gh_1+gf) m=2
=0 m=1. (5.6)

Thevalue G, in (5.5) corresponds to the value of G},
at the top of the computational domain, that is, at m =
Mmax-

The numerical integrations confirm the result from
the asymptotic analysis that steady-state solutions do
not exist if the along-slope buoyancy gradient g(0)
exceeds a threshold value. However, in the numerica
integrations, the threshold value for g(0) appeared to be
in the range 0.5 - 0.6 rather than the value of 1.0. The
positive value of this threshold indicates flow
deceleration, that is, a weakening of katabatic flow in
the downslope direction or strengthening of anabatic
flow in the downsl ope direction.

As the threshold value in the numerical experiments
was approached, the gravitational oscillations that
developed in the solution grew to larger amplitude, and
took longer to damp out. For values of g(0) that just
exceeded the threshold value, a quasi-periodic regime
was eventually established. However, for still larger
values of g(0), the integration became unstable. It is
not clear at this point whether the instability was purely
computational or a consequence of an overly-constrained
dynamical model. Clearly, the similarity model is
inconsistent with a hydraulic jJump, a structure known
to occur in strongly decelerating katabatic flows (e.g.,
Renfrew 2004).

For all numerical experiments in which negative
values of g(0) were prescribed (values were between -0.1
and -1000), a steady state was always obtained (asin the
asymptotic solution). Steady state values of the remote
slope-normal velocity component from the numerical
integrations are compared with the analytical values
obtained from (3.11) in Figs 3 and 4. A remarkable
agreement is found between the asymptotic theory and
the numerical integrations.

Other numerical experiments showed that the steady
state structure was independent of the manner in which
the surface forcing was imposed, that is, whether the
surface forcing g(0) was imposed impulsively or was
gradually ramped up to its full value after a specified
period of time. Moreover, the threshold value of g(0)
for breakdown of the steady state was found to be
independent of the manner in which the surface forcing
was imposed.

Results pertaining to the detailed structure of the
flow variables in the steady state will be presented at the
conference.
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